
A New Hybrid Multi-objective Optimization

Algorithm for Task Scheduling in Cloud Systems

Arslan Nedhir Malti1*, Mourad Hakem2 and Badr Benmammar1

1*LTT Laboratory of Telecommunication Tlemcen, UABT, Algeria.
2DISC Laboratory, Femto-ST Institute, UMR CNRS, Université de

Franche-Comté, Besançon, France.

*Corresponding author(s). E-mail(s):
arslannedhir.malti@univ-tlemcen.dz;

Abstract

Nowadays, cloud computing is widely used in various fields and is booming day by
day with different services offered to users according to their needs and contracts.
However, this has brought many challenges and constraints that organizations
must to be aware of and address to fully harness its power. In practice, the most
important issue that has gained significant influence in improving system per-
formances is task scheduling. Unfortunately, it is known that this problem is
NP-hard and the use of both heuristics and metaheuristics is required to obtain
near optimal solutions but in a reasonable amount of computation time. Despite
the fact that several studies have been published in the literature, there are still
interesting and relevant questions to be addressed. For instance, when it comes to
the stagnation phenomenon of local solutions and the premature convergence of
the search process, it is crucial to execute the exploration and exploitation stages
carefully as improperly performed stages may result in inefficient task mapping
solutions. Consequently, to overcome the limitations of existing techniques in
terms of local optimality trap and immature convergence, a novel hybrid opti-
mization algorithm is proposed to deal with multi-objective task scheduling in
heterogeneous IaaS cloud environments. It is based on the combination of the
pollination behavior of flowers with the search exploration capability of the grey
wolf optimizer strategy. In addition, it makes use of the evolutionary algorithms
crossover operators to strike a good balance between exploring new solutions
and exploiting the already discovered ones. Based on the CloudSim framework,
different test-bed scenarios and both synthetic and standard workload traces
were considered to assess the performance of the proposed algorithm by evalu-
ating its objective function in terms of four optimization criteria, namely time

1

makespan, resource utilization, degree of imbalance and throughput. Our pro-
posal was compared to the well-known optimization-based scheduling techniques
in the literature, like TSMGWO, GGWO, LPGWO and FPA approach. The
obtained results corroborate the merits of the new designed hybrid algorithm.

Keywords: Cloud computing, Task scheduling, Multi-objective optimization, Flower
pollination algorithm, Grey wolf optimizer, Metaheuristics

1 Introduction

Cloud computing is a promising paradigm that has gained popularity for business and
scientific purposes. It is a model for delivering Information Technology (IT) services in
which resources are retrieved from the internet through web-based tools and applica-
tions. Thess services provide on-demand access to shared pools of configurable system
resources, such as networks, servers, storage, and applications. This allows organiza-
tions to consume and pay for IT services as needed rather than having to set up and
maintain their own costly infrastructure.

To effectively harness the potential of the cloud system, Cloud Service Providers
(CSPs) such as Amazon Web Services (AWS), Microsoft Azure, Google Cloud Plat-
form, Cisco, IBM and Accenture are striving to meet the diverse requirements of their
clients by offering various services that can be broadly classified into three categories,
namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [1]. At the bottom of the cloud computing stack is the IaaS model
which involves the delivery of raw computing resources, such as virtualized servers,
storage, and networking. It is the most basic level of cloud computing and allows cus-
tomers to rent computing resources based on their needs. Some of the most popular
IaaS cloud service providers include AWS, Microsoft Azure, and Google Cloud Plat-
form. PaaS builds on top of IaaS by providing a platform for customers to develop,
run, and manage their own applications. It includes everything from the operating
system to the middleware, databases, and programming languages. Examples of PaaS
providers are AWS Elastic Beanstalk, Microsoft Azure App Service, and Google App
Engine. The third type of cloud service model, SaaS, is the most advanced level of cloud
computing, in which customers can access fully-featured software applications. These
applications are typically used through a web browser and are maintained and man-
aged by the service provider. Salesforce, Microsoft Office 365, and Google Workspace
are some examples of SaaS providers.

Although Cloud computing technology offers users higher computation advantages
in terms of cost, flexibility, and availability, it rises some challenges that organizations
must be aware of and address to fully leverage its power. One of these main challenges
is task scheduling [2] which plays an important key role in ensuring efficient use of
the cloud’s computing resources. It involves orchestrating appropriately the request
submitted by the users to the set of resources under specific constraints in such a way
that the overall performance of the system is optimized.

2

Basically, the cloud system is made up of two main entities: consumers and cloud
service providers. Both must adhere to their commitments as outlined in the Service
Level Agreement (SLA) to avoid penalties. Cloud service providers must keep their
commitments in terms of computing power, service reliability, security, and resource
availability to satisfy customers while striving to maximize their profits. On the other
hand, consumers seek to accomplish their tasks in the shortest amount of time. How-
ever, service quality constraints can be divided into two main categories: provider
needs and consumer desires. Therefore, scheduling strategies should not only aim to
satisfy user-defined Quality of Service (QoS) requirements through SLAs, but also
ensure that provider profits are not significantly impacted [3].

In recent years, several researchers have attempted to tackle the task schedul-
ing problem by using various optimization-based approaches which include exact and
heuristics methods depending on the size and complexity of the targeted problem [4].
Metaheuristic optimization approaches are another strategies that are widely used to
address diverse and real-world complex optimization issues, including task scheduling
in parallel and distributed systems. Some popular metaheuristic techniques include
Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimiza-
tion (ACO), Bat Algorithm (BA), Grey Wolf Optimizer (GWO), Flower Pollination
Algorithm (FPA), Dragonfly Algorithm (DA), Salp Swarm Algorithm (SSA), Har-
mony Search (HS) and Shuffled Frog Leaping Algorithm (SFLA) [5–9]. These methods
differ in their approach to exploring (diversification) or exploiting (intensification) the
research space. Each has a unique combination of diversification and intensification
strategies in finding the global solution. However, this class of optimization techniques
has some weak points and all these algorithms potentially suffer from the premature
convergence phenomenon and the difficulty to overcome the trap of local optimality
when faced with a large solutions space which may affects the quality of service and
the performance of the cloud system. Consequently, it is important to seek for efficient
and adaptive task scheduling strategies that can achieve the right balance between
exploration and exploitation while fulfilling the requirements of the cloud system.

Despite an abundant literature works and the results achieved in the field of multi-
objective task scheduling in cloud computing, a number of concerns remain still not
investigated [5]. For instance, combining various heuristics or metaheuristics to exploit
their strengths and address their limitations is one promising research direction. To this
purpose, a new hybrid optimization algorithm is introduced, in this paper, to tackle
the problem of multi-objective task scheduling problem in cloud systems, considering
both service provider and consumer requirements. To the best of our knowledge, no
previous studies in the literature have examined the improvements proposed in this
work by hybridizing the key features of the considered metaheuristics to deal with
multi-criteria scheduling in cloud computing environments. The aim is to leverage
the strengths of various approaches to improve the overall performances of the task
scheduling process in terms of the achieved trade-offs between the provider’s benefits
and the user’s QoS requirements using four main metrics: time makespan, resource
utilization, degree of imbalance and throughput.

The proposed algorithm is made upon a hybridization of the bio-inspired FPA
algorithm with the swarm intelligence-grey wolf optimizer and uses the GA crossover

3

operators to provide efficient task mapping in order to satisfy the needs of the service
provider and the end-user, respectively. The main contributions of this paper can be
summarized as follows:

1. We formulate the task scheduling in clouds as a multi-objective optimization prob-
lem that takes into account not only the measures needed to meet the user-defined
QoS requirements through SLAs, but also considers the measures that ensure the
profitability of the service provider.

2. We design a new hybrid strategy that combines the pollination behavior of flow-
ers and the grey wolf optimizer to achieve better global performances of the task
scheduling process in heterogeneous cloud computing environments.

3. We use the evolutionary algorithms crossover operators in order to achieve a suit-
able balance between the stages of exploration and exploitation throughout the
search process.

4. Both synthetic and standard workload traces are investigated to assess and analyse
the performance of our approach by evaluating its objective function in terms of
four optimization criteria, namely time makespan, resource utilization, degree of
imbalance and throughput.

5. Based on the CloudSim framework, a series of test-bed scenarios and QoS metrics
were considered and the obtained results show that the new hybrid strategy out-
performs its direct competitors, such as GGWO [10], LPGWO [11], TSMGWO [12]
and the standard FPA approach [13].

The rest of this paper is organized as follows: Section 2 presents an overview of
the relevant techniques proposed in literature on task scheduling in cloud computing
environments. Section 3 provides a comprehensive formal model outlining the schedul-
ing problem being addressed. Section 4 examines the standard FPA and the GWO
algorithms which form the basis of our research. In Section 5, we detail our proposed
approach, which is made upon the pollination behavior of the flowers and grew wolf
optimizer as well as the use of the crossover operators of evolutionary algorithms.
We report the experimental details and a comparative performance analysis of our
proposal in Section 6. Finally, conclusion and outlines for potential future research
directions are given in Section 7.

2 Related works

Many approaches have been proposed in the literature to solve the problem of task
scheduling in parallel and distributed systems, based on heuristics, metaheuristics and
hybrid scheduling strategies. In this section, we do not provide an exhaustive state
of the art, but rather focus mainly on recently proposed algorithms that are widely
adopted in cloud computing.

Pirozmand et al. [14] introduced a new hybrid algorithm, known as GAECS, which
combines genetic algorithm and Energy-Conscious Scheduling (ECS) model to effi-
ciently schedule multi-objective tasks in cloud computing systems with a focus on time
and energy efficiency. The purpose of this algorithm is to balance the trade-off between

4

time and energy consumption when assigning tasks to processors. The performance of
GAECS algorithm was analyzed using MATLAB and found to be more accurate than
other existing algorithms. An independent task scheduling algorithm, known as BA-
ABC, was developed by Bezdan et al. [15]. It combines two metaheuristic methods,
a standard BA search with the Artificial Bee Colony (ABC) algorithm’s exploitation
technique during search iterations. Moreover, the Quasi-Reflection-Based Learning
(QRBL) methode is utilized to enhance both the convergence rate and the variety
of solutions. The effectiveness of BA-ABC was conducted on the HPC2N and NASA
Ames iPSC/860 standard parallel workload traces. The experimental performances
were compared to four other optimization algorithms and the obtained results showed
that the authors’ proposal has a relative advantage compared to other algorithms.

A bi-objective optimization for independent task scheduling on cloud virtual
resources was presented by Gupta et al [13]. It is based on the concept of pollina-
tion in nature and was compared with three other metaheuristic methods: PSO, GA,
and Gravitational Search Algorithm (GSA). The designed approach involves map-
ping tasks to the available virtual machines through an effective pollen representation
scheme and a dedicated process for retrieving the task-VM matching from a given
pollen. The authors aim to optimize both the time makespan and the average cloud
resource utilization. According to the simulation results, the FPA-based task schedul-
ing approach outperforms other concurrent metaheuristic methods. However, it should
be noted that the suggested work lacks dynamic flexibility as it only addresses static
independent task scheduling and virtual machines. In [16], Bezdan et al. proposed an
improved version of the flower pollination algorithm for independent task scheduling
in cloud computing systems, named the Exploration-Enhanced FPA (EEFPA). The
goal of the EEFPA is to maintain quality of service by focusing solely on the time
makespan objective. The authors’ study showed that the standard FPA approach
struggles to effectively search the solution space in the early stages. To address this,
the authors suggest replacing the worst individuals in the population with new ran-
dom solutions during the first 30% of iterations. The reported results indicate that
this technique decreases the makespan and enhances the convergence speed compared
to FPA, Performance Budget ACO (PBACO), ACO, Min-min and First Come First
Serve (FCFS) techniques.

In a recent paper, Miglani et al. [17] proposed an elastic and persuasive task sched-
uler based on a modified flower pollination algorithm in a cloud environment. The
proposed approach, called multi-objective reliability-based workflow scheduler, aims
to map tasks to the most suitable machines in terms of makespan, efficiency and
incurred cost. Simulation results showed that this approach improves efficiency and
performance compared to other existing methods, such as FPA, GWO and GA. Walia
et al. [18] proposed an energy-efficient scheduling algorithm (HS), which combines
both FPA and GA algorithms to distribute the computing resources among tasks with
less energy consumption. The authors’ study evaluates different performance metrics
such as resource utilization, completion time, energy consumption, and computational
cost in homogeneous and heterogeneous cloud platforms. The obtained results using
ASP.NET reveal that HS outperforms existing algorithms like GA and FPA in terms

5

of efficient task scheduling and resource management. However, the HS fairness index
value fell below the prescribed threshold, indicating an unfair allocaion of resources.

In the work of Gokuldhev et al. [11], a Local Pollination-based Gray Wolf Opti-
mizer (LPGWO) with an energetic concept was designed by combining two optimizer
algorithms, GWO and the concept of pollination in nature. The authors’ goal is to
effectively balance makespan and resource energy consumption. The LPGWO consists
of three phases: initialization phase, GWO phase and the FPA phase. The initialization
phase employs chaotic mapping and the Opposition-Based Learning (OBL) method
to provide an appropriate initial task scheduling solution. The GWO phase was used
to improve convergence speed, while the FPA phase distributes data to the next set
of candidate solutions through local pollination. The proposed LPGWO was evalu-
ated on physical machines with low and high heterogeneity, and the results showed
that it outperformed related existing approaches such as GA, PSO, Bacteria Forag-
ing Algorithm (BFA), and Multi-Hybrid Bacteria Foraging Algorithm (MHBFA). In
another study with similar lines, a new multi-objective task scheduling algorithm,
called Local Pollination based Moth Search Algorithm (LPMSA), has been developed
to address heterogeneity and dynamicity in cloud systems [19]. LPMSA combines the
local search of the FPA approach with the Moth Search Algorithm (MSA) to enhance
its exploitability and avoid local optima. The effectiveness of LPMSA was evaluated
on low and high heterogeneous machines with uniform and non-uniform parameters.
The results indicate a significant improvement in makespan, energy consumption, and
convergence speed of the optimization process compared to other previous approaches.

In [12], a Multi-Objective Task Scheduling based on Grey Wolf Optimizer is pre-
sented. The proposed technique, which is called TSMGWO, aims to find an optimal or
near-optimal solution to the task scheduling problem in IaaS cloud systems by consid-
ering multiple conflicting objectives such as makespan, resource utilization, degree of
imbalance, and throughput simultaneously. The algorithm’s performances were eval-
uated using three different benchmark datasets, namely GoCJ, Synthetic and HSCP
data set, and the numerical results show that this method surpasses earlier heuristics
FCFS and Modified Throttle (MT) methods as well as metaheuristics PSO, GA and
WOA significantly. Natesan and Chokkalingam [20] developed a more accurate and
efficient version of the standard grey wolf optimization algorithm called Mean-GWO.
The comparison results using the CloudSim toolkit on two datasets left-skewed and
right-skewed showed that the improved circling and hunting equations had a potential
to perform better than competing techniques such as PSO and the standard GWO in
terms of makespan and energy consumption.

A Pareto-based multi-objective GWO (PGWO) algorithm was proposed by Khalili
et al. [21] for scheduling workflows in cloud systems. The goal is to balance con-
flicting objectives of minimizing both makespan and cost, and maximizing resource
throughput for the provider. The algorithm’s performance was evaluated using two
workflow patterns: imbalanced (Montage) and balanced (Epigenomics). Simulation
results demonstrate that the extended multi-objective algorithm produced a better
trade-off between the considered objectives with a maximum spread of solutions and
greater coverage ratio than Strength Pareto Evolutionary Algorithm 2 (SPEA2). Gob-
alakrishnan and Arun [10] have developed a hybrid multi-objective approach, known

6

as Genetic Gray Wolves Optimization (GGWO). Their goal is to improve the work-
flow scheduling performances in terms of total time, migration cost, load utilization
and energy consumption as well as balancing the load among the computing resources.
The authors use GA within GWO to enhance performance and to speed up the opti-
mization process. The GGWO analysis was conducted using five common scientific
workflows, namely LIGO, Montage, Epigenomics, SIPHT and Cybershake. Experi-
ments revealed that GGWO can improve the performances of the task scheduling
process compared to standard GWO and GA algorithm.

Khurana and Singh [22] proposed a hybrid bi-objective scheduling approach for
scientific workflows that combines bio-inspired and swarm intelligence algorithms. The
algorithm uses GWO and FPA with the PEFT algorithm for global and local optimiza-
tion. The aim is to minimize both monetary cost and task execution time in the cloud
by assigning the submitted tasks to the available virtual machines. The effectiveness
of the proposed technique compared to flower pollination and genetic algorithm was
demonstrated through numerical simulations. In another study, Amer et al. [23] have
introduced a modified Harris hawks optimizer (HHO), called Elite Learning Harris
Hawks Optimizer (ELHHO) to address the multi-objective scheduling problem. The
purpose of this strategy is to explore more positions in the search space and improve
the exploration process of the HHO algorithm. The proposed ELHHO technique com-
bines two scientific intelligent methods: Elite Opposition-Based Learning (EOBL) and
Minimum Completion Time (MCT). The EOBL strategy is used in the exploration
process to improve the capacity of the global search in the HHO to balance between
exploration and exploitation, while MCT generates the initial scheduled list to serve
as the initial population. The simulations perfomed with the CloudSim toolkit made
clear that the authors’ work efficiently assigns the submitted tasks to the available
VMs with a high balance degree, throughput, and resource utilization while reducing
schedule length and resource execution cost. Table 1 illustrates the summary of the
latest published state-of-the-art scheduling strategies, which are designed with various
optimization techniques.

Overall, the previously studied bio-inspired and swarm optimization methods have
great potential for task scheduling in cloud computing systems. Nevertheless, further
improvements are necessary to achieve the right balance between exploration and
exploitation through the use of suitable operators. Consequently, to overcome the lim-
itations and drawbacks of existing optimization-based scheduling techniques, a new
hybrid optimization algorithm for multi-criteria task scheduling in cloud systems is
presented in this paper. Moreover, to maintain consistency and coherence with previ-
ous studies, the experimental set up and the parameters used are in line with those
used in [12]. Specifically, the same QoS metrics and data set are used for this purpose.

3 Problem statement

The IaaS cloud is a commonly used model for managing resources, making scheduling
in these systems an important topic of investigation for the research community. This
model provides virtualized computing resources that are accessible to customers over
the internet. Indeed, virtualization is one of the primary enablers for cloud computing.

7

T
a
b
le

1
A
n
o
v
er
v
ie
w

o
f
th

e
re
la
te
d
w
o
rk
s

C
o
n
tr
ib
u
ti
o
n
s

S
ch

ed
u
li
n
g
T
y
p
e

P
a
ra
m
et
er
s

S
im

u
la
ti
o
n
to
o
l

Y
ea

r
R
ef

A
n
ew

m
et
a
-h
eu

ri
st
ic

m
et
h
o
d
b
a
se
d
o
n
th

e
T
a
sk

M
a
k
es
p
a
n

M
A
T
L
A
B

2
0
2
1

[1
4
]

G
A

a
n
d
th

e
E
C
S
m
o
d
el

sc
h
ed

u
li
n
g

E
n
er
g
y

A
m
et
h
o
d
b
a
se
d
o
n
B
A

a
n
d
d
iv
er
si
fi
ca

ti
o
n

T
a
sk

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
2
0

[1
5
]

o
f
th

e
A
B
C

a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

E
x
ec
u
ti
o
n
co

st

A
n
effi

ci
en

t
p
o
ll
en

re
p
re
se
n
ta
ti
o
n
sc
h
em

e
to

T
a
sk

M
a
k
es
p
a
n

M
A
T
L
A
B

2
0
1
7

[1
3
]

d
et
er
m
in
e
th

e
ta
sk
-V

M
m
a
p
p
in
g

sc
h
ed

u
li
n
g

R
es
o
u
rc
e
u
ti
li
za

ti
o
n

E
n
h
a
n
ce
d
F
P
A

fo
r
ta
sk

sc
h
ed

u
li
n
g
in

cl
o
u
d

T
a
sk

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
2
1

[1
6
]

sc
h
ed

u
li
n
g

R
el
ia
b
il
it
y
-b
a
se
d
m
u
lt
i-
o
b
je
ct
iv
e
w
o
rk
fl
o
w

W
o
rk
fl
o
w

M
a
k
es
p
a
n

N
/
A

2
0
2
2

[1
7
]

sc
h
ed

u
le
r
u
p
o
n
m
o
d
ifi
ed

fl
o
w
er

p
o
ll
in
a
ti
o
n

sc
h
ed

u
li
n
g

E
ffi
ci
en

cy
a
lg
o
ri
th

m
in

cl
o
u
d

C
o
st

A
n
en

er
g
y
-e
ffi
ci
en

t
h
y
b
ri
d
a
lg
o
ri
th

m
th

a
t
re
li
es

T
a
sk

C
o
m
p
le
ti
o
n
ti
m
e

A
S
P
.N

E
T

2
0
2
1

[1
8
]

o
n
b
o
th

F
P
A

a
n
d
G
A

a
lg
o
ri
th

m
s

sc
h
ed

u
li
n
g

R
es
o
u
rc
e
u
ti
li
za

ti
o
n

E
n
er
g
y
a
n
d
C
o
st

A
n
en

er
g
et
ic

m
et
h
o
d
o
f
lo
ca

l
p
o
ll
in
a
ti
o
n
b
a
se
d

T
a
sk

M
a
k
es
p
a
n

M
A
T
L
A
B

2
0
2
0

[1
1
]

o
n
G
W

O
a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

E
n
er
g
y

L
o
ca

l
p
o
ll
in
a
ti
o
n
-b
a
se
d
m
o
th

se
a
rc
h
a
lg
o
ri
th

m
T
a
sk

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
2
2

[1
9
]

fo
r
ta
sk

sc
h
ed

u
li
n
g
h
et
er
o
g
en

eo
u
s
cl
o
u
d

sc
h
ed

u
li
n
g

E
n
er
g
y

A
m
et
a
h
eu

ri
st
ic

G
W

O
b
a
se
d
a
p
p
ro
a
ch

T
a
sk

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
2
1

[1
2
]

fo
r
fi
n
d
in
g
a
n
o
p
ti
m
a
l
o
r
n
ea

r
o
p
ti
m
a
l

sc
h
ed

u
li
n
g

R
es
o
u
rc
e
u
ti
li
za

ti
o
n

so
lu
ti
o
n
to

th
e
ta
sk

sc
h
ed

u
li
n
g
p
ro
b
le
m

D
eg

re
e
o
f
im

b
a
la
n
ce

T
h
ro
u
g
h
p
u
t

A
n
im

p
ro
v
ed

v
er
si
o
n
o
f
th

e
g
ra
y
w
o
lf

T
a
sk

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
1
9

[2
0
]

o
p
ti
m
iz
a
ti
o
n
a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

E
n
er
g
y

A
p
a
re
to
-b
a
se
d
m
u
lt
i-
o
b
je
ct
iv
e
G
W

O
W

o
rk
fl
o
w

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
1
7

[2
1
]

a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

C
o
st

T
h
ro
u
g
h
p
u
t

H
y
b
ri
d
iz
a
ti
o
n
o
f
g
re
y
w
o
lf
o
p
ti
m
iz
er

T
a
sk

P
ro
ce
ss
in
g
ti
m
e

C
lo
u
d
S
im

2
0
1
8

[1
0
]

a
n
d
g
en

et
ic

a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

L
o
a
d
u
ti
li
za

ti
o
n

M
ig
ra
ti
o
n
co

st
E
n
er
g
y

H
y
b
ri
d
iz
a
ti
o
n
o
f
th

e
G
W

O
a
n
d
F
P
A

a
lo
n
g
w
it
h

W
o
rk
fl
o
w

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
2
1

[2
2
]

th
e
P
E
F
T

a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

C
o
st

A
n
en

h
a
n
ce
d
v
er
si
o
n
o
f
H
H
O

u
si
n
g
th

e
E
O
B
L

T
a
sk

M
a
k
es
p
a
n

C
lo
u
d
S
im

2
0
2
2

[2
3
]

st
ra
te
g
y
a
n
d
th

e
M
C
T

h
eu

ri
st
ic

a
lg
o
ri
th

m
sc
h
ed

u
li
n
g

C
o
st

T
h
ro
u
g
h
p
u
t

R
es
o
u
rc
e
u
ti
li
za

ti
o
n

B
a
la
n
ce

d
eg

re
e

8

Fig. 1 Task scheduler framework in cloud

It allows cloud providers to represent physical resources as Virtual Machines (VMs).
A typical cloud computing framework is illustrated in Figure 1. In cloud scheduling
theory, as shown in Figure 1, when user requests are submitted to the cloud, they
are forwarded to a cloud broker called also a task manager. The function of the cloud
broker is to manage all the enlisted tasks and present them to the scheduler. This
scheduler plays an essential role of assigning the available set of VMs to the user’s
submitted tasks based on the employed policy. To optimize the assignment process, the
scheduler works in conjunction with the Resource Information Server (RIS) to gather
information about the resources and capabilities of each VM; allowing the scheduler
to identify the most suitable resources to fulfill the user’s requests.

Our research focus on a task scheduling model where an application is repre-
sented as a collection of tasks that can be performed simultaneously. The following
assumptions are made.

(1) Each task must be assigned exclusively to one VM.
(2) Tasks can be executed on any suitable VM, and the achieved performance depends
on the capabilities of the virtual machine.
(3) Specific parameters need to be calculated for each task on each designated
resource.
(4) The tasks are non-preemptive. In other terms, any interruptions will not be
allowed once the task is assigned.
(5) A single VM may handle more than one task simultaneously.

For the sake of clarity, an application is represented as a set of independent tasks
T = {T1, T2, . . . , Tn}. Each task Ti has a specific processing requirement, known as task
length, measured in Million Instructions (MI). Consider a set of m virtual machines
S = {VM1, V M2, . . . , V Mm}. Each virtual machine VMj is a set of computing entities
with limited capabilities such as CPU power, memory space, storage capacity, and
network bandwidth. It’s assumed that the VMs are heterogeneous and their CPU
processing speed, measured in Millions of Instructions Per Second (MIPS), are used
to estimate the execution time of user requests.

The main purpose of scheduling is to handle user requests by allocating the suit-
able resources that optimize one or more objectives. Commonly, literature reviews

9

have focused on end-user QoS-based criteria such as makespan and execution cost
[24]. However, other service provider QoS parameters that may impact overall system
performance are often neglected [23]. Both consumer and provider desires must be con-
sidered in the design and implementation of cloud services to ensure that the service
is both cost-effective for the consumer and profitable for the provider. This can be a
balancing act and requires tradeoffs from both sides. Thus, the aim of this study is to
takes these objectives into account by evaluating measures such as makespan, resource
utilization, throughput, and balance degree which will be further explained below.

Makespan: it measures the total time required to complete a set of tasks. Commonly
sought-after objective in parallel and distributed computing systems to evaluates the
efficiency of the designed algorithms in terms of task completion time reduction. It is
calculated from the earliest starting time of the tasks to the latest completion time of
the tasks. In other words, it represents the longest time taken to complete the assigned
application tasks on all available VMs. Mathematically, Makespan is expressed as
follows:

Makespan = max
j∈1...m

n∑
i=1

CT (Ti,VM j) (1)

where m and n are the number of machines and assigned tasks, respectively. The
completion time, denoted as CT (Ti,VMj), represents the execution time of task Ti on
a virtual machine VMj , and can be computed as follows:

CT (Ti, V Mj) =
Ti.MI

VM j .MIPS
(2)

where Ti.MI is the length of the task Ti and VM j .MIPS is the processing power of
the assigned virtual machine VMj .

Resource utilization: it measures the efficiency and effectiveness of a system’s use
of its resources. This metric is particularly important for cloud providers as it directly
affects their profitability. In this study, we evaluated the performance of the proposed
approach using resource utilization in terms of average Resource Utilization Rate
(RUR) according to the following equation [9, 13, 25, 26]:

RUR =

∑m
j=1 CTj

Makespan ∗m
(3)

where CTj represents the completion time of the j-th virtual machine after executing
its last task. A higher rate indicates that the system is making better use of its
resources, while a lower rate suggests that the resources are being underutilized.

Degree of imbalance: it is a metric that assesses the imbalance of cloud workload
distribution across the available virtual machines based on their capabilities [27]. It
aims to ensure an even distribution of workload and prevent bottlenecks in the system,
so that no resources are overloaded while others are under loaded or idle. The degree
of imbalance may be calculated as follows.

10

Deg Imbalance =
VM CTmax −VM CTmin

VM CTavg
(4)

where VM CTmax and VM CTmin represent the achieved longest and shortest com-
pletion time, respectively. VM CTavg stands for the average completion time of
all virtual machines. Higher Deg Imbalance indicates a greater imbalance among
resources, which can negatively impact system performance. Conversely, a lower
Deg Imbalance indicates a more balanced distribution of resources, which can lead
to better performance.

Throughput: it is a measure of the rate at which a particular system or process is
able to complete workloads. It is usually measured in terms of the number of completed
tasks or the amount of data processed within a specific time frame. A high throughput
value indicates that a system or a process can handle a large amount of data in a
short amount of time. This is generally considered to be a desirable characteristic,
as it can result in faster response times and increased productivity for the system as
a whole. Conversely, a low throughput value may reflect that a system or process is
unable to keep up with the assigned demands, which can lead to delays and decreased
productivity. The throughput is calculated by the following formula [28].

Throughput =
Number of tasks

Makespan
(5)

In summary, given (1) an IaaS infrastructure provider that offers a set of virtual
machines and (2) a workload consisting of a set of tasks that need to be executed on
those virtual machines. Our study aims to orchestrate the assignment of tasks to VMs
while satisfying trade-offs relationship between the provider’s benefits and the user’s
QoS requirements. The QoS parameters considered are makespan, resource utilization,
degree of imbalance and throughput. Due to the conflicting nature of these QoS, the
workload scheduling can be presented as the following multi-objective optimization
problem.

Minimize Makespan
Maximize Resource Utilization Rate
Minimize Degree of Imbalance
Maximize Throughput

4 Background information on FPA and GWO
algorithms

In this section, we outline the main features of the flower pollination algorithm as well
as the gray wolf optimizer, which will be the focus of our proposal.

11

4.1 Flower pollination overview

Flower Pollination Algorithm (FPA) is a metaheuristic optimization algorithm inspired
by the pollination process in flowers. It was originally introduced in 2012 by Xin-
She Yang [29]. Similar to other metaheuristic algorithms, FPA is a population-based
algorithm that maintains a group of solutions called ‘flowers‘ and iteratively improves
them through the pollination process.

The pollination process can take two forms, biotic and abiotic, depending on the
pollen transfer mechanisms. Biotic pollination, which occurs in about 90% of flowering
plants, refers to the transfer of pollen from one plant to another by living organisms,
such as insects, birds, bats, bees or other animals [29]. On the other hand, abiotic
pollination refers to the transfer of pollen by non-living agents, such as wind or water.

In the context of the FPA, the term ‘pollination‘ refer to the process of exchanging
information between solutions in order to update and improve their quality. This
process is inspired by the way in which pollination occurs in nature, but it does not
involve the transfer of pollen or any other physical substance. There are two types of
pollination that can occur [29]:

Global pollination: it involves exchanging information between solutions across the
entire population process using a Markovian stochastic process called a Lévy flight
[30]. The latter is a random walk interspersed by long jumps from its current position
according to a power law, based on a random step of the Lévy distribution to effectively
mimic the characteristic of long-distance movement of insects.

Local pollination: it entails the information exchange between solutions within a
specific region using neighborhood search techniques.

Both types of pollination can be used in FPA to improve the quality of the solu-
tions. Global pollination allows a wide range of solutions to be explored and identified,
while local pollination refines and improves the quality of solutions within a specific
region of the solution space. The appropriate type of pollination to use will depend
on the characteristics and requirements of the optimization problem to be solved. The
pseudo-code of FPA approach is presented in Algorithm 1.

The algorithm begins by initializing a population of solutions, where each solution
is represented by a flower, and each flower is expressed by a set of decision variables.
The algorithm then mimics the pollination process to iteratively enhance the solutions.
The pollination process is done by moving each flower’s decision variables towards
the decision variables of a randomly chosen flower, or to the best flower (global best
solution found so far) with certain probability. In other terms, the application of
global or local pollination is determined by a random number generation process. If
the generated number is less than a certain probability p, then the overall pollination
will be applied as follows:

xt+1
i = xt

i + L
(
xt
i − g∗

)
(6)

where xt
i is a solution i at iteration t, xt+1

i is the solution vector generated at step
t + 1. This latter is determined using the previous solution vector xt

i and the best

12

Algorithm 1 FPA pseudo-code

1: Objective function min or max f(x), x = (x1, x2, ...)
2: Define a switch probability p ∈ [0, 1]
3: Generate initial population of flowers randomly
4: Find the best solution g∗ in the initial population
5: while Not (stopping criteria) do
6: for each i = 1 : n (all n flowers in the population) do
7: if rand() < p then
8: Draw a step size L that obeys a Lévy distribution
9: Global pollination via xt+1

i = xt
i + L (xt

i − g∗)
10: else
11: Draw ε from a uniform distribution in [0, 1]
12: Choose xt

j and xt
k randomly from all solutions

13: Local pollination via xt+1
i = xt

i + ε
(
xt
j − xt

k

)
14: end if
15: Evaluate the new solution
16: if new solution is better then
17: Update xt

i with xt+1
i

18: end if
19: end for
20: Find the current best solution g∗
21: end while
22: return g∗

current solution found among all the solutions in the generation g∗. The parameter
L is a step size involving the use of a Lévy distribution [30], which is a method used
to simulate unpredictable insect movement patterns over long distances, that can be
mathematically formulated as follows:

L ∼
λΓ (λ) sin

(
πλ
2

)
π

1

s1+λ
, (s > 0) (7)

In the above equation, Γ (λ) is the standard gamma function and this distribution is
valid for large steps s > 0 which are computed using the formula below:

s =
U

|V |1/λ
(8)

where the values U and V are derived from a normal Gaussian distribution with a
mean of zero and standard deviations σu and σv, respectively.

U ∼
(
0, σ2

u

)
, V ∼

(
0, σ2

v

)
(9)

σu =

[
Γ (1 + λ)

λΓ ((1+λ)/2)

sin
(
πλ
2

)
2(λ−1)/2

]1/λ

, σv = 1 (10)

13

Otherwise, if the generated random number is greater than the value p, then the local
pollination procedure is performed to create new solutions by combining existing ones
according to the following equation:

xt+1
i = xt

i + ε
(
xt
j − xt

k

)
(11)

where xt
j and xt

k are two different solutions chosen randomly among the population
and ε ∈ [0, 1] is a random number to make the selection closer to a local random walk
[29]. Then, the fitness value of the new solution is evaluated, and subsequently, the
best solution from the current population is selected by evaluating the new generation.
This best solution is carried over to the next iteration, and the search process will be
repeated until the stopping criterion is satisfied.

4.2 Grey wolf optimizer overview

Grey Wolf Optimizer (GWO) is a metaheuristic optimization algorithm inspired by
the social hunting behavior of grey wolves in the wild. Originally, proposed in 2014 by
Mirjalili and Lewis [31], it works by maintaining a group of potential solutions called
”wolves”, which are used to explore the search space and identify the best solution.
The mathematical model of the GWO algorithm’s is split into four phases which are
liste as follows [31, 32]:

Social Hierarchy: the gray wolves in a pack establish a social hierarchy through a
dominance-based mechanism, where the strongest wolf, the alpha, has the most control
and makes decisions for the rest of the pack. The second strongest one, the beta, acts
as a consultant of the alpha. The third strongest Wolf, the delta, is a subordinate who
submits to the upper levels (alpha and beta) while serving as a leader to the omega
wolf, the lowest-ranking members of the pack.

Each wolf’s fitness value defines its ranking in the hierarchy during the social hier-
archy phase. The strongest wolves are designated as α, beta β and delta δ, respectively,
which play specific roles in the following stages and the remaining pack members
considered as omega(s).

Encircling Prey: once the pack leaders are established, the pack begins to encircle
their prey by moving in a circular motion. The leaders guide the pack towards the
prey, and the other members follow them. This encircling behavior is mathematically
modeled in the following equations.

X⃗(t+ 1) = X⃗p(t)− A⃗.D⃗

D⃗ = |C⃗.X⃗p(t)− X⃗(t)|
(12)

where, X⃗ represents the position of the current gray wolf and X⃗p the position of the

prey. The coefficient vectors A⃗ and C⃗ are computed as follows:

A⃗ = 2.⃗a.r⃗1 − a⃗ (13)

14

C⃗ = 2.r⃗2 (14)

where, the vector a⃗ decreases progressively in linear way to emphasize exploration and
exploitation, respectively, while r⃗1 and r⃗2 are arrays of random real numbers generated
within the range of [0, 1].

Hunting: as mentioned above, the leader wolves hold the most favorable positions in
the population and play a crucial role in guiding the hunt. The first three best agents
are recorded, and a reference position for the prey is calculated using α, β, and δ. This
estimated prey position serves as a guide for the other wolves to adjust their positions
coordinately, as outlined in the following equations.

D⃗α = |C⃗1.X⃗α − X⃗|, D⃗β = |C⃗2.X⃗β − X⃗|, D⃗δ = |C⃗3.X⃗δ − X⃗| (15)

X⃗1 = X⃗α − A⃗1.D⃗α, X⃗2 = X⃗β − A⃗2.D⃗β , X⃗3 = X⃗δ − A⃗3.D⃗δ (16)

X⃗(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
(17)

Attacking: In this final phase, the pack attacks their prey and attempts to catch and
kill it. The gray wolves then use their abilities to track it and potentially find the best
possible outcome. More specifically, the abilities of the wolves can result in finding
efficient global solution. Since the coefficient A⃗ plays a crucial role in this process, a
value |A| < 1 prompts the wolves to focus on capturing the current prey (exploitation),
while a value |A| > 1 means that the gray wolves will diverge from the prey to seek
more suitable prey (exploration).

The four phases of GWO optimization algorithm are used to find the near-optimal
solution for a given problem. Each phase corresponds to the actions of the grey wolves
in the pack, where leader wolves correspond to the best solution found so far and the
followers represent to the remaining solutions in the population. The pseudo-code of
GWO algorithm is outlined in Algorithm 2.

5 The proposed approach

To present our approach, two fundamental concepts must be set up (1) a suitable
representation of the solutions handled by the algorithm and (2) the evaluation of these
solutions in the objective space, while remaining generic enough to be compatible and
consistent with a large number of QoS measuring points.

5.1 Solution representation

The efficient design of a metaheuristic-based approach requires a relevant representa-
tion of a solution, which is crucial in determining the algorithm’s scuccess. Indeed, the
representation has an important impact on the way the solutions will be handled by
the search operators and the evaluation stage. Several representations can be found
for a given problem. As an illustration, Figure 2 presents a simplified version of the
solution. The discrete value vector is adopted, where task T1 will be assigned to VM4,
task T2 will be assigned to VM1, and so on.

15

Algorithm 2 GWO pseudo-code

1: Initialize the grey wolf population X = (x1, x2, ...)
2: Initialize a, A and C
3: Compute the fitness of each search agent
4: First best agent denoted as Xα

5: Second best agent denoted as Xβ

6: Third best agent denoted as Xδ

7: while stop criterion do
8: for each i = 1 : n (all n search agent in population) do
9: Update the position of the current search agent using Eq. (17)

10: end for
11: Update a,A and C
12: Calculate the fitness value of all search agent
13: Update the positions of Xα, Xβ and Xδ

14: end while
15: return Xα

Fig. 2 A simplified representation of a solution

5.2 Fitness objectif

The evaluation step is a crucial aspect in the design of an optimization algorithm.
It allows to guide the method towards the right solutions of the search space. In a
multi-objective optimization problem, there are several objective functions, thus the
evaluation involves assigning a vector of values to each solution, with the vector size
matching the number of objectives considered. Each element of the vector represents
the quality of the solution with respect to the corresponding objective function (see
section 3). In our work, we employed a weighted sum aggregation fitness function,
which is widely used in the literature and can be adapted to various numerical objec-
tives due to its simplicity. The used Multi-Objective Function (MOF) considers the
four aforementioned objectives as defined in Eq. (18).

MOF = w1 Makespan+ w2 RUR + w3 Deg Imbalance+ w4 Throughput (18)

where w1, w2, w3 and w4 represent the weighting factors that reflects the importance
or requirement for each criterion. In this study, with all objectives given an equal
weight of 0.25, to ensure fairness and avoid any bias towards any specific objective.

It should be noted that, we have four QoS metrics to optimize; these metrics
are divided into two categories: QoS metrics to maximize (resource utilization rate,
throughput) and those to minimize (makespan, degree of imbalance). For both cases,

16

the QoS have very different scales and values. Therefore, normalization is necessary
so that the fitness function is not biased by one of the metrics having a high value.
In our approach, the normalized value for a given quality of service metric QoS(i) is
given by Eq. (19) as in [33, 34].

QoSiNormalized =

Max QoSi−QoSi

Max QoSi−Min QoSi
if QoSi to be minimized

QoSi−Min QoSi

Max QoSi−Min QoSi
if QoSi to be maximized

(19)

where, the value Max QoSi and Min QoSi are updated continously at the time of
scheduling process mirroring the worst and the best metric QoSi at a particular
iteration.

5.3 Proposed algorithm

Recall that our main aim is to assign each task to a specific virtual machine in order
to optimize performance in a cloud environment. This includes reducing the time
makespan or schedule length, degree of imbalance, and increasing resource utilization
as well as throughput objective.

The basic assumption behind this research is that tackling cloud scheduling opti-
mization problems can be further enhanced by using swarm intelligence algorithms.
For this purpose, the flower pollination algorithm was adopted, with the exploration
phase enhanced by the grey wolf optimizer and the crossover operators of genetic algo-
rithms to avoid getting stuck in local optima and balance exploration and exploitation.
The pseudo-code of the proposed hybrid multi-objective approach is presented in the
Algorithm 3.

The algorithm starts by defining its control parameters, including switching prob-
ability, population size, maximum number of iterations, the number of submitted
tasks and the number of available VM. In steps 2 and 3, a random set of solutions,
which relates to the initial population, is generated. The solution is created based on
a number of task-user and virtual machines according to the proposed solution encod-
ing. Initially, these tasks are randomly sent to the different virtual machines available
in the data centre. Then, the solutions are updated based on the employed strat-
egy. After generating the solutions, we evaluate each one using the fitness function
outlined in Eq. (18). The best solution is then identified and saved as Sα. At each
iteration step in the inner while loop (lines 4 to 33), for every solution, a new solu-
tion is generated using either global or local pollination, depending on a randomly
generated switching probability p. The new solution is examined and compared to the
current one and incorporated into the population if it is better. Otherwise, the pro-
posed algorithm employs an evolutionary algorithm crossover operator (line 18) as in
MODE-RMO [35, 36] to enhance the exploitation process and discover better solu-
tions in the neighborhood by combining the current solution with the reference vector
at a given iteration.

17

Algorithm 3 Proposed hybrid algorithm

1: Initialize parameters: population size (n), maximum number of iteration, and
switch probability p ∈ [0, 1]

2: Generate the initial population Si, i = 1, 2, . . . , n
3: Find the best solution Sα in the initial population
4: while stop criterion do
5: for each element in the population do
6: if rand() < p then
7: Perform levy flight and draw L (step vector)
8: Perform global pollination using Eq. (6)
9: else

10: Draw ε from a uniform distribution in [0, 1]
11: Randomly choose two elements Sj and Sk from all solutions in the population

12: Perform local pollination using Eq. (11)

13: end if

14: Evaluate the new solution S
′

i

15: if new generated solution is better then

16: replace Si with S
′

i

17: else

18: Apply the crossover operation on the current element Si of the population

using Eq. (20), and then evaluate the new solution S
′

i

19: if new generated solution is better then

20: replace Si with the newly generated S
′

i

21: end if

22: end if

23: end for

24: Sort population in the order of fitness

25: Update the best element Sα

26: Select the second best element Sβ

27: Select the third best element Sδ

28: Determine the worst element Sw

29: Apply Eq. (17) on the worst candidate solution

30: if new generated solution better then

31: Replace worst solution Sw by new solution S
′
w

32: end if

33: end while

34: return Sα as the best solution in the serach space

The implemented crossover operator requires a reference vector R and a target
vector T in a D-dimensional space, where D represents the workload size. The former
is chosen as the best solution from the current population. The crossover operation is

18

shown in Eq. (20) with i = 1, 2, 3, . . . , D.

T
′

i =

 Ti if (rand ≤ CR or i == s)

Ri otherwise
(20)

where, the crossover rate constant CR is a value between [0, 1], s and rand are random
numbers generated from [1, D] and [0, 1], respectively.

The proposed algorithm will then employs the GWO strategy to improve the worst-
case solution (lines 24 to 29). According to this strategy, the three best solutions
are selected based on their fitness values, and a new solution is calculated using Eq.
(17) by varying the value of a during each iteration of the algorithm execution. This
strengthens the exploration process to find other potential solutions in the space,
while ensuring that the solutions’ quality improves over time and does get trapped
in a local optimum. Finally, this process is repeated until the algorithm converges or
the maximum number of iteration is reached. Note that the arrived tasks, will not
be immediately assigned to the VMs, a pre-simulation phase of the mapping process
using the proposed hybrid version is required to find the suitable VM for each task
before sending it to the broker.

5.4 Time complexity analysis

Since meta-heuristics heavily rely on several tuning parameters, computing the pre-
cise asymptotic complexity value may not be obvious. However, we can establish a
lower bound for the worst-case execution time. In the basic flower pollination algo-
rithm, the time complexity is mainly influenced by the maximum number of iterations
(IterMax), the population size (N) and the search agent dimension (D). Conse-
quently, the time complexity of FPA can be expressed as O(IterMax ∗N ∗D). Now,
let’s calculate the time complexity of the proposed hybrid algorithm compared to
FPA. The evolutionary algorithms’ crossover operators contribute to a time complex-
ity increase of O(IterMax∗N ∗D), while the gray wolf strategy leads to an increase of
O(IterMax.D). Therefore, the total time complexity of the proposed algorithm can
be expressed as O(IterMax ∗N ∗D) +O(IterMax ∗N ∗D) +O(IterMax ∗D).

Therefore, if we need to cope with reasonable instance sizes, we derive a lower
bound of O(IterMax ∗ N ∗ D) for the asymptotic time complexity of the proposed
hybrid algorithm, which is equivalent to the computational time complexity of FPA
and GWO.

6 Simulation results and discussions

In this section, we discuss the experimental evaluation of the proposed hybrid opti-
mization algorithm. We detail the different parameters concerning the user workload,
the provider IaaS infrastructure model, as well as the metrics of the compared
algorithms.

19

Table 2 Task type of the synthetic dataset

Task type MI range Distribution

Tiny 200 35%
Small 1 000 40%
Medium 5 000 5%
Large 15 000 15%
Extra large 45 000 5%

Table 3 Task type of the GoCJ dataset

Task type MI range Distribution

Small 15 000 - 55 000 20%
Medium 59 000 - 99 000 40%
Large 101 000 - 135 000 30%
Extra large 150 000 - 337 500 6%
Huge 525 000 - 900 000 4%

6.1 Datasets and compared algorithms

In order to investigate and assess the efficiency of the proposed algorithm, a well-
studied set of various benchmark data sets are selected from the literature [37, 38].
This benchmark data sets covers a realistic cloud workload and two traces of standard
benchmark data sets commonly used for performance evaluation in parallel and dis-
tributed systems, namely the High-Performance Computing Center North (HPC2N)
and the Google Cloud Jobs (GoCJ) dataset.

6.1.1 Synthetic data set

Synthetic data refers to artificially generated workloads used as a model to evalu-
ate a system under study. Researchers in the scheduling community use synthetic
datasets with tasks requiring different processing times to assess the effectiveness of
their approaches. [16, 20, 23, 33, 39–41]. Likewise, for the sake of comparison, we have
also employed synthetic workloads which are similar and in line with those used in
[12]. The synthetic data set is generated by using different proportions and distribu-
tions of tiny, small, medium, large and extra-large sized cloud workloads, measured in
MI, as shown in Table 2.

6.1.2 GoCJ data set

Hussain and Aleem [37] have made a publicly available real cloud dataset derived from
the workload behaviors observed in google cluster traces. A sample original GoCJ
dataset is formulated and archived on the Mendeley data repository [42] to allow other
researchers to compare the performance of their newly developed algorithms using an
open-source benchmark. GoCJ is made up of different files containing data about task
sizes in terms of MI. Each file contains different set of rows, equivalent to the number
of jobs, denoting task length in MI. These values range from 15 000 MI to 900 000

20

Table 4 Cloudsim simulation parameters

Entity type Parameter Value

Data-center No. of data-centers 2

Host No. of hosts 5
PES 4 (Quad core)

26 (Quad core)
MIPS 4 000
RAM 8 GB
Storage 1 TB
Bandwidth 2800

Virtual Machine No. of VMs 25
MIPS 100 - 1 000
RAM 1 GB
Storage 10 000
Bandwidth 1000
Policy type Time Shared

MI. This dataset is composed of five types of tasks with different proportions based
on the analysis of Google cluster traces, as presented in Table 3.

6.1.3 HPC2N data set

High Performance Computing Center North (HPC2N) is a national center for Scien-
tific and Parallel Computing that is part of the Swedish National Infrastructure for
Computing (SNIC). It provides high-performance computing resources and services
to researchers and organizations in various fields, including engineering, social and
life sciences. The center offers training and support for researchers on how to use the
resources as well as access to a wide range of software tools for data analysis and
simulation. As recommended, the cleaned log HPC2N-2002-2.2-cln.swf is used in our
experiments, which took three and a half years of accounting records from the HPC2N
in Sweden [38].

The results and the performance of the proposed algorithm are compared to the
well-known and well-established optimization strategies, namely the TSGWO [12],
GGWO [10], FPA [13] and LPGWO [11] algorithms, using four evaluation metrics:
time mekespan, cloud resource utilization, degree of imbalance and throughput. These
algorithms cover both recently proposed techniques such as OBL and chaotic mapping
[43], along with relatively the most utilized optimizers in the field such as GA, FPA
and GWO.

6.2 Experimental setup

Our experiments are conducted using CloudSim framework [44], which is widely used
by the research community for modeling and simulating large-scale cloud infrastruc-
tures [45]. Here, for more realism, the parameters of the performed simulations are
carried out in a heterogeneous cloud environment as put forward in [12]. Details of
the experimental setup are also reported in Table 4.

21

Table 5 Parameter settings of the algorithms

Parameter Value

Population size 100
p 0.8
λ 1.5
CR 0.7

For the sake of comparison, we assessed and recorded the results based on the per-
formance of the evaluated algorithms over 10 independent runs and then the average
of the result is reported. The control parameters of the compared scheduling algo-
rithms are depicted in Table 5. The parameter values of our approach were determined
experimentally on three real workload datasets using different values, with the cho-
sen values yielding the best overall results. To ensure the fairness of the experiments,
the initial population of all algorithms is set to 100. Furthermore, it is worth noting
that the parameters settings used in our study of the compared algorithms are cho-
sen in such a way that they are representative and are in line with those used in the
literature [10], [13], [12] and [11].

6.3 Results discussion

This sub-section presents the discussion of the experimental results of the proposed
hybrid task scheduling approach. The conducted experiments aim to assess the effec-
tiveness of our proposal in generating a set of trade-off solutions between different
QoS metrics. As stated above, we compare the performance of the proposed algo-
rithm with four well-known metaheuristic algorithms, namely FPA [13], LGWO [11],
GGWO [10] and TSMGWO [12]. Moreover, an assessment of three workload datasets
is used to investigate the impact of workload on the behavior of the proposed algorithm
while plotting graphs on the basis of the considered performance metrics: makespan,
resources utilization, degree of imbalance and throughput. We note that the experi-
mental results are performed on 100, 200, 300, 400, 500 and 600 tasks, no matter which
workload traces used. In the further, we show the detailed results of the proposed
hybrid algorithm compared to the other concurrent metaheuristic methods.

22

Table 6 Results of makespan for the proposed approach and compared algorithms

Dataset Cloudlets Methode used

TSMGWO GGWO FPA LPGWO Proposed approach

Synthetic

100 108.321 92.861 83.345 82.468 69.469
200 219.925 169.835 160.571 151.447 98.605
300 323.474 248.674 232.676 223.067 134.33
400 428.047 331.827 316.556 288.724 175.618
500 611.74 445.393 385.27 364.556 222.535
600 735.826 557.136 461.94 443.692 255.253

GoCJ

100 2819.195 1933.13 1907.907 1802.508 1234.286
200 5500.452 4138.394 3807.895 3652.926 2175.773
300 9173.203 7036.496 5740.561 5541.863 3442.468
400 12765.681 9875.689 7873.961 7336.892 4234.891
500 16244.657 12325.339 9925.119 8631.041 5448.076
600 22082.362 16088.261 13281.753 11875.349 6747.17

HPC2N

100 6480.608 4842.292 4465.57 4375.041 3057.856
200 10620.089 7220.306 6842.588 6732.044 4531.662
300 16283.01 11166.643 10224.7 10195.421 5878.406
400 22457.034 17177.39 15336.954 14195.432 8705.584
500 31517.353 23746.061 20246.416 18666.703 11434.802
600 35501.863 26025.866 23894.727 20847.556 12033.746

Fig. 3 Comparative results in terms of makespan for synthetic workload

As shown in Figures 3, 4 and 5, which represents the results of the time makespan
obtained for the synthetic workload, GoCJ, and the HPC2N real workloads respec-
tively, it can be observed that for all identified benchmark datasets, the proposed
algorithm achieves the best results and its performance remains consistently superior
to other competitors. This clearly shows that the competing algorithms are unable to
reach the optimal or a point close to it. On the contrary, the proposed algorithm pro-
duces the best time makespan values across all tested instances with different number
of tasks.

23

Fig. 4 Comparative results in terms of makespan for GoCJ workload

Fig. 5 Comparative results in terms of makespan for HPC2N workload

According to the results in Table 6, we can see that the proposed approach out-
performs its direct competitor techniques with different rates, e.g., for the synthetic
workload implementation, the reduction rate of our proposal can reach 65.34%. Simi-
larly, with the implementation of GoCJ and HPC2N workloads, this rate may rise to
69.44% and 66.10% respectively. We can also observe from Table 6, that the perfor-
mance results of the compared methods decreases significantly when the number of
tasks goes up. For instance, in HPC2N workload, the time makespan of the proposed
algorithm is 3057.856, 4531.662, 5878.406, 8705.584, 11434.802 and 12033.746 for 100,
200, 300, 400, 500 and 600, respectively. However, this is not surprising, given the fact
that VMs have more load which influences the schedule length of the task mapping.

24

Table 7 Results of resource utilization rate for the proposed approach and the compared
algorithms

Dataset Cloudlets Methode used

TSMGWO GGWO FPA LPGWO Proposed approach

Synthetic

100 36.713 41.615 45.618 46.736 63.012
200 40.198 46.488 49.006 49.833 79.317
300 40.052 48.887 52.211 54.64 84.612
400 41.41 49.185 52.66 54.332 86.087
500 38.842 47.765 53.522 54.997 85.203
600 38.239 47.201 53.597 53.944 87.844

GoCJ

100 39.337 50.505 50.998 54.397 77.98
200 41.692 51.498 54.774 55.722 87.004
300 39.667 47.858 55.609 56.51 85.657
400 37.337 45.192 53.937 55.166 86.711
500 37.08 45.858 53.076 56.812 85.708
600 35.105 44.822 51.87 54.683 87.011

HPC2N

100 39.989 46.525 51.584 51.921 77.258
200 39.527 50.347 53.144 54.429 79.726
300 38.486 50.468 53.814 55.098 88.022
400 40.452 48.505 53.931 54.53 85.804
500 40.191 49.073 54.929 57.552 88.654
600 37.444 47.351 50.167 54.468 88.065

Fig. 6 Comparative results in terms of resource utilization rate for synthetic workload

From Figures 6, 7 and 8, which depict the resource utilization rate of assigning
different cloudlets to VMs, it can be seen that the proposed algorithm produces better
performance rate over the TSMGWO, LPGWO, GGWO and the conventional FPA
algorithm for both synthetic and standard workload traces.

As can be shown in Table 7 which illustrates also the results of RUR values, it
is apparent that the proposed hybrid technique can result in a maximum increase in

25

Fig. 7 Comparative results in terms of resource utilization rate for GoCJ workload

Fig. 8 Comparative results in terms of resource utilization rate for HPC2N workload

RUR up to 59.65% in all the instances considered in this work. Moreover, our proposal
gives a higher RUR rate than the TSMGWO, GGWO, LPGWO and FPA with a
value greater than 88%. The mains reason behind the better performance of the new
designed approach is that it uses more resources to reduce the time makespan which
leads to an efficient use of teh cloud resources during the scheduling process.

Comparing the results of the TSMGWO, LPGWO, GGWO and FPA with the
obtained ones of our proposal in terms of degree of imbalance, we can observe in
Table 8 and from Figures 9, 10 and 11, respectively, that the latter provides high
performances with a substantial improvement over the other compared metaheuristics
in all tested scenarios. For example, in the case of HPC2N dataset, the proposed
hybrid based approach achieves solutions that are 34,49%, 41,73%, 45,35% and 53,33%

26

Table 8 Results of degree of imbalance for the proposed approach and the compared
algorithms

Dataset Cloudlets Methode used

TSMGWO GGWO FPA LPGWO Proposed approach

Synthetic

100 5.698 5.636 5.013 4.825 3.423
200 6.811 6.34 5.838 5.573 3.604
300 7.394 6.558 6.057 5.828 3.732
400 8.054 6.586 6.388 5.905 3.78
500 8.306 7.266 6.37 6.205 3.998
600 9.396 7.694 6.501 6.287 4.051

GoCJ

100 2.862 2.536 2.457 2.295 1.518
200 3.295 2.86 2.722 2.6 1.615
300 3.953 3.362 2.78 2.724 1.787
400 4.1 3.328 2.78 2.558 1.67
500 4.297 3.415 2.931 2.529 1.782
600 4.773 3.685 3.222 2.923 1.83

HPC2N

100 4.293 3.949 3.639 3.595 2.527
200 5.83 5.318 4.938 4.863 3.452
300 7.069 5.958 5.395 5.387 3.515
400 7.215 6.252 5.578 5.231 3.644
500 7.916 6.584 5.7 5.481 3.703
600 8.629 7.369 6.912 6.148 4.027

Fig. 9 Comparative results in terms of degree of imbalance for synthetic workload

more efficient in terms of degree of imbalance than those provided by the LPGWO,
FPA, GGWO and TSMGWO algorithms respectively. This improvement is due to the
policy of the hybrid-based approach which efficiently explores the available number of
VMs and strives to ensure a minimal value of the degree of imbalance metric based on
resource capabilities. This leads to an efficient balanced distribution of the submitted
workload among the available cloud virtual machines, while preventing any VM from
being overloaded at any time during the scheduling process.

27

Fig. 10 Comparative results in terms of degree of imbalance for GoCJ workload

Fig. 11 Comparative results in terms of degree of imbalance for HPC2N workload

According to the findings in Table 9 and from Figures 12, 13 and 14, it is read-
ily apparent that the proposed approach still performs noticeably at maximizing the
throughput when compared to those found by LPGWO, TSMGWO, GGWO and
FPA optimizers. The results in Table 9 clearly confirm the significant gap between
our proposal’s outcomes and those of other optimizers across all workload situa-
tions examined. For instance, the reduction rate of our strategy in the case of GoCJ
traces is 42,04%, 47,72%, 56,81% and 67,04% over than LPGWO, FPA, GGWO and
TSMGWO, respectively. This can be explained by the fact that the scheduling policy
of the presented study achieves smallest time makespan, which results in an increase
of the number of the completed tasks in a given time.

28

Table 9 Results of throughput for the proposed approach and the compared algorithms

Dataset Cloudlets Methode used

TSMGWO GGWO FPA LPGWO Proposed approach

Synthetic

100 0.842 1.074 1.18 1.1209 1.402
200 0.925 1.18 1.255 1.33 12.041
300 0.938 1.214 1.296 1.352 2.246
400 0.955 1.218 1.28 1.395 2.287
500 0.823 1.127 1.305 1.386 2.252
600 0.871 1.151 1.253 1.325 2.313

GoCJ

100 0.037 0.052 0.052 0.056 0.08
200 0.037 0.049 0.053 0.054 0.092
300 0.032 0.043 0.052 0.054 0.088
400 0.031 0.042 0.051 0.056 0.093
500 0.031 0.04 0.051 0.059 0.091
600 0.029 0.038 0.046 0.051 0.088

HPC2N

100 0.016 0.021 0.021 0.022 0.032
200 0.02 0.029 0.03 0.03 0.044
300 0.02 0.027 0.03 0.031 0.05
400 0.02 0.021 0.027 0.03 0.047
500 0.017 0.02 0.025 0.028 0.043
600 0.019 0.022 0.024 0.03 0.049

Fig. 12 Comparative results in terms of throughput for synthetic workload

To highlight the effectiveness of our proposed hybrid algorithm, we also compared
the convergence behavior of each algorithm over the iterations. The convergence curves
of the TSMGWO, LPGWO, GGWO, FPA, and our approach are illustrated in Figure
15. In this experiment, we perform scheduling of 600 tasks from a HPC2N workload.
The figure reveal clearly that all the five tested algorithms optimize the objective func-
tion. However, the obtained results show the superiority of the new hybrid algorithm
in terms of the global convergence behaviour compared to the competing approaches,
which tend to be trapped in local optima.

29

Fig. 13 Comparative results in terms of throughput for GoCJ workload

Fig. 14 Comparative results in terms of throughput for HPC2N workload

Moreover, emphasizing the real-time aspect which is crucial as it demonstrates the
cloud system’s ability to adapt rapidly to a dynamically changing environment, we
can observe that the new approach is able to reach better global solutions in faster
convergence times than its direct competitors. Thus, the proposed hybrid algorithm
successfully strikes a good balance between the stages of exploration and exploitation
throughout the search process.

Taken as a whole, it can be noticed that the scalability results on different real
workload datasets highlight that the introduced hybrid-based approach maintains a
good balance between its propensities for exploration and exploitation, and as a con-
sequence, its performance is constantly superior. Moreover, the obtained results also
indicate that the hybrid algorithm finds better task mapping solutions and succeeds
to fulfill its objectives in improving the global performances of the scheduling process

30

Fig. 15 Convergence behavior for 600 tasks with real HPC2N workload

with respect to various metrics, including time makespan, resource utilization, degree
of imbalance, and throughput. The following features provide an explanation for the
potential use of the proposed hybrid strategy and its superiority when compared to
its direct competitors LPGWO, FPA, GGWO, and TSMGWO.

1. Combining the pollination behavior of flowers and the grey wolf optimizer with the
use of evolutionary algorithms crossover operators can achieve harmonious balance
between exploration and exploitation stages.

2. Gradually improving the worst individuals in the population over iterations, can be
beneficial to avoid the fact of being trapped in local optima during the optimization
process.

3. The search strategy based on the first three best solutions in the population to
update the worst individuals has a constructive impact on the exploration potential
of the algorithm.

4. The strength of the genetic algorithm’s crossover operators is able to assist the
candidate solutions to exploit promising regions in the search space.

7 Conclusion

In this paper, a novel hybrid optimization algorithm is proposed to tackle the problem
of multi-objective task scheduling in heterogeneous cloud systems. The goal is to pro-
vide a better orchestration of tasks assignment to virtual machines while meeting the
requirements of the end-user on the one hand and the service provider on the other
hand. To accomplish this, the optimization process should be able to strike a reasonable
balance between exploration and exploitation tendencies in the search space of solu-
tions, otherwise the risk of being trapped in local optima and immature convergence
increases. To overcome the limitations of the conventional approaches, an effective
resource selection technique is designed to avoid the stagnation phenomenon of local
solutions of the search process. The introduced algorithm combines the bio-inspired

31

pollination behavior of flowers with the swarm intelligence-grey wolf optimizer. More-
over, it makes use of the evolutionary algorithms’ crossover operators in order to
maintain the diversity of the population. The performance of the new approach is
compared with other well-known and established optimization techniques from the
literature, like LPGWO, GGWO, TSMGWO and standard FPA techniques. The
objective function is valuated in terms of four optimization criteria: time makespan,
resource utilization rate, degree of imbalance and throughput. The detailed experi-
mental study and the different considered scenarios using CloudSim framework have
shown the usefulness and the potential of the proposed hybrid algorithm.

Although the new studied approach has improved the global performances of the
task scheduling process, there are still fields and directions to explore, such as its appli-
cation to workflow scheduling in real cloud environments. It is also worth continuing
to investigate other optimization objectives in cloud computing systems such as fault
tolerance and energy consumption as well as load balancing, in order to handle unex-
pected failures and ensure system’s stability. Another possible and potential future
research is to apply the proposed hybrid algorithm in different optimization contexts
than the one targeted in this paper, such as fog computing, sensor networks, image
processing, cognitive radio, data clustering and others.

References

[1] Bokhari, M.U., Makki, Q., Tamandani, Y.K.: A survey on cloud computing. In:
Big Data Analytics: Proceedings of CSI 2015, pp. 149–164 (2018). Springer

[2] Toosi, A.N., Sinnott, R.O., Buyya, R.: Resource provisioning for data-intensive
applications with deadline constraints on hybrid clouds using aneka. Future
Generation Computer Systems 79, 765–775 (2018)

[3] Malti, A.N., Hakem, M., Benmammar, B.: Multi-objective task scheduling
in cloud computing. Concurrency and Computation: Practice and Experience
34(25), 7252 (2022)

[4] Abdullahi, M., Ngadi, M.A., Dishing, S.I., Ahmad, B.I., et al.: An efficient sym-
biotic organisms search algorithm with chaotic optimization strategy for multi-
objective task scheduling problems in cloud computing environment. Journal of
Network and Computer Applications 133, 60–74 (2019)

[5] Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in
cloud computing based on meta-heuristics: review, taxonomy, open challenges,
and future trends. Swarm and Evolutionary Computation 62, 100841 (2021)

[6] Kumar, M., Sharma, S.C., Goel, A., Singh, S.P.: A comprehensive survey for
scheduling techniques in cloud computing. Journal of Network and Computer
Applications 143, 1–33 (2019)

[7] Ghafari, R., Kabutarkhani, F.H., Mansouri, N.: Task scheduling algorithms

32

for energy optimization in cloud environment: a comprehensive review. Cluster
Computing 25(2), 1035–1093 (2022)

[8] Ibrahim, I.M., et al.: Task scheduling algorithms in cloud computing: A review.
Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12(4),
1041–1053 (2021)

[9] Malti, A.N., Benmammar, B., Hakem, M.: A comparative study of metaheuristics
based task scheduling in cloud computing. In: Modelling and Implementation of
Complex Systems: Proceedings of the 7th International Symposium, MISC 2022,
Mostaganem, Algeria, October 30-31, 2022, pp. 263–278 (2022). Springer

[10] Gobalakrishnan, N., Arun, C.: A new multi-objective optimal programming model
for task scheduling using genetic gray wolf optimization in cloud computing. The
Computer Journal 61(10), 1523–1536 (2018)

[11] Gokuldhev, M., Singaravel, G., Ram Mohan, N.: Multi-objective local pollination-
based gray wolf optimizer for task scheduling heterogeneous cloud environment.
Journal of Circuits, Systems and Computers 29(07), 2050100 (2020)

[12] Alsadie, D.: Tsmgwo: Optimizing task schedule using multi-objectives grey wolf
optimizer for cloud data centers. IEEE Access 9, 37707–37725 (2021)

[13] Gupta, I., Kaswan, A., Jana, P.K.: A flower pollination algorithm based task
scheduling in cloud computing. In: International Conference on Computa-
tional Intelligence, Communications, and Business Analytics, pp. 97–107 (2017).
Springer

[14] Pirozmand, P., Hosseinabadi, A.A.R., Farrokhzad, M., Sadeghilalimi, M., Mirka-
mali, S., Slowik, A.: Multi-objective hybrid genetic algorithm for task scheduling
problem in cloud computing. Neural computing and applications 33, 13075–13088
(2021)

[15] Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger, I., Tuba, E., Tuba, M.:
Multi-objective task scheduling in cloud computing environment by hybridized
bat algorithm. Journal of Intelligent & Fuzzy Systems 42(1), 411–423 (2022)

[16] Bezdan, T., Zivkovic, M., Antonijevic, M., Zivkovic, T., Bacanin, N.: Enhanced
flower pollination algorithm for task scheduling in cloud computing environment.
In: Machine Learning for Predictive Analysis: Proceedings of ICTIS 2020, pp.
163–171 (2021). Springer

[17] Miglani, N., Sharma, G., Khurana, S.: Multi-objective reliability-based workflow
scheduler: An elastic and persuasive task scheduler based upon modified-flower
pollination algorithm in cloud environment. Concurrency and Computation:
Practice and Experience 34(22), 7150 (2022)

33

[18] Walia, N.K., Kaur, N., Alowaidi, M., Bhatia, K.S., Mishra, S., Sharma, N.K.,
Sharma, S.K., Kaur, H.: An energy-efficient hybrid scheduling algorithm for task
scheduling in the cloud computing environments. IEEE Access 9, 117325–117337
(2021)

[19] Gokuldhev, M., Singaravel, G.: Local pollination-based moth search algorithm for
task-scheduling heterogeneous cloud environment. The Computer Journal 65(2),
382–395 (2022)

[20] Natesan, G., Chokkalingam, A.: Task scheduling in heterogeneous cloud environ-
ment using mean grey wolf optimization algorithm. ICT Express 5(2), 110–114
(2019)

[21] Khalili, A., Babamir, S.M.: Optimal scheduling workflows in cloud comput-
ing environment using pareto-based grey wolf optimizer. Concurrency and
Computation: Practice and Experience 29(11), 4044 (2017)

[22] Khurana, S., Singh, R.: Workflow scheduling and reliability improvement by
hybrid intelligence optimization approach with task ranking. EAI Endorsed
Transactions on Scalable Information Systems 7(24), 1–10 (2019)

[23] Amer, D.A., Attiya, G., Zeidan, I., Nasr, A.A.: Elite learning harris hawks opti-
mizer for multi-objective task scheduling in cloud computing. The Journal of
Supercomputing, 1–26 (2022)

[24] Malti, A.N., Benmammar, B., Hakem, M.: Task scheduling in cloud com-
puting based on fpa metaheuristic algorithm. In: 2022 19th International
Multi-Conference on Systems, Signals & Devices (SSD), pp. 41–46 (2022). IEEE

[25] Mathew, T., Sekaran, K.C., Jose, J.: Study and analysis of various task scheduling
algorithms in the cloud computing environment. In: 2014 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI),
pp. 658–664 (2014). IEEE

[26] Hussain, A., Aleem, M., Iqbal, M.A., Islam, M.A.: Investigation of cloud schedul-
ing algorithms for resource utilization using cloudsim. Computing & Informatics
38(3), 525–554 (2019)

[27] Zhong, Z., Chen, K., Zhai, X., Zhou, S.: Virtual machine-based task scheduling
algorithm in a cloud computing environment. Tsinghua Science and Technology
21(6), 660–667 (2016)

[28] Zhu, X., Chen, C., Yang, L.T., Xiang, Y.: Angel: Agent-based scheduling for
real-time tasks in virtualized clouds. IEEE Transactions on Computers 64(12),
3389–3403 (2015)

34

[29] Yang, X.-S.: Flower pollination algorithm for global optimization. In: Interna-
tional Conference on Unconventional Computing and Natural Computation, pp.
240–249 (2012). Springer

[30] Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. Journal
of Computational Physics 226(2), 1830–1844 (2007)

[31] Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Advances in engi-
neering software 69, 46–61 (2014)

[32] Meidani, K., Hemmasian, A., Mirjalili, S., Barati Farimani, A.: Adaptive grey
wolf optimizer. Neural Computing and Applications 34(10), 7711–7731 (2022)

[33] Aktan, M.N., Bulut, H.: Metaheuristic task scheduling algorithms for cloud com-
puting environments. Concurrency and Computation: Practice and Experience
34(9), 6513 (2022)

[34] Chakravarthi, K.K., Neelakantan, P., Shyamala, L., Vaidehi, V.: Reliable bud-
get aware workflow scheduling strategy on multi-cloud environment. Cluster
Computing 25(2), 1189–1205 (2022)

[35] Chen, X., Du, W., Qian, F.: Multi-objective differential evolution with ranking-
based mutation operator and its application in chemical process optimization.
Chemometrics and Intelligent Laboratory Systems 136, 85–96 (2014)

[36] Özkış, A., Babalık, A.: A novel metaheuristic for multi-objective optimization
problems: The multi-objective vortex search algorithm. Information Sciences 402,
124–148 (2017)

[37] Hussain, A., Aleem, M.: Gocj: Google cloud jobs dataset for distributed and cloud
computing infrastructures. Data 3(4), 38 (2018)

[38] The HPC2N Seth log. https://www.cs.huji.ac.il/labs/parallel/workload/l hpc2n/
index.html

[39] Behzad, S., Fotohi, R., Effatparvar, M.: Queue based job scheduling algorithm for
cloud computing. International Research Journal of Applied and Basic Sciences
ISSN 37853790 (2013)

[40] Mehdi, N.A., Mamat, A., Ibrahim, H., Subramaniam, S.K.: Impatient task map-
ping in elastic cloud using genetic algorithm. Journal of Computer Science 7(6),
877–883 (2011)

[41] Attiya, I., Abd Elaziz, M., Xiong, S.: Job scheduling in cloud computing
using a modified harris hawks optimization and simulated annealing algorithm.
Computational intelligence and neuroscience 2020 (2020)

[42] GoCJ: Google Cloud Jobs Dataset. https://data.mendeley.com/datasets/

35

https://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html
https://data.mendeley.com/datasets/b7bp6xhrcd/1
https://data.mendeley.com/datasets/b7bp6xhrcd/1

b7bp6xhrcd/1

[43] Gaidhane, P.J., Nigam, M.J.: A hybrid grey wolf optimizer and artificial bee
colony algorithm for enhancing the performance of complex systems. Journal of
computational science 27, 284–302 (2018)

[44] CloudSim: A Framework For Modeling And Simulation Of Cloud Computing
Infrastructures And Services. http://www.cloudbus.org/cloudsim

[45] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Software: Practice and experience
41(1), 23–50 (2011)

36

https://data.mendeley.com/datasets/b7bp6xhrcd/1
https://data.mendeley.com/datasets/b7bp6xhrcd/1
http://www.cloudbus.org/cloudsim

	Introduction
	Related works
	Problem statement
	Background information on FPA and GWO algorithms
	Flower pollination overview
	Grey wolf optimizer overview

	The proposed approach
	Solution representation
	Fitness objectif
	Proposed algorithm
	Time complexity analysis

	Simulation results and discussions
	Datasets and compared algorithms
	Synthetic data set
	GoCJ data set
	HPC2N data set

	Experimental setup
	Results discussion

	Conclusion

