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Abstract— In this letter, we will discuss the design, mod-
elling, and estimation of load based on the shape of a
newly developed parallel continuum robot called TriRod. The
proposed kinematic architecture consists of three flexible rods
attached at their lower extremity to three rotating actuators.
The robot is able to move its end-effector in space and its
three limbs are designed so that their shapes can easily be
visible by cameras. Two shape-based estimation strategies have
been developed and evaluated experimentally using the TriRod
robot. Both estimators are based on virtual visual servoing
of the robot rod shapes (deformation) to estimate either the
joint angular values or the external forces. The experimental
validations show that both estimators give accurate predictions
of angles and forces, with a mean average error of 3.8% for
joint value estimation over a range of 75◦ and a mean average
error of 10.5% for the estimation of loads up to 633mN .

Index Terms— Continuum robot, parallel mechanisms, load
estimation, and shape servoing.

I. INTRODUCTION

Parallel Continuum Robots (PCR) are emerging as a
novel robotic concept with the potential to be used across
a wide range of applications from medical to industrial [?].
Like parallel robots, PCRs consist of several independent
limbs actuated at their base and attached at their end
to a rigid platform which can be considered as the end-
effector. However, unlike parallel robots, PCRs’ kinematics
chains integrate slender flexible elements in place of or in
combination with rigid links.

Several PCRs architectures have been proposed in the
past few years providing from two to six degrees of free-
dom (DoF) to the end effector. Planar structures consist
of two or three limbs positioned in the same plane able
to move the end-effector (X , Y , and Θ) [?], [?], [?], [?], [?].
To move the end-effector in the space, many structures
have been proposed from three parallel limbs [?], [?], [?],
[?] to six limbs [?], [?], [?], [?]. In both cases, the limbs
of the PCRs are either passive (with extrinsic actuation)
as proposed in [?] or active (with intrinsic actuation) [?].
Most of PCR moving in 3D are actuated from translating
their limbs [?], [?], [?] as an efficient way to obtain out-
of-plane movements of the end-effector.
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Fig. 1. Shape and load deformation of the continuum parallel robot
"TriRod".

PCRs have several advantages compared to traditional
parallel robots. The first one is the increase in the
workspace thanks to the flexibility of the limbs providing
large deformations [?], [?]. Another benefit is the capability
to miniaturize deformable parallel structures compared
to rigid ones. This has been demonstrated for example
in [?] that removing mechanical joints and transmission, it
was possible to miniaturize a six DoFs parallel mechanism
within a few cube centimeters [?]. Mauze et al. [?] inves-
tigated the use of purely elastic materials in the design of
a PCR which has shown very good performance in terms
of precision. Additionally, it has been evidenced that the
compliant nature of PCRs confers safer interactions with
humans for collaborative tasks [?], [?], [?].

Conversely, the flexibility of PCRs reduces the forces and
moments that can be applied at their end-effector. The
payload of these robots is then much lower than their rigid
counterpart. The most critical problem is guaranteeing
the robot’s trajectory under different payloads or external
forces in general. Obviously, physical models of PCRs allow
estimating the actuator’s position or orientation to reach a
desired pose in the Cartesian space. However, whether the
external loads are unknown, the models cannot predict
the end-effector position. Indeed, the pose of PCRs is
highly dependent on unpredictable external interactions.

A solution is to use the flexible nature of PCRs to
enable sensing of interaction forces using the deflection
of the robot itself as proposed by Aloi et al. [?]. As all
the PCRs have in common the use of flexible limbs in
place of rigid links, then their deformations are the direct
reflection of external forces. Consequently, the resulting
deformation of the limbs, therefore, the robot shape can
be used to estimate interactions. These deformations can
be estimated either with proprioceptive sensors or with
exteroceptive sensors. Among the firsts, strain gauges [?],
pressure sensors [?], Bragg’s fibres [?], [?], cable tension
sensors [?], [?] and other types of sensors have already
been used through these on-board sensors require much



space and modifications on PCRs. On the other hand,
exteroceptive sensors like magnetic sensors [?], [?] or
visual sensors [?], [?] allow shape measurements without
modification of the PCRs. The use of vision-based defor-
mation measurement to estimate external forces has been
validated efficiently on catheter-like continuum robot [?],
[?], [?] or soft pneumatic parallel robots [?] but to our
knowledge not on parallel continuum robot with beam
legs.

This paper discusses a PCR mechanism specifically
designed to study the sensing of interaction forces using
vision, named TriRod. The TriRod robot consists of three
flexible rods attached at their lower extremity to three
rotating actuators. The robot is able to move its end-
effector in space and its three limbs are designed so that
their shapes can be entirely retrieved by visual sensors.
A model-based force estimation method suitable for con-
tinuum parallel structures is proposed and validated with
applications to the TriRod.

The paper begins with the presentation of the design,
the modelling, and the analysis of the TriRod. These
analyses have been performed to assess the workspace
and stiffness when the robot is subjected or not to external
loads. Then, two vision-based estimation strategies are in-
troduced. The first retrieves the configuration (i.e., shape)
of the robot, while the second estimates the external forces
applied to its end-effector. Both estimators are based
on virtual visual servoing of the robot rod shapes (i.e.,
deformation). Finally, the paper ends with experimental
validations showing that both estimators give accurate
predictions of positions and forces.

II. DESIGN AND MODELLING OF THE TRIROD ROBOT

A. Mechanical Design and Fabrication

This section describes the design and modelling of the
proposed three DoFs TriRod robot which is a parallel
continuum robot with three deformable legs (rods). Each
individual rod is attached at its lower extremity to a
rotating actuator which, given the robot’s design, can vary
from 0 to π

2 . The three rods are fixed on a sphere which is
the end effector of the TriRod. Finally, the three rotating
actuators are positioned with an angle of 2π

3 in respect
to each other. Figure 2 depicts the kinematic diagram
of the proposed robot as well as the used frames and
geometrical parameters. The geometrical parameters have
been chosen to allow large deformations of the legs. Note
that depending on the intended robotic task, the rods can
be changed (material, length, diameter, etc.) for a trade-
off of wide working space/low stiffness or small working
space/high stiffness. The TriRod provides 3 DoFs to the
end-effector with a resolution of 0.1 mm and a maximum
speed of 5.2 mm.s−1. It can support a weight of up to
75 g for the example of robot shown in Fig. 1.

Each rod is actuated with a Dynamixel XM430-
W210-R servomotor providing an angular resolution of
4096 pul se.r ev−1. To allow a higher range of motion for
the robot end-effector, each rod is mounted on a rigid

aluminium-made arm which is itself mounted on the
motor. The rods are made of flexible steel spring rods
of 1 mm in diameter and 185 mm in length. The three
servomotors are fixed with an angle of 2π

3 from each other
and at a distance r = 40 mm of the centre O. The length
of the rigid arm is d = 50 mm. At a standstill, i.e. when
the rigid arms are horizontal with an angle of 0◦, the
TriRod’s height from the X Y plan formed by the points
A1, A2, A3 to the end effector C is of 160 mm (Fig. 2). The
distance between two points Bi and B j , i , j ∈ [1,2,3], i ̸= j
is 180 mm in the same configuration.
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Fig. 2. Kinematic scheme of the TriRod robot and its geometric
parameters.

Once the different components are assembled, the ob-
tained robot is characterized geometrically using metrol-
ogy equipment. Therefore, the geometric parameters d
and l are measured with an accuracy of 0.05 mm using a
high gauge and a calliper, whereas the other distances
such as r are measured with a coordinate measuring
machine with an accuracy of 0.02 mm. The mechanical
and dimensional inaccuracies are then included in the
robot model discussed hereinafter.

B. Kinematic Modelling

Parallel robots with rigid transmission mechanisms
have been widely investigated in the literature from the
design, modelling and control aspects [?]. However, the
modelling of PCRs requires numerical methods to solve
partial differential equations of continuum mechanics.
Different methods can be approached to model PCRs.
Piece-wise continuous curvature modelling offers simplic-
ity and fast estimations for regular structures, however, it
may be lacking in precision for nonlinear deformation. On
the other hand, shooting methods based on beam equa-
tions provides high accuracy by considering nonlinearities
and material properties, but requires more computational
effort and may show convergence issues. Lastly, finite
element modelling is a more flexible approach offering
precise modelling of complex and nonlinear deforma-
tions, and accounting for material properties. However, it
demands high computational resources as the accuracy
depends on the mesh size. While other methods can
also be considered, the TriRod is modelled using Finite
Element Analysis (FEA) due to its high accuracy and
capability to model complex multi-beam structures. In



this paper, we have opted for an FEA software named
SOFA (Simulation Open Framework Architecture) [?]. SOFA
allows the modelling and simulation of physical systems
of different types, materials, and shapes.

The TriRod system is modelled using finite beam ele-
ments [?]. Each of the three legs is represented as a flexible
rod divided into ten sections with hundred interpolation
points, enabling forward computation of the robot pose.

C. Workspace Analysis

The workspace of the TriRod is defined as the space area
that the end effector can cover when the servomotors’
angles qi = (q1, q2, q3)⊤ vary from vertical to horizontal
positions (respectively 0 and π

2 ), without considering the
plastic deformations of the rods. The workspace bound-
aries are imposed either by a physical limitation of the
actuator angles or at the position where the flexible
rods reach the yield point. As a reminder, the used rods
are made with steel spring rods, which have a flexural
yield point of 3.6×109 Pa. Let us consider two different
configurations to define the workspace. On one hand, a
load-free operation where the position of the end effector
C is subject only to the motion of the actuator and on
the other hand, a constrained operating where an external
force is applied to the robot mobile platform C .

1) Unconstrained Workspace Analysis: To evaluate the
positions of the robot end-effector, we generated a grid of
83 possible combinations of actuator angular positions by
dividing the stroke of every actuator into 8 steps from 0 to
π
2 . Thereby, for each triplet of discretized angular position,
the obtained position cp of the robot end-effector is
recorded and plotted. The maximum stress in the whole
model is also computed in each discrete position from
the curvatures of the flexible rods to ensure that the yield
point is never reached. This stress is represented by the
colour scale in Fig. 3.
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Fig. 3. Workspace analysis of the TriRod robot. (a) the reachable
workspace in a perspective view, (b) a top view of the workspace at
Z = 150 mm, c) the workspace along the X -axis, while d) the one
obtained along the Y -axis.

As can be expected from the geometry of the TriRod, the
workspace presents a symmetry with respect to the X Z -
plane (Fig. 3(d)). In the case where there is no external

force acting on the robot, there is a clear symmetry of
2π
3 around Z -axis in the TriRod geometry as well as

in its workspace (Fig. 3(b)) and in the distribution of
the maximum stress. Despite experiencing stress peaks
in configurations far from the centre of the workspace,
the yield point is never reached, thus avoiding the risk
of degradation. However, it is required to prevent the
TriRod from reaching high internal stresses. In an isotropic
continuum structure, instabilities generally occur in re-
sponse to significant variations in applied stresses. For
instance, when the TriRod reaches the upper limits of
its workspace where stresses are highest, instability can
appear as spontaneous torsion of the entire robot. To
avoid these instabilities like torsion and buckling, high-
stress areas are made inaccessible by limiting the actua-
tor’s range of motion.

2) Constrained Workspace: One of the advantages of a
continuous parallel robot is to use compliance to change
its working space function of the applied external force.
Indeed, it is possible to change the shape of the rods
by applying an external force fext on the platform. To
evaluate such a statement, an external force has been
applied at the robot’s end-effector at each position of the
workspace. New spatial positions can be reached under
external loads, leading to new workspaces. A range of
external forces is used to assess the potential impact of
the applied forces on the extent of the working space.
Examples of constrained workspace slices are superposed
in Fig. 4 corresponding to external loads of 0.5 N along
the directions X , Y , and Z , respectively. As can be seen
in this figure, the complete workspace is translated in the
direction of the external force, allowing the TriRod to reach
a farther portion of the space around itself but preventing
it to reach a portion of space on the opposite side. The
constrained workspaces are also longer and narrower than
the force-free workspace. This flexibility gives the robot
an interesting versatility, as when the end effector meets
an obstacle, it takes a new direction out of the original
working space. However, the TriRod robot is not designed
to fully exploit the versatility of its workspace. It is only
necessary to consider the potential modifications of this
workspace to fully characterize the robot and ensure a
comprehensive understanding of the extended limits of
its workspace.

D. Stiffness Evaluation

The TriRod behaviour under external loads is highly
dependent on its configuration and the materials used
to build the robot. The occurring deformations and the
involved forces are directly related to the stiffness. The
TriRod stiffness can be characterized by the motion re-
sulting from loads carried by the robot’s end-effector
in different directions (X ,Y , Z ). Thereby, the directional
stiffness Kx , Ky , and Kz are expressed as functions of
the angular positions of the actuators. To this end, we
simulated the displacements δ of the robot platform
subjected to an external force fext of 0.1 N for each
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Fig. 4. Comparison of load-free workspace and three constrained
workspaces, i.e. by applying external forces along X , Y and Z : a) shows
the obtained workspaces in the slice Z = 105, b) in the slice Y = 0 and
c) in the slice X = 0.

direction. The corresponding stiffness K is estimated as
follows (1):

K = ∥fext∥
δ

(1)

Figure 5 depicts the analysis of the TriRod stiffness. Note
that the first leg of the TriRod is moving in the X Z -plane
as its actuator is rotating around the Y -axis. Therefore,
as expected the stiffness Kx along the X -axis (Fig. 5(a)) is
much higher near this actuator because the corresponding
flexible leg has a narrow S-shape acting like a spring. On
the other side, the stiffness Ky along the Y -axis (Fig. 5(d))
is higher when the end effector is at a lower and centred
position because the second and third legs are forming
buttresses maintaining the structures. Finally, the main
effect of position on stiffness is shown in Fig. 5(d) and
(e). The stiffness Kz along the Z -axis is much higher at
the top of the workspace than anywhere else as a vertical
external load is mainly resulting in compression forces
in the direction of the leg centre lines. This compression
of the robot decreases significantly as the robot moves
away from the perfectly vertical position. Also, as can be
noticed from Fig. 5(c), the stiffness along the Z -axis shows
a symmetry of 2π

3 , with a slightly lower value in between
the actuators.
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Fig. 5. Stiffness analysis of the TriRod. a) Stiffness Kx in X Z plane. b)
Stiffness Ky in Y Z plane. c) Stiffness Kz in X Y plane. d) Stiffness Kz in
Y Z plane. e) Stiffness Kz in X Z plane.

III. SHAPE-BASED LOAD ESTIMATION

A. Objectives

This section focuses on the design of the proposed
vision-based estimation schemes of both the position
and the applied external forces. Indeed, these estimation
frameworks allow 1) estimating the input joint angular
values (Fig. 6) using the robot posture (shape) and 2)
estimating an external load applied at the end effector
in a fixed configuration (Fig. 7). Both challenges intro-
duced above are tackled with closed-loop vision-based
estimation schemes that are well suited for such tasks,
notably for their robustness to various types of errors. The
principle of the estimation schemes consists of deforming
the body of the robot model from an initial posture
towards the posture of the real TriRod either by changing
the joint angles or adding an external load (respectively,
applying an external force). A visual similarity criteria
based on mutual information was investigated to estimate
the difference in the posture of the legs.

B. Estimation Schemes

As already pointed out, it is not trivial to adequately
express the kinematic models of such an architecture.
However, SOFA provides a very accurate numerical model
fully suitable for control purposes. Therefore, an orig-
inal estimation scheme has been developed based on
the simultaneous use of a pair of virtual cameras that
visualize the numerical SOFA model and another pair of
real cameras that view the physical robot. The extrinsic
parameters of the real cameras are used to position the
virtual cameras in the SOFA framework to ensure the same
views of the robot. Afterwards, the deformed shape of the
TriRod is projected into the image Ir,1 and Ir,2 using the
real cameras and without any 3D reconstruction proce-
dure. In parallel, the same procedure is also applied to
the equivalent numerical robot whose shape is projected
into the images Im,1 and Im,2. The difference between the
real and virtual images is used to compute the estimated
input values of the model.

Two alternatives of the shape-based estimator are pro-
posed. The first method consists of estimating the joint
angles (q1, q2, q3) without any external forces which means
that the robot does not carry a load (i.e., force-free func-
tioning mode) (Fig. 6). The TriRod’s pose pr is recovered
using the cameras and compared to the model’s pose pm

with a shape comparator described in Section III-C. The
resulting similarity criterion ϵ is used in a minimization
algorithm described in Section III-D to compute the guess
joint inputs q̂1,q̂2,q̂3.

The second method investigates the estimation of an
unknown load applied to the TriRod end-effector. This
means moving manually the robot end-effector by ap-
plying an external force fext when the actuators without
moving using the actuators. Thus, the objective is now
to compute an estimation f̂ext of the applied load that
produces the estimated deformed shape of the robot using



model and then estimate the angular inputs q̂1, q̂2, and
q̂3.

C. Estimation Schemes

As already pointed out, it is not trivial to adequately
express the direct and inverse kinematic models of such
an architecture. However, SOFA provides a very accu-
rate numerical model fully suitable for control purposes.
Therefore, an original estimation scheme has been devel-
oped based on the simultaneous use of a pair of virtual
cameras (identical to the real ones) that visualize the
numerical SOFA model and another pair of real cameras
that view the physical robot. The extrinsic parameters of
the real cameras are used to position the virtual cameras
in the SOFA framework to ensure the same views of
the robot. Afterwards, the deformed shape of the TriRod
is projected into the image Ir,1 and Ir,2 using the real
cameras and without any 3D reconstruction procedure.
In parallel, the same procedure is also applied to the
equivalent numerical robot whose shape is projected into
the images Im,1 and Im,2. The difference between the real
and virtual images is used to compute the estimated input
values of the model.

Two alternatives to the shape-based estimator are pro-
posed. The first method consists of estimating the joint
angles (q1, q2, q3) without any external forces which means
that the robot does not carry a load (i.e., force-free func-
tioning mode) (Fig. 7). The TriRod’s pose pr is recovered
using the cameras and compared to the model’s pose pm

with a shape comparator described in Section III-D. The
resulting similarity criterion ≤ is used in a minimization
algorithm described in Section III-E to compute the guess
joint inputs q̂1,q̂2,q̂3.
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Fig. 7. Shape-based joint estimation scheme: qi is the input of the
angular actuator i , pr the 3D pose of the TriRod robot, Ir the 2D images
of the TriRod, pm the 3D pose of the numerical model, and Im , the 2D
images of the model.

The second method investigates the estimation of an
unknown load applied to the TriRod end-effector. This
means moving manually the robot end-effector by ap-
plying an external force fext when the actuators without
moving using the actuators. Thus, the objective is now
to compute an estimation f̂ext of the applied load that
produces the estimated deformed shape of the robot using
by comparing both involved shape due to the applied load
and the initial shape as depicted in (Fig. 8).
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Fig. 8. Shape-based force estimation scheme.

D. Visual Features and Similarity criterion

1) Images Preprocessing: As the TriRod’s shape is tridi-
mensional, it is required to use two cameras to be able
to view the whole robot including the hidden parts. Note
that it is not necessary to reconstruct in 3D the robot,
which can be a relevant solution but is complex (need
accurate calibration) and time-consuming, therefore not
compatible with the real-time aspects. Indeed, the shape
of the TriRod is projected in the two images Ir,1, Ir,2 issued
from the real cameras while the shape of the digital model
is projected in the two images Im,1, Im,2 issued from the
virtual cameras. Therefore the comparison of shapes can
be performed frame by frame with each new acquisition,
with a similarity value for each pair of physical/numerical
images. The final similarity criterion is chosen to be the
sum of the value for each pair, as expressed in (2).

≤= ≤(Ir,1, Im,1)+≤(Ir,2, Im,2) (2)

The real images and the virtual ones are processed with
some simple basic image processing methods in order
to be comparable. Note that the images of the SOFA
model are in the form of binary matrices, while the real
images are of grayscale type. Therefore, the virtual images
are expressed as distance maps using (3) in such a way
each background pixel receives the value of the minimal
distance to the closest pixel belonging to a rod.

IDM (i , j ) = min
k,l

≥
(i °k)2 + ( j ° l )2

¥
(3)

where IDM is the distance map image, (i , j ) are any pixel
coordinates of I and (k, l ) are pixel coordinates of I such
as I(k, l ) = 255.

The real images are acquired under lighting conditions
so that the corresponding pixels of the rods are clear on
a black background. Indeed, we have selected contrasting
materials (i.e., lighter rods on a darker background) to
facilitate the image processing stage.

A similarity criterion was investigated to estimate the
difference between the current and desired poses of the
robot’s body. The quantified similarity is the information
used to derive the estimated inputs in both cases, i.e.,
free-force mode or loaded operating modes.

Fig. 6. Shape-based joint estimation scheme: qi is the input of the
angular actuator i , pr the 3D pose of the TriRod robot, Ir the 2D images
of the TriRod, pm the 3D pose of the numerical model, and Im , the 2D
images of the model.

by comparing both involved shape due to the applied load
and the initial shape as depicted in (Fig. 7).
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is chosen to be the sum of the similarity value for each
pair. The real images and the virtual ones are processed
with some simple basic image processing methods in
order to be comparable. Note that the images of the SOFA
model are in the form of binary matrices, while the real
images are of grayscale type. Therefore, the virtual images
are expressed as distance maps using (2) in such a way
each background pixel receives the value of the minimal
distance to the closest pixel belonging to a rod.

IDM (i , j ) = min
k,l | I(k,l )=255

(
(i −k)2 + ( j − l )2

)
(2)

where IDM is the distance map image and (i , j ) are any
pixel coordinates of I.

The real images are acquired under lighting conditions
so that the corresponding pixels of the rods are clear on
a black background. Indeed, we have selected contrasting
materials (i.e., lighter rods on a darker background) to
facilitate the image processing stage.

2) Mutual information (MI): The chosen similarity cri-
terion is mutual information which is widely used in
information theory [?]. It consists of a measure of image
similarity although the images are not fully resembling.
The estimation of MI between two images is mainly based
on two concepts: Shannon entropy and joint histograms.

Let us consider E(I) as the entropy which measures the
variability of pixels intensities in an image I which can be
computed as as given in (3).

E(I) =−
N c∑
i=0

pI(i ) log
(
pI(i )

)
(3)

where i is a pixel intensity of I(x)
(
i ∈ [0,255]

)
and pI(i ) =

Pr
(
I(x) = i

)
is the probability distribution function of i .

Note that in our case, the entropy can be considered as a
dispersion measure of the image histogram.

The shared information between two images Ir and
Im can be measured using the joint entropy function
expressed in (4) which defines the variability between the
pair images (Ir ,Im).

E(Ir ,Im) =−
N c∑
i=0

N c∑
j=0

pΠ(i , j ) log
(
pΠ(i , j )

)
(4)

where pΠ(i , j ) = Pr (Ir = i
⋂

Im = j ) is the joint probability
distribution function. This means that if the joint his-
togram is low then the images share a large amount of
information, i.e., the images are aligned and vice-versa.

Finally, the mutual information ϵM I for a pair of images
(Ir ,Im) which measures the quantity of shared information
can be computed as given in (5).

ϵM I =−E(Ir)−E(Im)+E(Ir ,Im) (5)

which can be simplified into:

ϵM I =
N c∑
i=0

N c∑
j=0

pΠ(i , j ) log

(
pΠ(i , j )

pIr (i )pIm ( j )

)
(6)

D. Minimization Procedure

The vision-based estimator is operated alongside a
finite element model built on SOFA. This model is running
at high speed (60 Hz), allowing the evaluation of several
points at each iteration to have an estimation of the local
behaviour of the robot at every position without having
to operate the hardware robot. Therefore it is possible to
evaluate the Jacobian and minimize the similarity criterion
with a gradient descent algorithm to match the shapes.
However, it is more advantageous to use the Nelder and
Mead simplex algorithm [?] as it demands less position
evaluation per iteration and is more efficient to avoid local
minimums.

Let us consider a generic optimization case where the
unknown vector of dimension n is x and the function to



minimize is f . The simplex is a matrix of n +1 guesses,
initially chosen to form a basis of the vector space of
dimension n +1. Let S = (x1, ...,xn+1) be this simplex and
f (S) = ( f (x1), ..., f (xn+1)) be the values of the function f
evaluated in S. Finding the vector x that minimizes f goes
through updating the simplex with new vectors giving a
smaller criterion value at each iteration. To update the
simplex, the steps illustrated for n = 2 in Fig. 8 are the
following.

• Sort S using the value of f (S) arranged in ascending
order and re-number them as S = (x1, ...,xn+1).

• Compute the centroid x̄ without the worst point xn+1.
• Reflection: Compute the reflection point xr = 2x̄ −

xn+1. If it verifies f (x1) <= f (xr ) < f (xn+1) then re-
place the least acceptable guess xn+1 by xr .

• Expansion: If f (xr ) < f (x1), compute the expansion
point xe = 3x̄−2xn+1. If it verifies f (xe ) < f (xr ) then
replace xn+1 by xe .

• Outside contraction: If f (xr ) < f (xn+1), compute the
outside contraction point xoc = 1.5x̄ − 0.5xn+1. If it
verifies f (xoc ) < f (xr ) then replace xn+1 by xoc .

• Inside contraction: If f (xn+1) <= f (xr ), compute the
inside contraction point xi c = 0.5x̄+0.5xn . If it verifies
f (xi c ) < f (xn+1) then replace xn+1 by xi c .

• Shrink: If none of the new values is acceptable, shrink
the simplex with xi = xi +0.5(xi −x1), i ∈ (1, ...,n).

• If the simplex vertices are close enough stop the
algorithm, else restart.
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Fig. 8. Illustration of the main steps in the evolution of the simplex

IV. EXPERIMENTAL VALIDATIONS

This section deals with the assessment of both proposed
shape-based estimation schemes (i.e., load-free joint value
estimation and external loads estimation). Let us start by
introducing the designed experimental platform.

A. Experimental Setup

The experimental setup consists of the TriRod robot
and a pair of identical cameras of type UI-3481LE-M-
GL with a resolution of 2560×1920 pixels. Each camera is
fixed in an eye-to-hand configuration in such a way that
they can provide a wide field-of-view of the whole setup
(Fig. 9). A calibration procedure is performed to extract
both intrinsic and extrinsic parameters of the cameras
which are used to build and position the virtual cameras
in the SOFA framework visualizing the digital model from
the same point-of-view as in the physical setup. Also, an

additional procedure is performed to match the numerical
(SOFA) and real model of TriRod. This procedure is used
to correct the small potential offset angles due to the
imperfections of the robot during its manufacture and
assembly, using the estimation loop described in Fig. 6.
Finally, the superposition of the model to the images of
the TriRod is validated in several known configurations
(Fig. 10).
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Fig. 9. Overview of the physical setup. (a) shows the TriRod robot
and the placement of the cameras and (b) shows an example of pair of
images provided by the cameras.
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Fig. 10. Superposition of the model shape on images of the real TriRod
at: a) input angles of q = [0,0,0] and b) input angles of q = [0,0, π8 ].

B. Shape-Based Configuration Estimation

As stated in Section III-B, the first proposed method
consists of estimating the TriRod actuator configuration
by matching the model to the shape of the rods without
considering applied external forces. To do this, the robot
starts at its initial configuration where all angular positions
are at 0◦. The TriRod is then moved step by step to a final
random and unknown configuration. At each step, images
of the TriRod are acquired with both cameras (Fig. 11). The
model is driven with the angle estimation loop (Fig. 6) to
match successively the new configurations (Fig. 11(a) to
(f)) by minimizing the difference between the projected
shape of the model and the images, such that it follows
the real TriRod’s configuration.

Figure 13 shows five different performed trajectories by
the TriRod robot. The robot’s shape estimation method
provides an average angular error of 1.6◦ for displace-
ments ranging from 0◦ to 75◦, with a minimum error
under 0.1◦ and a maximum error of 7.7◦. This leads to
a mean percentage error of 3.8% of the norm of each
trajectory’s final angle.



a) b) c) d) e) f)

a) b) c) d) e) f)m=0g m=12.5g m=24.3g m=35.2g m=50g m=62.5g

Ir Ir Ir Ir Ir Ir

Ir Ir Ir Ir Ir Ir
Fig. 11. A sequence of images (only the left-hand images are shown) depicting the different configurations ((a) is the initial position) of the robot
that must be reached in order to converge to the final one (f).

a) b) c) d) e) f)

a) b) c) d) e) f)m=0g m=12.5g m=24.3g m=35.2g m=50g m=62.5g

Ir Ir Ir Ir Ir Ir

Ir Ir Ir Ir Ir Ir

Fig. 12. Images of the different deformation configurations of the TriRod resulting by attaching weights ranging from 0g to 62.5g . The weights are
attached to the centre sphere C .

Fig. 13. Joint values estimation results. a) Actuation space where
the reference joint values are represented by black circles whereas the
corresponding estimated angles are represented by blue dots and the
errors are represented by red segments. b) Histogram of the errors for a
range of 75◦.

The errors grow linearly as the TriRod reaches extreme
positions. Indeed, the further away from the workspace
centre the more influential the identification errors are.

C. Shape-Based External Force Estimation

The second proposed estimation scheme is set up at
different fixed joint configurations of the TriRod that are
chosen randomly but relatively close to the centre. This
is necessary so that the TriRod will not collapse under
the weight of the upcoming loads. The joint values are
first estimated using the method described in Section IV-
B such as the model configuration initially matching the
load-free shape of the TriRod. The second estimation
loop which is represented in Fig. 7 starts when various
masses are attached to the end effector, generating a force
along Z -axis and implying deformations of the three rods
(Fig. 12). This validation focuses on forces along Z-axis
because it is the direction of the load of an object to
pick and place. In addition to being the most common
direction, it is also more convenient to have a precise
ground truth as a simple hanged weight. However, external
forces along any other direction could be estimated the
same way. The resulting new shape of the robot body
is considered to be the desired target to estimate the
applied external force. Figure 14 shows the estimated force
values compared to the real applied forces at five different
angular configurations, with three to ten different masses

Fig. 14. External load estimation results. a) Estimated forces versus
reference applied forces in several angular configurations of the TriRod.
b) Histogram of the errors for a range of 0.63 N .

hanged per configuration. The average error is 20 mN
for a range of forces from 90 mN to 633 mN , which
corresponds to the range of weights that the TriRod can
lift with this design. The maximum error is 52 mN while
the minimum error is 1 mN . The overall percentage error
is of 10.5%.

The deformation amplitude of the rods is the main
source to evaluate the external load. Therefore, there is
a trade-off between the range of load that the robot can
withstand and the resolution of the load estimation. A
stiffer robot can handle greater forces but will be less
subject to deformations. Consequently, the load estima-
tion will have a larger range but with a lower resolution.
Conversely, a more flexible robot can support only small
weights but will generate larger deformations and hence
the estimation method will be more sensitive to small
weights in a shorter range.

V. DISCUSSIONS

The aim of this study is to introduce a robust model-
based force estimation method for a novel parallel contin-
uum robot called TriRod relying on visual feedback com-
parison with its model. Although the method has demon-
strated promising performance under specific conditions,
it has certain limitations that require further consideration
for future enhancements. Specifically, vision-based sens-
ing may introduce uncertainties coming from occlusions
or lighting conditions. To address these challenges, alter-



native sensing techniques, including deformation sensors,
magnetic sensors, or actuators’ torque sensors, could be
used to reinforce the vision-based approach. Furthermore,
the current method has solely been evaluated on the
TriRod as designed. By introducing alternative geometrical
parameters and materials, the TriRod’s acceptable ranges
of motion and load can be modified, leading to a re-
configuration of the workspace and stiffness distribution.
Thereby this force estimation method must be set against
the current experimental setup.

VI. CONCLUSION

In this letter, a three DoFs parallel continuum robot
called TriRod has been designed, modelled and controlled.
The proposed robot consists of three deformable legs
(rods), each individual rod is attached at its lower extrem-
ity to an angular actuator when the three rods are fixed on
a sphere which forms the mobile platform of the robot.
A FEM-based method using SOFA framework is used to
model the whole robotic structure. A kinematic analysis
of the working space and stiffness has been performed
showing the relevance of such an architecture in the case
of positioning tasks and force sensing.

Two vision-based estimation strategies have been eval-
uated experimentally. The first proposed method was able
to estimate the angular position of the actuators with an
average error of 1.6◦ over a range of 75◦. The second
method has shown its ability to estimate the externally
applied forces in different directions with an average
error of 20mN . Both methods are based on the use of
visual feedback providing the shape of the robot (i.e.,
leg deformation) during a positioning (respectively, force
estimation) task.

The future work will concern investigations of other
functionalities and applications of the robot, especially
in the context of a haptic interface. The shape-based
force estimator developed in this paper is indeed well
suited to be the force feedback of a master-slave system
between a parallel continuum robot and a haptic device,
as any directional forces applied on the end effector can
be detected from the shape of the robot.
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