A Gentle Introduction to Verification of
Parameterized Reactive Systems

Nicolas Féral' and Alain Giorgetti!,2[0000—0002-0990-9611]

! Université de Franche-Comté, F-25000 Besancon, France
2 Institut FEMTO-ST, UMR 6174 CNRS, France
alain.giorgetti@femto-st.fr (corresponding author)

Abstract. An introduction to symbolic model-checking and deductive
verification techniques is offered to Master’s students at the University of
Franche-Comté. This teaching is carried out remotely. It is built around
the use of the Cubicle model-checker and the Why3 platform. It shows
how to verify the safety of distributed reactive systems which are param-
eterized by the number of processes run in parallel, when this safety is
expressed as non-reachability of critical states.

For remote lab sessions, a virtual machine containing the Cubicle soft-
ware and the Why3 platform is provided to the students. Examples of
reactive systems are specified by the students in the input language of
Cubicle and in the WhyML language of Why3. With Cubicle, students
use a backward reachability algorithm that discovers dangerous states of
these systems by tracing back their transitions to critical states. Safety is
proven if no initial state is reached. When a system is safe, Cubicle pro-
duces a certificate in WhyML, which contains an invariant synthetized
by Cubicle. This certificate can be executed with Why3 to prove that
the system indeed preserves this invariant. Students also learn how to
directly specify reactive systems in the WhyML language, using a primi-
tive for non-determinism between transitions and between processes that
evolve inside each transition.

Keywords: formal methods - parameterized reactive systems - safety -
reachability - Why3 - Cubicle

1 Introduction

This article presents a course taught at the University of Franche-Comté, enti-
tled Specify and Verify, which allows students to discover the notion of reactive
system and to use an implementation of a technique of symbolic model checking,
in order to verify the safety of parameterized reactive systems. The parameteri-
zation of these systems relates to the number of identical processes which run in
parallel. Safety is expressed here as simply as possible, as the unreachability of
critical states. The challenge is to find an invariant of the global system which
excludes all the critical states. The verification then consists in proving — prefer-
ably in an automatic way — that all the initial states of the system satisfy the
invariant, that all its transitions preserve it, and that no critical state satisfies

it. The objective being to verify systems of any size, independently of the num-
ber of processes, the applied technique is symbolic model-checking, here based
on representations of states and transitions in first-order logic. In this course,
the description of parameterized reactive systems and the verification of their
safety use the model checker Cubicle [3] and the deductive verification platform
Why3 [2].

This course is part of a curriculum that has been designed for many years
to be delivered entirely by distance learning. It is primarily intended for stu-
dents who cannot attend face-to-face classes, for various professional or personal
reasons. Students must study at home, alone and at different times. The main
pedagogical objective is that the students become able to apply to simple sys-
tems a process of formal specification and computer-assisted verification of the
consistency of the specifications.

In addition to the verification of reactive systems, this course also covers
functional specification and deductive verification of simple imperative programs,
such as a function calculating the factorial or performing a search for elements
in an array. This article does not address this subject, which is more classical
than the verification of parameterized reactive systems, and already covered in
other articles, for example [1].

This article is written by A. Giorgetti, teacher at the University of Franche-
Comté, manager and tutor of the course Specify and Verify since 2018, and N.
Féral, student of this module in 2020-21. The graduation project of N. Féral,
about automated verification of parameterized reactive systems, has greatly con-
tributed to the introduction of Cubicle in this course, from September 2021.
The educational material presented in this document can be downloaded from
the professional web page https://members.femto-st.fr/alain-giorgetti/
en of the second author.

Section 2 situates this course in the master curriculum and describes its main
characteristics, then its pedagogical progression. Section 3 details the notions
covered during the course. Section 4 describes the working environment provided
to the students, in order to assimilate the course. Course evaluation procedures
are discussed in Section 5. Finally, Section 6 shares remarks and considerations
inspired by the design and development of this course.

2 Description of the teaching unit

The Specify and Verify module is part of the last semester of the advanced
computing and applications and software development and validation tracks of
the computer science master’s degree at the University of Franche-Comté. Both
tracks are entirely delivered remotely. They benefit from a long experience and
recognized know-how of the University of Franche-Comté in distance education,
since 1966, for the preparation and delivery of national university diplomas.
All teaching infrastructure is digitally managed and accessible online, using the
Moodle e-learning platform (https://moodle.org).

https://members.femto-st.fr/alain-giorgetti/en
https://members.femto-st.fr/alain-giorgetti/en
https://moodle.org

The main Moodle page for the course Specify and Verify provides access
to written course material, exercises and homework sheets, corrected annals,
but also to a discussion forum between students and with teachers. The latter
provide regular tutoring, answering students’ questions on this forum and by
e-mail. Students are strongly encouraged to respect a provided study schedule,
similar to the content of Table 1.

Table 1. Pedagogical progression of the course

Week Type Topic

1 Lesson 1 |Introduction to model-based verification and proof of programs
1 Exercises |Lesson 1 assimilation exercises
2 Lesson 2 |Specification and verification of parameterized reactive systems

with Cubicle
2 |Homework 1|Creation of the lab environment (with Docker), specification and
verification of a first reactive system

2 Exercises |Exercises related to Lesson 2: specification and verification of
examples of parameterized reactive systems with Cubicle

3 Lesson 3 |Logic of Why3 (propositional and first-order logic with basic and
inductive types), first contact with this platform

3 Exercises |Assimilation of the logic of Why3: propositions, quantifiers, pre-
defined types, formalization of simple problems and properties

4 | Deepening |Study of the personalized correction of the homework 1 and its
provided solution

4 Lesson 4 |Specification and deductive verification of simple imperative
programs in WhyML language
4 Exercises |Exercises related to Lesson 3

4 |Homework 2|Study of WhyML certificates generated by Cubicle, verification
of imperative programs with Why3

5 Revisions |Deepening and preparation for the final exam, with the help of
provided annals

6 Deepening [Study of the personalized correction of the homework 2 and its
provided solution

The course consists of 4 lessons. The first one is an introductory chapter that
places the model verification approach within the context of the software and
system development process. It distinguishes between declarative models (speci-
fications) and operational models. It defines and distinguishes reactive systems,
open or closed, which mainly interact with their environment, and transforma-
tional systems, which carry out a calculation. This introduction also defines the
methods of model-checking and deductive verification, more commonly called
“program proof”. The second lesson presents the model checker Cubicle, its speci-
fication language and its methods to verify the safety of a parameterized reactive
system. The third lesson presents the deductive verification platform Why3 and
its input language, named WhyML. The fourth lesson teaches the proof of (small)
imperative programs specified and implemented in the WhyML language.

The exercises allow the students to assimilate the lessons, by looking in the
course material for the relevant notions for their resolution, and the tasks to be
carried out to achieve the required objectives. Each exercise sheet is associated
with a lesson of the course, as detailed in Table 1. A solution of the exercises
is distributed separately, sometimes after a small delay, to encourage students
to solve the exercises without consulting it. Thus, the study of an exercise sheet
corresponds to a tutorial session carried out remotely.

A homework subject is made up of exercises, sometimes a little more ex-
ploratory than the course’s assimilation exercises. Homework assignments must
be returned within a set deadline. Then, each student’s homework is marked and
annotated by the tutors, and returned with a standard solution and a detailed
scale, so that the students can learn from their mistakes, identify their difficul-
ties and measure their progress. In the first homework subject, the first exercise
helps the students to set up the working environment, as detailed in Section 4.
A second exercise proposes to the students to model and verify with Cubicle a
reactive system described in natural language. The second homework subject is
dedicated to the use of the Why3 platform. In a first exercise, the study of the
system modeled during the first homework is completed by the generation with
Cubicle of a certificate of proof of safety for the Why3 platform. Students should
be able to identify the different parts of the certificate, in particular the invari-
ant synthetized by Cubicle and the logical goals for its preservation proof. In a
certificate, each transition is formalized by a logical relation between any state
s of the system before the transition and any state s’ after the transition. This
primed notation for states after the transitions is also used to define by a primed
predicate I’ the invariant I after the transitions. Thus, reading certificates in-
troduces students to the before-after relational semantics of action systems, and
to a definition of the notion of inductive invariant formalized in first-order logic.
A second exercise can require the programming of a reactive system in WhyML,
then the design and the realization of a proof of an invariant for this system. In
addition to reactive system verification, the second homework may also contain
imperative program verification exercises.

3 Teaching content

This section details the essential notions on the modeling and verification of
systems studied in the module Specify and Verify, and then the educational
documentation provided for the use of Cubicle and Why3 when carrying out the
practical questions of the exercises and homeworks.

3.1 Taught concepts

The course distinguishes between transformational systems, which calculate re-
sults from data and according to an algorithm, and reactive systems, which carry
out few calculations, but a lot of control of the interactions between their com-
ponents and with their environment. The methods for specifying these two types

of systems are different, since the transformational systems are specified using
pre- and post-conditions, while reactive systems are specified declaratively (usu-
ally by temporal properties) and operationally, by a set of transitions between
states, guarded by conditions of transition, called guards.

The reactive systems studied are said to be parameterized, because they con-
sist of any (fixed) number of processes, and uniform, because all these processes
are identical. The executions are assumed to respect the interleaving hypothesis,
according to which at most one process evolves simultaneously with each event.
The behavior of the system derives from the interactions of the processes with
each other and the environment. These reactive systems are said to be closed
when the hypotheses concerning the environment and the events likely to occur
are taken into account in the modelling, for example using non-deterministic
transitions. The studied properties are the simplest safety properties, which re-
quire that no execution of the system reaches certain states, called critical. A
typical example, used in the course and in the first exercises, is the mutual ez-
clusion property, which requires exclusive access to a shared resource between
all processes. The safety of a system is established by first looking for an in-
variant candidate, which is a characterization of a subset of the states of the
system excluding the critical states, then by formally demonstrating that this
formula is not satisfied by any critical state and that it effectively constitutes
an (inductive) invariant of the system, satisfied by all the initial states of the
system and preserved by the action of each of its transitions. During homework,
the study of Cubicle certificates is an opportunity to better assimilate this defi-
nition of an inductive invariant. Indeed, all these certificates contain an explicit
formalization, in first-order logic, of the condition on the initial states and of the
condition of preservation by any transition.

3.2 Cubicle

The second lesson of the course presents the Cubicle tool (https://cubicle.
lri.fr/), its main features and its input language. Cubicle is an open source
model checker resulting from the thesis work of A. Mebsout [10]. This work im-
proves and implements techniques of model checking modulo theory and invari-
ant synthesis [5,6,7,8]. Confidence in Cubicle results is enhanced by producing
certificates which are separately verifiable with Why3.

Cubicle’s input language makes it possible to define variables and arrays that
model the data of a system and its processes, to specify the sets of initial and
critical states, as well as the transitions whose activation is conditioned on the
existence of an n-tuple of processes allowing a guard to be crossed. This language
is documented in the thesis of A. Mebsout [10] and in the materials for a course
given by S. Conchon in a school for young researchers [4]. The second lesson of
the course Specify and Verify describes pedagogically and in detail the syntax
and semantics of the fragment of this language useful for this course, illustrating
them with simple examples. This exempts the students from having to consult
external sources of documentation.

https://cubicle.lri.fr/
https://cubicle.lri.fr/

Cubicle is dedicated to the specification and verification of parameterized
reactive systems of any size whose states are described by global variables and ar-
rays. It allows the modeling of systems evolving in a discrete and non-deterministic
way, under the action of guarded transitions. In order to favor the verification
process, the internal subtleties of Cubicle are deliberately not detailed in the
course, which only mentions that Cubicle uses a backward reachability algo-
rithm, which goes back the transitions from critical states to try to reach the
initial states. The discovered states, even if they are not critical, are dangerous
states insofar as they are the starting point of at least one path leading to a
critical state.

The course illustrates the modeling and verification process with Cubicle
using a variant of the distributed mutual exclusion algorithm created and named
“bakery” by L. Lamport [9]. This system models a bakery, in which customers
obtain a numbered ticket that defines the order of waiting before placing an
order with the baker. The customers, in any number, are the processes. In the
original algorithm, the order of access to the baker is defined according to a
lexicographic order relating to the ticket numbers and, in the event of a tie, the
numbers identifying the customers. In the course variant, the ticket numbers
issued to customers are distinct and are sufficient to determine the order of
service. Therefore, the process that can access the critical section can always be
known, if it exists.

In Cubicle, the states of the global system for “bakery” are defined by the
following types and variables:

type status = WA | SE | AS

var Ticket : int
array CustomerStatus[proc] : status
array CustomerTicket [proc] : int

The Ticket variable, of integer type, stores the value of the last ticket de-
livered by the ticket dispenser. The CustomerStatus array stores the status of
each customer, among the three states of the enumerated type status, described
later. The CustomerTicket array stores the ticket value for each customer. For
a customer without a ticket, this value is arbitrary.

All customers behave the same way, as follows. A customer in the requesting
state AS (for ASking) can spontaneously obtain a unique numbered ticket. The
number on this ticket is obtained by incrementing the counter Ticket. Once in
possession of this ticket, this customer enters the waiting state WA. This action
is formalized by the following Cubicle transition, parameterized by the process
identifier i:

transition getTicket (i)
requires { CustomerStatus[i] = AS } {

CustomerStatus[i] := WA;
Ticket := Ticket + 1;
CustomerTicket[i] := Ticket + 1;

The access to the shared resource is formalized by the Cubicle transition
access reproduced in Listing 1.1. If there is at least one customer waiting, then

the baker serves the customer who has the smallest ticket (among the tickets of
the waiting and served customers). The customer then switches to the served
state SE.

Listing 1.1. Access to the served state, in Cubicle syntax

transition access (i)
requires { CustomerStatus[i] = WA &&
forall_other j.

CustomerStatus[j] = WA || CustomerStatus[j] = SE
=> CustomerTicket[i] <= CustomerTicket[j] } {
CustomerStatus[i] := SE;

}

Once served, a customer releases her/his place by switching to the AS state
of customers likely to (re)request a ticket. This action is formalized by a simple
Cubicle transition, named leave, which is not detailed here.

As specified in the following Cubicle clause, parameterized by the process
identifier i, all customers are initially assumed to be ticket requesters (status
AS) and to have a ticket numbered 0, which is also assumed to be the last ticket
delivered by the ticket dispending machine. It may seem problematic that all
customers initially have the same ticket number, but this is not an issue because
no transition uses the ticket number of a requesting customer to determine the
effects of a transition or to evaluate a guard. As the system evolves, the tickets
owned by waiting and served customers are unique before being examined to
decide who is the next served customer.

init (1) {
CustomerStatus[i] = AS && CustomerTicket[i] = 0 &&
Ticket = 0

Critical states are declared with one or more unsafe specifications. The fol-
lowing example expresses the existence of two distinct processes i and j in the
critical state SE, which fails mutual exclusion.

unsafe (i j) {
CustomerStatus[i] = SE && CustomerStatus[j] = SE && i <> j
}

When the modeling is finished, the execution of Cubicle in command line
outputs a result concerning the safety of the system, reproduced in Figure 1.
In addition to the SAFE or UNSAFE verdict, Cubicle indicates sets of critical or
dangerous states computed by the backward reachability algorithm. These are
the nodes 1 to 8. A trace indicates a succession of transitions which makes it
possible to reach a set of critical states from a set of dangerous states.

When the system is not safe, Cubicle returns an error trace indicating the
transitions to follow to reach a critical state from an initial state. The student

guest@c33289fc8d66:~/data$ cubicle Bakery.cub
node 1: unsafe[1]

node 2: access (#2) -> unsafe[1]

node 3: access (#1) -> access(#2) -> unsafe[1]

node 4: getTicket (#2) -> access (#2) -> unsafe[l]

node 5: getTicket (#2) -> access(#1) -> access (#2) -> unsafe[1]
node 6: access (#1) -> getTicket (#2) -> access (#2) -> unsafe[1]
node 7: leave (#2) -> access (#1) -> getTicket (#2)

-> access (#2) -> unsafe[1]
node 8: access (#2) -> leave (#2) -> access (#1)
-> getTicket (#2) -> access (#2) -> unsafe[1]

The system is

Fig. 1. Result of a safety check with Cubicle.

can check this trace by reconstructing the evolution of the system manually.
Cubicle does not offer a tool to automate this trace analysis.

Cubicle also makes it possible to generate a certificate of this proof, in the
input language of the Why3 platform. A certificate contains a logical description
of the verified system, a candidate invariant and goals to prove, which formal-
ize that the candidate invariant excludes critical states, and that it is indeed
an invariant of the system, satisfied by all initial states and preserved by all
transitions of this system.

Implementing verification with Cubicle is therefore straightforward. If it is
possible to write the specifications of a system respecting the Cubicle input
language syntax, then the system is verifiable with Cubicle. Otherwise, you have
to turn to other tools, such as the Why3 platform, which is more generic.

3.3 Why3 platform

The Why3 platform enables proofs of propositional or first-order logic formulas,
or of conformity between imperative or functional programs and their logical
specification. Its language, called WhyML, is more general and more complex
than that of Cubicle. Its use allows students to discover and implement the
notions of contract, loop invariant, etc, and to develop several skills. First, they
learn to solve decision problems with Why3, formalizing them as lemmas or
goals. For simplicity, the course is limited to the case where these logical formulas
concern variables of predefined Boolean or integer type, or of enumerated type
defined by the user, and/or of array type storing data of these types. Then,
the students learn to specify in WhyML a simple imperative program contract,
manipulating the same data types, and to annotate its loops, until making the
verification of this contract automatic with the Why3 platform. In addition,
students learn to read and modify certificates generated by Cubicle. Finally,
students learn to specify reactive systems directly in WhyML, possibly beyond
the expressiveness limits of Cubicle, and to verify their safety with Why3, as
detailed in Section 3.4.

3.4 Specification and verification of reactive systems only with
Why3

Through its input language and its internal mechanisms for invariant strength-
ening and WhyML certificate generation, Cubicle greatly facilitates the specifi-
cation and verification of parameterized reactive systems. However, it is a black
box, applicable only to systems whose sets of critical states can be described by
formulas, called cubes, whose syntax is limited to conjunctions of literals exis-
tentially quantified by identifiers of distinct processes. How to check a property
of a system that cannot be specified in this way?

So that this course remains introductory, it does not provide a general answer
to this question, which would be too technical, but provides intuitions based on
examples. In the first place, some advanced exercises, or even some questions of
an exam subject, may propose to the students to modify a certificate generated
by Cubicle, for example to add a property to check. However, this first approach
has a major limitation, inherent to Cubicle’s translation of transitions into logical
relations: the user cannot execute these specifications. But WhyML is also a
programming language, of which a fragment is directly executable, and a larger
fragment is executable by extraction in OCaml. On the example of the bakery
algorithm, the rest of this section presents a way to describe reactive systems by
WhyML programs, and then discusses the issue of their verification.

The following code proposes a way to describe the states of the bakery system
in WhyML, for a number of customers fixed by the constant n, which must
be a positive integer (condition Pos, required because the WhyML type int
corresponds to relative mathematical integers).

type status = WA | AS | SE

val constant n : int

axiom Pos : n > O

type sys = {
mutable ticket : int;
customerStatus : array status;
customerTicket : array int

} invariant {
invariant_candidate ticket customerStatus customerTicket
} by {
ticket = O0;
customerStatus
customerTicket

make n AS;
make n O

Cubicle variables and arrays are grouped here as fields of a record of type
sys. These fields are all mutable, i.e. modifiable in place, either because they are
declared with the mutable keyword, or because they are arrays, always muta-
ble in WhyML. The type sys is defined with a type invariant, which imposes
conditions on its fields. These conditions are hidden here behind the predicate
invariant_candidate. Some technical conditions require the ticket numbers to be
non-negative integers, and the two arrays customerStatus and customerTicket to

be of the same size n. The other conditions characterize any set of supposedly
safe states, with respect to given critical states.

The WhyML language requires that any type with an invariant be declared
with a by clause that justifies that the type is not empty, by describing an in-
habitant of it. Here, we suggest as inhabitant the initial state of the bakery
system, with the provided WhyML function make, which constructs an array
whose elements all have the same value. When verifying a type declaration with
an invariant, Why3 tries to prove that the state described by its by clause satis-
fies the type invariant described by its invariant clause. By this design choice,
without anything else to write, we obtain the verification condition that the
invariant candidate is true in the initial state of the bakery system.

In order to formalize in WhyML the non-deterministic choice of a process
which satisfies the guard of a transition, the abstract function any_int_where
, specified by the following code, is provided to students. It models the non-
deterministic choice of an integer i satisfying the condition (p s), for any given
executable predicate p and any inhabitant s of any type ’a. (In WhyML, as in
many functional languages, the application of the function £ to the argument x
is denoted £ x, instead of £(x).)

val any_int_where (s: ’a) (p: ’a -> int -> bool) : int
requires { exists i. p s i } ensures { p s result }

As illustrated by an example below, in the WhyML code of a transition
parameterized by a single process, the type ’a will be the type of the states,
the variable s will be a state and the predicate p will be an executable version
of the guard of this transition. The function any_int_where only exists if there
exists at least one integer i satisfying the condition p s. This is required by the
precondition (exists i. p s i). Under this condition, the postcondition (p s
result) expresses that the function returns such an integer, represented in this
expression by the reserved word result of the WhyML language.

In the presence of a declaration with the keyword val, Why3 admits that the
declared object — here, a function — exists, without requiring or providing any
justification for this existence. However, if such a function cannot exist, assuming
the contrary would make the logic inconsistent. In order to show that this is not
the case, we can provide the following implementation of this function.

let any_int_where (s: ’a) (p: ’a -> int -> bool) : int
requires { exists i. p s i } ensures { p s result }
= any int ensures { p s result }

The expression any ... ensures ... non-deterministically evaluates to a value
that satisfies the logical formula after the keyword ensures, when this value
is assigned to the dummy variable result. For this expression, Why3 always
produces a verification condition that this logical formula is indeed satisfiable.
Due to the precondition (requires clause), this condition of existence of the
function any_int_where is easily discharged by the Why3 platform.

Then, each transition of the system is implemented as a WhyML function,
as in the example reproduced in Listing 1.2. The guard of this transition is
that there is a customer in the AS state. This guard is defined by the predicate

Listing 1.2. Transition of a customer obtaining a ticket, in WhyML
let predicate p_getTicket (s: sys) (c: int)
= 0 <= ¢ < length s.customerStatus &&
s.customerStatus [c] = AS
let getTicket (s: sys) : sys
requires { exists i. p_getTicket s i }
= let ¢ = any_int_where s p_getTicket in
s.customerStatus[c] <- WA;
s.customerTicket [c] <- s.ticket + 1;
s.ticket <- s.ticket + 1;
s

p_getTicket, which is also a Boolean function, thanks to the keyword let which
allows to use it in programs. A technical point here is that equality (=) is defined
in WhyML as a logical predicate for any type, but does not exist by default as
a Boolean function on user-defined types, such as status. For executability, a
Boolean equality on the type status must be implemented, for example by the
following code.

let (=) (x y: status) : bool ensures { result <-> x =y }
= match x with

| WA -> match y with WA -> True | _ -> False end

| AS -> match y with AS -> True | _ -> False end

| SE -> match y with SE -> True | _ -> False end

end

A second technical point concerns guards that include a quantified condition
on processes, such as the guard of the access transition. In order for the corre-
sponding predicate to be executable, students are provided with the following
Boolean function for universal quantification over a bounded integer interval.
let predicate forAll (s:’a) (p:’a->int->bool) (1 u:int)
ensures { result <-> forall i. 1 <= i <= u -> p s i }
= for j = 1 to u do
invariant { forall i. 1 <= i < j ->p s i }
if not (p s j) then return False

done;

True

The any_int_where function is similar to the ANY ...WHERE ...THEN ...END
construct of the B language, and to the any keyword of WhyML, whose execu-
tion in a program realizes a non-deterministic choice of a typed value satisfying
a given condition. Instead of using this instruction, we have preferred to pro-
vide and suggest to use the any_int_where function, in order to facilitate various
implementations of non-determinism. Indeed, it is simpler to associate an imple-
mentation to a single function than to have to replace each any expression by an
implementation.

Each transition is a WhyML function parameterized by the complete system
(named s in this example, of type sys) and which returns the new state of this
system, of the same type sys. When the Why3 tool verifies such a function, it

tries to show that the returned state satisfies the invariant of type sys, under the
hypothesis that its parameter s satisfies this invariant. This verification condition
is exactly the second condition for this type invariant to be an invariant of the
transition system, without anything else to specify about it. Without this use
of a Why3 type with an invariant, it would have been necessary to repeat the
invariant candidate as a precondition and postcondition of each transition, which
is more cumbersome and presents a risk of error by omission.

When the system is fully programmed, the student verifies its safety by call-
ing the SMT solvers available through the Why3 platform. If the proof of safety
succeeds, the exercise comes to an end. Otherwise, the student has to verify
her /his code and specifications, to reinforce the invariant candidate or to ques-
tion the capacities of the SMT solvers to discharge the verification conditions.
As these last two tasks are difficult, the exercises are accompanied by advice.

A reinforcement of an invariant candidate is any additional formula that
approximates more accurately the reachable states, and whose conjunction with
the invariant candidate is expected to form an inductive invariant. As first invari-
ant candidate, it is natural to choose the negation of a characteristic predicate
for critical states. For any mutual exclusion algorithm, such as the bakery sys-
tem, this invariant is the mutual exclusion property, saying that no two distinct
processes simultaneously use the shared resource. For the bakery system, this
property of simultaneous non-existence of two served customers is not an in-
ductive invariant. Indeed, this property holds for instance in the state with two
customers, one served and the other one waiting and holding a smaller ticket.
From this state, the second client can be served by the transition access (whose
code is reproduced on Listing 1.1), leading to the critical state. Fortunately, the
combination of the other transitions and the initial states makes these dangerous
states unreachable. The Cubicle output

node 2: access(#2) -> unsafe[1]

on the third line of Figure 1 means that Cubicle identifies these dangerous states
and choose their negation as first invariant reinforcement. Nodes 3 to 8 repro-
duced in Figure 1 similarly correspond to sets of dangerous states found by
Cubicle, and used by Cubicle to produce other reinforcements included in the
certificate. Their conjunction with the initial invariant candidate forms an in-
ductive invariant.

When we choose as reinforcements the invariants synthesized by Cubicle, and
provided to us in the certificate it generates, and we encode all the guards with
let predicate, then Why3 automatically proves that the resulting invariant is
preserved by the getTicket and leave transitions, but not by the access transi-
tion. This last proof becomes automatic if we separately define the guard by a
predicate and a Boolean function, along the pattern reproduced in Listing 1.3.

Figure 2 illustrates the proof results when the system is specified in this way.
The verification condition sys’vc is the condition that the initial states satisfy
the invariant, while the verification conditions associated with the transitions
deal with the preservation of the invariant.

Listing 1.3. Pattern for the access transition, in WhyML

predicate p_access (s: sys) (i: int) =

let g_access (s: sys) (i: int) : bool
ensures { result <-> p_access s i } =
let access (s : sys) : sys
requires { exists i. p_access s i }
= let ¢ = any_int_where s g_access in
s.customerStatus[c] <- SE;
s

~ @i Bakery.mlw

b Top

[any_int_where'vc [VC for any_int_where]

000000000000

[leave've [VC for leave]

Fig. 2. Verification of a bakery system with the Why3 platform

Generally speaking, finding reinforcements is all but an easy task, beyond
the expected level of the students at the end of this course. If the exercise could
be handled with Cubicle, students are asked to adapt the invariants that Cu-
bicle wrote in its proof certificate. Otherwise, some exercise questions suggest
reinforcements in natural language, which the student only has to formalize in
WhyML.

In conclusion, while the process of verification of parameterized reactive sys-
tems with Cubicle is relatively simple, this process with the Why3 platform is
more complex, since reinforcements may be required to complete the proofs.
Therefore, exercises and homework are necessary to facilitate its learning by
students.

4 Virtual machine for labs

Each year, the first exercise of the first homework guides the students to build
their lab environment, in the form of a Docker (https://www.docker.com) con-
tainer. At the end of this exercise, the students have a virtual machine (called
a Docker container) in which they can run Cubicle (version 1.1.2) and Why3

https://www.docker.com

(version 1.4.0) software command line, but also the graphical interface of Why3.
The virtualization technology Docker is available for Linux, macOS, and Win-
dows. The Docker container being the same virtual machine for all students, it
limits installation problems and allows tutors to reproduce the actions of the
students identically, and thus better help them to use the tools. Using this con-
tainer allows students to do homework with their personal computer without
disrupting their work habits. A working directory is shared between the host
machine and the container. Files for Cubicle and the Why3 platform stored in
this directory can be accessed and edited from the host machine or in the running
container.

The Docker image of this working environment is formally described in a
Dockerfile provided to students. It expands the Docker image registry.
gitlab.inria.fr/why3/why3:1.4.0 distributed by Inria, which contains the
Why3 platform (version 1.4.0) and the three CVC4 SMT solvers (version 1.7),
Alt-Ergo (version 2.0.0) and Z3 (version 4.8.4). The Dockerfile complements
this image with Opam (OCaml package manager, https://opam.ocaml.org)
and an installation of the Cubicle software with Opam. For Windows users, a
VeXsrv server (https://sourceforge.net/projects/vexsrv) is used as an X
server, for the graphical interface of the Why3 platform. The creation and start-
ing of the working environment are made easier thanks to provided scripts for
Linux and macOS, and .bat batch files for Windows.

No integrated development environment (IDE) is suggested to edit input
files for Cubicle. Any text editor is suitable, even without syntax highlighting,
since Cubicle’s input language is very readable and the requested models are
achievable in a few dozen of lines.

The creation of the lab environment being an essential step, the students
are invited to communicate on the mutual aid forum the difficulties they en-
countered. The exercise represents 8 points out of 20 in the grade for the first
homework. Its evaluation is carried out on the basis of a report on the applica-
tion of the homework subject instructions and the student’s participation in the
mutual aid forum on this activity.

5 Evaluations

We first describe how students are evaluated, and then how the teaching unit is
perceived by its students.

5.1 Student assessment

The exercises are not graded. Homeworks being works done without time limit
and without supervision, their grade are not taken into account in student as-
sessment. These grades, however, have an indicative value: they quantify the
quality of the content of the returned assignments and inform students of the
level expected at the exam.

registry.gitlab.inria.fr/why3/why3:1.4.0
registry.gitlab.inria.fr/why3/why3:1.4.0
https://opam.ocaml.org
https://sourceforge.net/projects/vcxsrv

By using verification tools during their works at home, the students see them-
selves whether their answers are correct. These verification tools could also be
used to automatically generate a grade based on the number of successful verifi-
cations. However, such an automated grading tool is of little interest, for several
reasons. First, automated verification for complete specifications being rare, it
can only be one element of evaluation among others, with a small coefficient.
The other evaluation criteria relate to the understanding of the concepts, which
requires a human analysis producing personalized written recommendations. Fi-
nally, the number of students returning homework being low (from 10 to 20),
automated grading would not represent a significant time saving for teachers.

The students are evaluated on 20 points, during a written final exam (on
paper), supervised and lasting 2 hours. The examination must be carried out
without using electronic devices and without consulting documents other than
the examination subject sheets. The fragments of the Cubicle and Why3 lan-
guage syntaxes useful for this subject are recalled in an appendix at the end of
the subject. Thus, the only noticeable difference between the exam requirements
and what the students are trained to do during the semester is that they cannot
run the Cubicle and Why3 tools during the exam to detect errors in the codes
they are writing on their exam copy. This limitation encourages students to pro-
duce (almost-)correct code more rationally, without resorting too much to the
empirical trial-and-error cycle. The negative effect is minimized by an evaluation
that ignores minor syntax errors. Students are informed of the exam conditions
at the start of the semester, and can practice them thanks to annals provided
with their answers. The Specify and Verify module counts for 3 ECTS credits
(Buropean Credit Transfer System) among 30 for one semester of the master.

5.2 Course assessment

Once the course, the exercises, the homework and the final exam have been prac-
ticed by the students, an evaluation is carried out to ensure that the module finds
a favorable reception. No automatic evaluation system is used, because the num-
bers of students and hours devoted to this teaching are small. The evaluation
of the course is carried out directly by questioning the students, either during
an in-person review meeting, or through a digital forum during the COVID-19
pandemic. It appears, for example, that the speed and efficiency of the use of
the Cubicle model checker is appreciated by the students. Difficulties encoun-
tered by the students during exercises and homework, expressed as questions in
the forum, are taken into account as they arise, in the form of additional expla-
nations or course modifications. Final exam results also help determine course
improvements for the following year.

6 Discussion

The prerequisites to follow the formal verification process taught in the Spec-
ify and Verify module are few. The students have generally already practiced

the modeling of systems with states evolving under the effect of transitions.
Reminders concerning discrete event systems and first-order logic, as well as
short introductions to the Cubicle and Why3 tools, are sufficient to facilitate
the acquisition of new knowledge and know-how.

If reading and writing formulas in first-order logic is an uncommon practice
in the context of students’ previous programming activities, writing specifica-
tions in logic remains accessible to them, since the guards of the transitions
to be formalized correspond to simple logical formulas. The difficulty in proving
certain parameterized reactive systems lies above all in the design of an invariant
approximating the non-dangerous states, given the specifications. This difficulty
is reduced thanks to the automated invariant reinforcement mechanism imple-
mented in Cubicle.

The formal approach to specification and verification of parameterized reac-
tive systems provides students with a concrete example of symbolic model check-
ing based on the decision procedures implemented in SMT (Satisfiability Modulo
Theory) solvers. However, no temporal logic is taught to specify the properties
to be checked, since the only property dealt with is safety, which is reduced to
a state reachability analysis. The usefulness of this verification by exploration
(of sets) of states (model checking), and of its automation, are highlighted by
offering students examples of systems whose reachable states are difficult to pre-
dict intuitively, while their transitions are simple to define. In particular, the
search for reinforcements of invariants is not very intuitive, which illustrates the
difficulty of predicting the states reached by the system.

The teacher who designs the exercises must ensure that safety is not triv-
ially ensured by the system, but is really a property emerging from the system
specifications. Otherwise, checking it becomes obvious and its formal verification
loses its interest. For instance, mutual exclusion does not constitute an emergent
property of a system whose transitions would explicitly check (in their guard)
that no other process owns the critical resource.

When an invariant has been proven, it is possible to continue the study
of the system to verify other complementary properties. The proven invariant is
completed with an additional property and a new verification of the preservation
of the invariant is carried out. If the modified invariant remains preserved, then
the additional property is verified for all the states reached by the system.

7 Conclusion

The Specify and Verify module is built around the use of the model checker
Cubicle and the Why3 platform. These tools have proven to be suitable for
teaching the verification of the safety of simple parameterized reactive systems.
This practical approach to verification is not very demanding in terms of prior
knowledge and formalization skills. It provides students with a concrete example
of model checking. However, when a system is safe, but it is necessary to carry
out reinforcements oneself to find an invariant, the effectiveness of verification
with the Why3 platform is greatly reduced.

Although it is possible to use the invariant reinforcement technique applied
by Cubicle in a black box, it would be interesting to add in this module a
lesson on invariant reinforcement (semi-)algorithms, such as those of theses of
J.-F. Couchot [5] and A. Mebsout [10], also to show how to formalize them in
WhyML and to verify some of their properties with Why3. This would add to
the module a complementary aspect of formal semantics, in particular about
non-determinism.

Acknowledgments

This project is supported by the EIPHI Graduate School (contract ANR-17-
EURE-0002). We thank the three anonymous reviewers for their comments and
suggestions that helped us improve our original manuscript.

References

1. Blazy, S.: Teaching deductive verification in why3. Formal Method Teaching 2019
LNCS 11758 (2019)

2. Bobot, F., Filliatre, J.-C., Marché, C., Melquiond, G., Paskevich, A.: The Why3
Platform Release 1.5.1 (2022), http://why3.1lri.fr/manual.pdf

3. Conchon, S., Goel, A., Krsti¢, S., Mebsout, A., Zaidi, F.: Cubicle: A parallel SMT-
based model checker for parameterized systems. In: CAV’'12 (Computer Aided
Verification). LNCS, vol. 7358, pp. 718-724. Springer (2012), http://www.lri.
fr/~conchon/publis/conchon-cav2012.pdf

4. Conchon, S.: Model checking, part 1 : Model checking modulo theories (mcmt)
(2015), cours de PEJCP (Ecole des Jeunes Chercheurs en Programmation), https:
//www.lri.fr/~conchon/EJCP/ejcp-mcmt . pdf

5. Couchot, J.-F.: Vérification d’invariants de systémes paramétrés par superposi-
tion. Ph.D. thesis, Laboratoire d’Informatique de 1’Université de Franche-Comté,
Besangon, France (April 2006)

6. Couchot, J.-F., Giorgetti, A., Kosmatov, N.: A Uniform Deductive Approach for
Parameterized Protocol Safety. In: ASE ’05: Proceedings of the 20th International
Conference on Automated Software Engineering. pp. 364-367. IEEE (2005)

7. Ghilardi, S., Ranise, S.: Goal-directed invariant synthesis for model checking mod-
ulo theories. In: TABLEAUX (Automated Reasoning with Analytic Tableaux and
Related Methods). LNCS, vol. 5607, pp. 173-188. Springer (2009)

8. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Logical Methods in Computer Science
volume 6, issue 4 (2010)

9. Lamport, L.: A New Solution of Dijkstra’s Concurrent Programming Problem
17(8), 3 (1974)

10. Mebsout, A.: Invariants inference for model checking of parameterized sys-
tems. Thése de doctorat, Université Paris Sud - Paris XI (2014), https://tel.
archives-ouvertes.fr/tel-01073980

http://why3.lri.fr/manual.pdf
http://www.lri.fr/~conchon/publis/conchon-cav2012.pdf
http://www.lri.fr/~conchon/publis/conchon-cav2012.pdf
https://www.lri.fr/~conchon/EJCP/ejcp-mcmt.pdf
https://www.lri.fr/~conchon/EJCP/ejcp-mcmt.pdf
https://tel.archives-ouvertes.fr/tel-01073980
https://tel.archives-ouvertes.fr/tel-01073980

	A Gentle Introduction to Verification of Parameterized Reactive Systems

