
Revisiting Lexicographical Order Relations on Person Names∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

When a bibliography is built by extracting references from a data base—as
BibTEX does when it builds a bibliography for a LATEX document—these ref-
erences are usually sorted w.r.t. author names. Nevertheless, most of implemen-
tations of lexical order relations on person names consist of concatenations of the
parts of names: first name, particle, last name. We show that this may lead to in-
correct results in some particular cases (some examples are given using BibTEX).
Then we explain how this problem is solved in MlBibTEX, our multilingual reim-
plementation of BibTEX.
Keywords Lexicographical order relations, dictionaries, bibliographies, Uni-
code, xslt 1.0, xslt 2.0, MlBibTEX, nbst, Scheme.

Streszczenie

Gdy bibliografia jest budowana przez pobieranie odwołań z bazy danych— jak to
robi BibTEX kiedy buduje bibliografię dla dokumentu LATEX-owego—to odwoła-
nia są zwykle sortowane wg. nazwisk autorów. Zwykle implementacje porządku
leksykograficznego według nazwisk osób są złożeniami składowych: imienia, par-
tykuły, nazwiska. Pokazujemy, że może to w szczególnych przypadkach prowadzić
do niepoprawnych wyników (podamy przykłady z użyciem BibTEX-a). Następnie
wyjaśnimy, jak ten problem został rozwiązany w MlBibTEX-u, naszej językowo
niezależnej reimplementacji BibTEX-a.
Słowa kluczowe Zasady sortowania leksykograficznego, słowniki, bibliografie,
Unikod, xslt 1.0, xslt 2.0, MlBibTEX, nbst, Scheme.

0 Introduction

Given the bibliographical citations of a document’s
body, referring to entries of bibliography databases,
a bibliography processor ’s task consists of extract-
ing the information concerning these entries, and
arranging it in order for a word processor to be able
to add all the bibliographical references as a ‘Ref-
erences’ section, usually put at a document’s end.
Bibliography styles control the layout of bibliograph-
ical references: for example, authors’ first names are
sometimes put in extenso, sometimes abbreviated.
A good example of such a cooperation between a
word and bibliography processor is given by LATEX
and BibTEX [12, § 12.1.3], this bibliography pro-

∗ Title in Polish: Jeszcze raz o porządku leksykograficz-
nym wg. osób

cessor providing many bibliography styles and vari-
ous types of bibliographical entries: article, book,
booklet, etc. [12, Tables 13. 1 & 13.4].

Most often, references are sorted according to
authors’ or editors’ names, even if there exist un-
sorted styles, that is, the order of items is the order
of first citations of these items throughout the docu-
ment. Concerning the sort operation w.r.t. ‘authors’
or editor’s names’, a document usable within a bib-
liography is supposed to be attributed to an author,
except for some particular cases: an anthology or a
conference’s proceedings, in which case an editor is
given. Some documents may be anonymous—good
examples are given by Web pages— in which case
a key is used for sorting. BibTEX uses this modus
operandi —by means of a KEY field— for the entry

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

robeson␣␣kenneth␣␣␣␣1964␣␣␣␣man of bronze
robeson␣␣kenneth␣␣␣␣2␣␣␣␣man of bronze
robeson␣␣kenneth␣␣␣murray␣␣will␣␣␣␣1992␣␣␣␣white eyes ⇐= Kenneth Robeson and Will Murray
robeson␣␣kenneth␣␣␣et al␣␣␣␣1975␣␣␣␣king maker ⇐= Kenneth Robeson and others
du bois␣␣paul␣␣␣␣2008␣␣␣␣title ⇐= first => Paul, von => du, last => Bois
du bois␣␣paul␣␣␣␣2008␣␣␣␣title ⇐= first => Paul, last => {Du Bois}

Figure 1: Examples of sort keys computed within BibTEX’s standard bibliography styles.

types booklet, manual, misc. Moreover, this infor-
mation often refers to a real person, but is some-
times given by an institution’s name, viewed as a
last name without a first name. In the following,
the ‘author’ word will denote this kind of informa-
tion, by language abuse.

The purpose of this article is to show that this
sort operation may lead to strange results, so it
should be specified precisely. In [7], we explained
that sorting words is a language-dependent opera-
tion, and how we tackle this problem in MlBibTEX

1,
our reimplementation of BibTEX focusing on multi-
lingual features. The problem addressed here is to
assemble partial results of this operation. In Sec-
tion 1, we show how most of BibTEX’s standard
bibliography styles proceed. Then we mention that
MlBibTEX’s some new features cause this problem
to be more complicated.

Let us recall that the result of parsing a bib-
liography database (.bib) file by MlBibTEX may be
viewed as an xml2 tree, according to the conven-
tions of sxml3. That allowed us to use a language
close to xslt4 — nbst5 —for specifying bibliography
styles. So we examine which solutions are provided
by xslt in Section 3. Finally, Section 4 explains the
compromise we have reached in MlBibTEX.

Reading this article requires only a basic knowl-
edge of BibTEX and xml. Some parts related to
xslt are more technical—especially some features
related to xslt 2.0, the new version—but should be
understood after reading [8].

1 BibTEX’s standard bibliography styles

A comprehensive study of the management of names
in BibTEX—that is, values associated with the fields
AUTHOR and EDITOR—is given in [6]. Here we just

1 Multi-Lingual BibTEX.
2 eXtensible Markup Language. Readers interested in an

introductory book to this formalism can refer to [14].
3 Scheme implementation of xml. See [10] for more de-

tails.
4 eXtensible Stylesheet Language Transformations, the

language of transformations used for xml texts.
5 New Bibliography STyles.

recall that BibTEX recognizes four components in-
side a name: First (for a first name), von (for a
particle), Last (for a last name), Junior [13, § 4].
As suggested by the capitalisation used within this
terminology, the words belonging to the von field
are supposed to begin with a lowercase character,
whereas the words belonging to the First and Last
fields are supposed to begin with an uppercase char-
acter.

The SORT command used in BibTEX’s bibliog-
raphy styles [12, Table 13.7] is based on sort keys
computed for each entry, and stored into entry vari-
ables—existing for each entry— sort.key$. If we
look into standard bibliography styles, we can see
that this sort key for an entry is mainly based on
concatenating parts of authors’ names, followed by
the entry’s year and the title6. This string is trun-
cated over entry.max$ characters7.

Some examples of sort keys are given in Fig-
ure 1. Sort keys are based on concatenations of
string using only digits and lowercase characters.
Non-alphanumeric characters are removed by means
of BibTEX’s purify$ function [12, Table 13.8]. We
can notice that comparison levels are denoted by dif-
ferent numbers of consecutive space characters: one
space character may appear inside a part of a name8,
two consecutive space characters separate the Last
and First parts of the same name, three (resp. four)
consecutive space characters appear before a new
name (resp. the year and the title).

A first remark: within most of BibTEX’s stan-
dard bibliography styles, the von and Last part are
separated only by a single space character within
sort.key$’s values. That causes a name to be al-
phabeticised w.r.t. the particle, if it exists. In par-
ticular, Figure 1 shows that the names ‘du Bois,
Paul’ and ‘Du Bois, Paul’ are viewed equivalent.
That is probably American usage, but according to

6 Some initial words irrelevant for a ‘semantic’ sort oper-
ation are also removed: ‘A’, ‘An’, ‘The’.

7 BibTEX’s entry.max$ variable is bound to 250.
8 When BibTEX parses the value of a field, several con-

secutive occurrences of this character are replaced by a single
one.

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Revisiting Lexicographical Order Relations on Person Names

European background, ‘du Bois, Paul’ should be
alphabeticised under ‘B-’, as ‘Bois (Paul du)’. How-
ever, this behaviour could be fixed easily in this case
by changing the order of parts within the concate-
nations performed for a name.

The ‘others’ keyword is replaced by ‘et al’
inside a sort key. As a consequence, the AUTHOR
information ‘Kenneth Robeson and others’ comes
before ‘Kenneth Robeson and Will Murray’. We
think that is incorrect: an ellipsis about additional
names should be ranked after specified additional
names. In this case, too, that could be fixed by an-
other replacement value for ‘others’. Another point
is that years are compared lexicographically, so 2
comes after 1964! Of course, this point is not very
important in practice because years coming from
‘actual’ bibliography database files are often close
each to others; it is rare to include entries for docu-
ments written in the 1st and 20th centuries, but in
such a case, the sort operation fails9.

Besides, let us notice that sorting w.r.t. month
information must be explicitly programmed in bib-
liography styles, it does not appear within sort keys
for most standard styles. In fact, nothing is specified
about entries sharing the same sort key: according
to such styles, the only way to influence the order of
items sharing the same author and year information
is to add dummy commands at the beginning of the
value associated with a TITLE field:

TITLE = {\before The Man of Bronze}
TITLE = {\last Brand of the Werewolf}

Since these dummy commands—equivalent to the
\relax command [11, Ch. 24]—must be defined
when LATEX processes the generated references, such
a workaround complicates the sharing of such entries
among several people.

To sum up, the sorting operation performed by
BibTEX works in most practical cases, but not al-
ways. Some points are quite easy to customise, some
are more difficult to fix, and some are unfortunately
hard-wired.

2 Improving BibTEX

MlBibTEX’s syntactical improvements about speci-
fying names are described in [6]. Here we just recall
that co-authors are introduced by the ‘and’ keyword,
like in BibTEX, and possibly followed by collabora-
tors10, introduced by the ‘with’ keyword. A good

9 This error disappears if ‘2’ is replaced by ‘0002’ in the
value associated with the YEAR field. But that causes ‘0002’ to
be put down in the generated reference processed by LATEX,
so that is only a workaround.

10 This notion of collaborators also exists in the bibliogra-
phies built with DocBook, an xml system for writing struc-
tured documents [19].

example is given by the co-authors and collaborators
of The LATEX Companion’s second edition [12]:
AUTHOR = {Frank Mittelbach and

Michel Goossens with
Johannes Braams with
David Carlisle with
Chris A. Rowley with
Christine Detig with
Joachim Schrod}

Like in BibTEX, the ‘others’ keyword can be used:
‘and others’ (resp. ‘with others’) for additional
co-authors (resp. collaborators) left unspecified.

The specification of author and editor ele-
ments within the representation of bibliographical
entries in xml used internally by MlBibTEX is given
in Figure 2. Initially, this dtd11 was derived from
[2, § B.4.4.3] and has been extended to all the el-
ements and attributes used throughout MlBibTEX.
However, for sake of simplicity, we have dropped out
some possible children of the name element12.

In [4], we give a simple example of sorting bibli-
ographical items, provided that there is only an au-
thor. In fact, the actual template uses an external
function written in Scheme13. The problem is more
complicated because the maximum number of possi-
ble authors is not bound a priori, and because there
are two connectors: and, with. Moreover, we cannot
mix co-authors and collaborators; the latter should
be used as additional sort keys, for bibliographical
items sharing the same sequences of co-authors.

3 Using xslt

Now let us examine how sorting person names can be
put into action using xslt. If we consider xslt 1.0
[17, § 10], an acceptable solution is probably the
concatenation of all the parts of a name, as did in
BibTEX, since the only way to get a sort key is the

11 Document Type Definition. Such a file defines a docu-
ment markup model, see [14, pp. 148–155] for more details.
Now schemas are more and more used for such a definition,
but we would not take any actual advantage of them for our
present purpose.

12 Such elements are used for multilingual purposes. For
example, when an author is expressed using another language
than the current entry’s, e.g.:

AUTHOR = {[Robert Silverberg] : english}

whereas the language’s entry is french. Another use concerns
possible transliteration of names originating from languages
using non-Latin alphabets:
AUTHOR =

{[Александр Константинович Глазунов] * russian
[Alexander Konstantinovich Glazunov]}

See [6] for more details.
13 MlBibTEX is written using Scheme. Readers interested

in an introductory book to this functional programming lan-
guage can refer to [15].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

<!-- Using entity parameters for repeated specifications. -->

<!ENTITY % author-or-editor "(name,(and,name)*,and-others?,(with,name)*,with-others?)">
<!ENTITY % language-possibly "language NMTOKEN #IMPLIED">

<!-- Authors and editors. -->

<!ELEMENT author %author-or-editor;>
<!ELEMENT editor %author-or-editor;>
<!ELEMENT name (personname | othername | ...)> <!-- Other elements are used for multilingual

purposes.
-->

<!-- Person names and organisation names used as authors or editors. -->

<!ELEMENT personname "(first?,von?,last,junior?)"> <!-- Parts originating from BibTEX. -->
<!ATTLIST personname %language-possibly;> <!-- When the name’s language is not the

entry’s.
-->

<!ELEMENT othername "(#PCDATA | asitis | emph)*">
<!-- An asitis element remains insensitive to any case change ordered by

bibliography styles. An emph element expresses stylistic information, e.g., using
italicised characters.

-->
<!ATTLIST othername %language-possibly;

"sortingkey CDATA #IMPLIED"/>
<!-- Since othername elements may contain markup or words irrelevant inside a sort

key, this key can be redefined as an attribute’s value.
-->

<!-- Names’ parts. -->

<!ELEMENT first (#PCDATA)>
<!ATTLIST first abbrev CDATA #IMPLIED> <!-- When a first name is not abbreviated using a -->
<!ELEMENT von (#PCDATA)> <!-- ‘standard’ way. -->
<!ELEMENT last (#PCDATA)>
<!ELEMENT junior (#PCDATA)>
<!ELEMENT and EMPTY> <!-- Between co-authors. -->
<!ELEMENT with EMPTY> <!-- Before a collaborator’s name. -->
<!ELEMENT and-others EMPTY> <!-- And more co-authors. -->
<!ELEMENT with-others EMPTY> <!-- And more collaborators. -->

Figure 2: Our conventions for authors and editors.

use of the select attribute of the xsl:sort ele-
ment. If there are several authors, there cannot be
as many xsl:sort elements—giving primary sort
key, secondary sort key, etc.—as authors, since au-
thors’ number is not known statically. For the same
reason, a complete concatenation of parts of all the
names can only be implemented by means of an ex-
tension function, using another programming lan-
guage than xslt.

The situation is better in xslt 2.0 [18, § 13],
since a sort key given by means of the select at-
tribute can be computed using an XPath 2.0’s ex-
pression [8]. Let us consider person names expressed
using the dtd given in Figure 2, then Figure 3 shows
what to do if there is only one author or editor.

Unfortunately, this modus operandi cannot be
generalised to multiple authors. Successive sort keys
must be expressed using successive xsl:sort ele-
ments, so there is no way to insert some tests in
order to check whether elements and, and-others,
with, with-others elements are remaining. In fact,
we experienced a solution, but it consists of a com-
plete re-programming of the sort operation, using
sequence constructors of xslt 2.0 [18].

A solution working with the xsl:sort element
is to build a concatenation of all the names, the el-
ements and, and-others, with, with-others being
replaced by markers belonging to the private use
area of Unicode’s basic multilingual plane [16]. To
do that, we use characters entities like in [8, § 6].

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Revisiting Lexicographical Order Relations on Person Names

...

<xsl:stylesheet version="2.0" ... xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>

<xsl:template match="mlbiblio"> <!-- Root element of a bibliography. -->
<xsl:apply-templates>
<xsl:sort

select=
"for $the-people in if (author) then author else editor return

if ($the-people/name[1]/personname) then $the-people/name[1]/personname/last else
if ($the-people/name[1]/othername) then

$the-people/name[1]/othername/(if (@sortingkey) then @sortingkey else .) else
” (: Some other cases are dropped out (cf. Fig. 2). :)"/>

<xsl:sort select="(if (author) then author else editor)/name[1]/personname/first"/>
<xsl:sort select="(if (author) then author else editor)/name[1]/personname/von"/>
<xsl:sort select="(if (author) then author else editor)/name[1]/personname/junior"/>
<xsl:sort select="xsd:integer(year)"/> <!-- Secondary sort key (numerical sort). -->
<xsl:sort select="add:month-position(month)"/>
<!-- The add:month-position function is given in [8, Fig. 5]. -->

</xsl:apply-templates>
</xsl:template>

...

</xsl:stylesheet>

Figure 3: Using several sort keys when there is only one author or editor.

The result is given in Figure 4. We intentionally put
as many ‘as’ attributes as possible, these attributes
specifying type information (cf. [8, § 5]), in order
for readers to see more easily which type is used by
each variable, which type is returned by each tem-
plate computing a part of the primary sort key. We
use a mode [18, § 6.5] for computing sort keys, tem-
plates without modes are reserved for putting down
the contents of generated references, that is, the re-
sult of this stylesheet.

Michael Kay [9, p. 429] mentions that such an
implementation, based on concatenations, is prefer-
able. As an example, it sorts the name ‘Macarthur,
John’ before ‘MacArthur, Philip’. Using differ-
ent sort keys for the last and first names would re-
vert this order, because a tertiary difference—the
case— in the last name is considered more signifi-
cant that a primary difference—the characters— in
the first name14. From our viewpoint, this point is
debatable and should anyway be decided by bibliog-
raphy style designers. In addition, if we consider ef-
ficiency, building concatenations causes much space
to be allocated, and many character sequences to
be copied, whereas examining the first letters of the
last name occurring at first often makes a difference.

14 See [7] for a more complete explanation about these suc-
cessive steps of a lexicographic order among strings.

Of course, the same remark holds good about the
string concatenations performed by BibTEX’s stan-
dard bibliography styles (cf. § 1).

4 MlBibTEX’s solutions

The revisions we propose hereafter should be viewed
as compromises: MlBibTEX can be used as it is, and
work ‘as well as BibTEX’. That is, users can accept
the results of the default sorting operation15. But
these revisions should maintain a ‘classical’ use of
the nbst:sort element, and allow users to perform
a better customisation about sorting bibliographical
items w.r.t. authors’ names.

A new field, so-called LASTSORTKEY, has been
added to the fields recognised by MlBibTEX. This
field is optional, and must be set to an integer (pos-
sibly negative). It is modelled as an attribute in our
xml representation:
<article lastsortkey="...">...</article>
<book lastsortkey="...">...</book>
...

and can be used in the last step of a sort opera-
tion, as did in ‘new’ standard bibliography styles

15 Concerning us, we were processing some tests between
the compatibility mode for ‘old’ bibliography styles [5] and
were puzzled because bst’s sort and nbst’s did not result in
the same order. That was the story’s beginning. . .

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

Jean-Michel HUFFLEN

...

<!DOCTYPE stylesheet [<!ENTITY start-firstname "">
<!ENTITY start-von "">
<!ENTITY start-junior "">
<!ENTITY and-marker "">
<!ENTITY and-others-marker "">
<!ENTITY with-marker "">
<!ENTITY with-others-marker "">]>

<xsl:stylesheet version="2.0" ... xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>

<!-- Putting bibliographical items down, w.r.t. the ‘classical’ order. -->

<xsl:template match="mlbiblio">
<xsl:apply-templates>
<xsl:sort> <!-- Primary sort key. -->

<xsl:variable name="sort-people-subkey-s" as="xsd:string+">
<xsl:apply-templates select="(if (author) then author else editor)/*"

mode="sort-people-key"/>
</xsl:variable>
<xsl:value-of select="$sort-people-subkey-s" separator=""/>

</xsl:sort>
<xsl:sort select="xsd:integer(year)"/>
<xsl:sort select="add:month-position(month)"/>

</xsl:apply-templates>
</xsl:template>

<!-- Computing the sort key for a name, resulting in a single string. -->

<xsl:template match="name" mode="sort-people-key" as="xsd:string">
<xsl:apply-templates mode="sort-people-key"/>

</xsl:template>

<xsl:template match="personname" mode="sort-people-key" as="xsd:string">
<xsl:value-of select="last,’&start-firstname;’,first,’&start-von;’,von,’&start-junior;’,junior"

separator=""/>
</xsl:template>

<xsl:template match="othername" mode="sort-people-key" as="xsd:string">
<xsl:value-of select="."/>

</xsl:template>

<!-- Replacing connector elements by markers. In the first two cases, xsl:text elements are useless, because
markup surrounds the string to be put down.

-->

<xsl:template match="and" mode="sort-people-key" as="xsd:string">&and-marker;</xsl:template>
<xsl:template match="with" mode="sort-people-key" as="xsd:string">&with-marker;</xsl:template>

<xsl:template match="and-others" mode="sort-people-key" as="xsd:string">
<xsl:text>&and-others-marker;</xsl:text>

</xsl:template>

<xsl:template match="with-others" mode="sort-people-key" as="xsd:string">
<xsl:text>&with-others-marker;</xsl:text>

</xsl:template>

...

</xsl:stylesheet>

Figure 4: Sorting keys using concatenation.

1006 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Revisiting Lexicographical Order Relations on Person Names

(cf. Fig. 6). It is especially useful to sort such items
sharing the same authors’ names, the same year,
and the same month. A missing LASTSORTKEY value
takes precedence over a present one. If several en-
tries share the same sort key, including the same
value associated with the LASTSORTKEY fields16, the
original order is retained17. That means that if the
\bibliography command of a LATEX source text is:

\bibliography{...,f i,...,f j,...}

and let ex and ey be two bibliographical items shar-
ing the same sort key. If ex (resp. ey) comes from
the .bib file f i (resp. f j), then ex comes before ey

within the generated bibliography. The same if ex

takes precedence over ey within the same .bib file.
Let us recall that superfluous fields are ignored by
‘old’ BibTEX, so this field can be added without dis-
turbing this program. In addition, since BibTEX’s
standard bibliography styles ignore this new field,
it is also ignored when these styles are applied by
means of MlBibTEX’s compatibility mode [5].

The second change concerns the nbst:sort el-
ement. Its original definition [3, App. A] makes it
very close to xslt 1.0’s [17, § 10], but not identi-
cal. Like this xsl:sort element coming from Ver-
sion 1.0, it provides insufficient service, unless if it
used with functions written using a ‘more classical’
programming language. We think that some simple
functionalities— like finding a month name’s posi-
tion—can be programmed using Scheme, but speci-
fying a crucial operation such as sorting bibliograph-
ical items w.r.t. names should not depend on deep
knowledge of Scheme. In other words, we think that
we cannot require that a style designer should be a
Scheme expert. Some operations, such as language-
dependent lexicographical order relations are to be
programmed in Scheme, but we tried to reach a form
easily understandable by basic programmers [7].

What about a new element, close to xslt 2.0
[18, § 13]? More generally, why nbst would not be
close to xslt 2.0? That would cause major rewriting
even if such an evolution could be a good idea. How-
ever, it would be a partial solution since we think
that a sort operation based on the concatenation of
parts of all the names is not really efficient (cf. § 3).

The compromise is an extended definition of the
nbst:sort element, given in Figure 5. This new
definition overrides the old one, given in [3, App. A].
The new element works as follows.

16 . . . or if the values associated with this field are both
missing.

17 In programming’s terminology, such a sort is called sta-
ble sort.

<nbst:sort
select=expr language=lg-idf
data-type=("text" | "number")
order=("ascending" | "descending")
case-order=("upper-first" | "lower-first")
use=name personname-part-order=part-order
and-as=code-list and-others-as=code-list
with-as=code-list with-others-as=code-list>

template
</nbst:sort>

where:
code-list a space-separated list whose elements are

natural numbers,
expr is analogous to an XPath expression,
lg-idf a language identifier,
name an identifier,
part-order a space-separated list whose elements are

first, junior, last, von,
template a (possibly empty) sequence of nbst elements,

except for the top-level ones.
Default values are underlined.

Figure 5: New nbst:sort element in nbst.

• Invoking template yields the sort key, except
if the select attribute gives it, in which case
template must be empty. If both template
and select are absent, this is equivalent to
specifying ‘ select="." ’, that is, the sort key
is the identity function.

• If the use attribute is given, all the other at-
tributes, except for select, are irrelevant and
cause errors. The value associated with the
use attribute must be a Scheme function whose
model is:
(define (a-function-name rel?)

(lambda (node-0 node-1 k0)
...))

where:
– rel? receives the order relation associated

with the bibliography’s language, e.g., a
Scheme function given in [7, Fig. 2];

– node-0 and node-1 are two sxml nodes;
– k0 receives the function implementing the

next sort key, that is, the function to be
called when two nodes are equal w.r.t. the
present relation18.

The function resulting from evaluating the ex-
pression (a-function-name rel?) should re-
turn #t (a ‘true’ value) if node-0 is to be put

18 In functional programming, such an argument is used
within the Continuation-Passing Style [1].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1007

Jean-Michel HUFFLEN

before node-1 , #f (the ‘false’ value) if node-0
is to be put after node-1 ; otherwise the k0
function is applied and allows us to process the
next sort key, that is, the next nbst:sort ele-
ment.

• If the use attribute is absent, we look for the
attributes:
– personname-part-order, giving the pri-

mary sort key, secondary sort key, etc. for
a personname element,

– and-as, and-others-as, with-as, and
with-others-as, whose associated values
are viewed as successive codes of the char-
acters of a ‘dummy’ string. Let us re-
call that the MlBibTEX’s current version is
based on Latin 1 encoding [7], so the codes
of ‘actual’ characters are less than 256.
If you want these markers to be viewed
as characters greater than ‘actual’ charac-
ters, put natural numbers greater than or
equal to 256.

Of course, these attributes will work if the sort
key is either an author or an editor element.
In another case, generated functions will always
return a ‘true’ value and the node set will re-
main in the original order. In addition, let us
notice that the data-type attribute must be
set to text—its default value— in this case. If
a subpart of these attributes is only provided,
the omitted ones default to an empty list,

• If none of these attributes:
use and-others-as
personname-part-order with-as
and-as with-others-as

is given, the data-type attribute may be set to
number (resp. text) for a lexicographical (resp.
numerical) sort.

• The meaning of the other attributes— order,
case-order—is unchanged.
Most of bibliography styles coming as part of

MlBibTEX’s source files use this nbst:sort element as
shown in Figure 6.

5 Conclusion

As mentioned in [6], dealing with person names is a
difficult problem, since we have to face many figure
cases. As mentioned in [9, p. 429], sorting person
names can be defined carefully. And let us not for-
get that this order is language-dependent [7]. We
think that MlBibTEX provides a good and complete
toolbox to tackle this problem and put acceptable
solutions into action. But we would not be surprised

<nbst:template match="mlbiblio">
...
<nbst:apply-templates>
<nbst:sort use="<authors<?"/>
<nbst:sort select="year"

data-type="number"/>
<nbst:sort
select="call(month-position,month)"
data-type="number"/>

<nbst:sort>
<nbst:choose>
<nbst:when test="@lastsortkey">
<nbst:value-of select="@lastsortkey">

</nbst:when>
<nbst:otherwise>
<nbst:value-of select="-Inf"/>

</nbst:otherwise>
</nbst:choose>

</nbst:sort>
</nbst:apply-templates>
...

</nbst:template>

where:
• <authors<? is a Scheme function provided within

the source files of MlBibTEX, it efficiently compares
sxml representations of bibliographical items—
article, book, booklet, . . . and other children
of the mlbiblio root element—w.r.t. author or
editors subtrees by using as sort keys as needed;

• month-position is also a Scheme function provided
by MlBibTEX that returns the same result than the
add:month-position function written in xslt in
[8, Fig. 5]— there is no nbst:function element in
nbst—;

• the ‘-Inf’ expression returns the smallest negative
integer.

Figure 6: ‘Standard’ use of the nbst:sort element.

if a new version had to refine these tools. We only
hope that such refinement will be slight.

6 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract.

References

[1] Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes: Essentials of Pro-
gramming Languages. The mit Press. 1992.

[2] Michel Goossens and Sebastian Rahtz,
with Eitan M. Gurari, Ross Moore and
Robert S. Sutor: The LATEX Web Compan-
ion. Addison-Wesley Longmann, Inc., Reading,
Massachusetts. May 1999.

1008 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Revisiting Lexicographical Order Relations on Person Names

[3] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. tugboat, Vol. 24, no. 2, pp. 249–262. July
2003.

[4] Jean-Michel Hufflen: “Bibliography Styles
Easier with MlBibTEX”. In: Proc. EuroTEX
2005, pp. 179–192. Pont-à Mousson, France.
March 2005.

[5] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn gust,
Vol. 23, pp. 76–80. In BachoTEX 2006 con-
ference. April 2006.

[6] Jean-Michel Hufflen: “Names in BibTEX and
MlBibTEX”. tugboat, Vol. 27, no. 2, pp. 243–
253. TUG 2006 proceedings, Marrakesh, Mo-
rocco. November 2006.

[7] Jean-Michel Hufflen: “Managing Order Rela-
tions in MlBibTEX”. tugboat, Vol. 29, no. 1,
pp. 101–108. EuroBachoTEX 2007 proceedings.
2007.

[8] Jean-Michel Hufflen: “xslt 2.0 vs xslt 1.0”.
In: this volume. BachoTEX. April 2008.

[9] Michael H. Kay: xslt 2.0 Programmer’s Ref-
erence. 3rd edition. Wiley Publishing, Inc.
2004.

[10] Oleg E. Kiselyov: xml and Scheme. Septem-
ber 2005. http://okmij.org/ftp/Scheme/
xml.html.

[11] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[12] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion. 2nd
edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[13] Oren Patashnik: BibTEXing. February 1988.
Part of the BibTEX distribution.

[14] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[15] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The mit
Press, McGraw-Hill Book Company. 1989.

[16] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley. Novem-
ber 2006.

[17] W3C: xsl Transformations (xslt). Ver-
sion 1.0. w3c Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

[18] W3C: xsl Transformations (xslt). Ver-
sion 2.0. w3c Recommendation. Edited by
Michael H. Kay. January 2007. http://www.
w3.org/TR/2007/WD-xslt20-20070123.

[19] Norman Walsh and Leonard Muellner: Doc-
Book: The Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1009

