
Generating Tests from B Specifications and Test

Purposes⋆

J. Julliand, P.-A. Masson and R. Tissot

LIFC, Université de Franche-Comté
16, route de Gray F-25030 Besançon Cedex France
{julliand, masson, tissot}@lifc.univ-fcomte.fr

Abstract. This paper is about generating tests from test purposes, in
addition to structural tests. We present a method that re-uses a be-
havioural model and an abstract test concretization layer developed for
structural testing, and relies on additional test purposes. We propose,
in the B framework, a process of test generation that uses the symbolic
animation mechanisms of LTG (Leirios Test Generator) based on con-
straint solving, and guided by the test purposes. We build for that a
B animable model that is the synchronized product of a behavioural B
abstract model and a test purpose described as a labelled transition sys-
tem. We prove the correctness of this method, and illustrate it by means
of the IAS case study. IAS is a smart-card application dedicated to the
operations of Identification, Authentication and electronic Signature.
Keywords: Model-Based Testing, Test Purpose, IAS Case Study.

1 Introduction

B models are well suited for producing tests of an implementation by means of a
model based testing approach [UL06]. This approach proceeds by writing a formal
behavioural model (M) of the expected functionalities of a system. This model is
an abstraction of any real implementation, and is supposed to provide a reliable
view of the implementation under test (IUT). By applying selection criteria, a
test generation tool can automatically extract tests from the model. These tests
are particular “executions” of the model. They are sequences of operation calls of
the model, with the values of their parameters and their results as predicted by
the model. The tests are abstract since they have the same level of abstraction as
the model. They are concretized to execute them on the IUT by a concretization
layer (CL). Comparing the results returned by the IUT with the ones predicted
by the model allows delivering a verdict of the tests.

Structural testing uses static (syntactic) selection criteria, essentially provid-
ing control flow and data coverage of the model. The tests exercise the func-
tionalities of the system by directly activating and covering the corresponding
operations. Industrial studies have proven the efficiency of the method to de-
tect faults in an implementation (see for example [EFHP02, BLLP04]). Writing

⋆ Research partially funded by the French National Research Agency ANR (POSE
ANR-05-RNTL-01001) and the Région Franche-Comté.

M and CL is an important effort, but the cost is justified by the possibility to
automatically compute a great number of smart test cases. Nevertheless, static
selection criteria appear to be insufficient to exercise the IUT in tortuous situ-
ations. We think for example of some elaborate scenarios of attack of systems
requiring strong security guarantees. Our objective is to benefit from M and CL

to compute some additional tests that use a particular scenario as a selection
criterion.

The scenario can be described by means of a test purpose (TP), which we
consider as a dynamic (semantic) selection criteria that orchestrates the succes-
sive calls of the operations of the model. The tests extracted from the model by
means of a test purpose are sequences of operation calls corresponding to the
scenario.

The context of this work is the test generation from B models. We use
LTG [JL07], the test generator from Leirios1, to automatically extract abstract
tests from the model. LTG uses a constraint solver for computing the tests. LTG
produces structural tests by applying a static criterion to cover all the paths
of the control structure of every operation. Moreover, it is possible to assist
the generation of tests by providing LTG with sequences of operation calls that
describe the shape of the expected tests.

Our main contribution in this paper is to define in the B framework a process
that uses LTG for generating abstract tests, with a dynamic selection criterion
provided in the shape of a sequence of operations to LTG.

We give in Sec. 2 some preliminary definitions to our work. We present in
Sec. 3 our process for computing and executing tests from a B model and a
test purpose. Section 4 describes how to combine a behavioural model and a
test purpose to obtain a B model for the test generation. We present the IAS
case study and our experimentation in Sec. 5. We conclude and compare our
proposition to related works in Sec. 6.

2 Preliminaries

This section gives the background of the paper. First, we give in Sect. 2.1 general
notions about B abstract machines. We define the notions of B trace and B
execution. We also define the restrictions due to the targeted application class
and to the context of test generation. Section 2.2 defines a test purpose as a
special kind of labelled transition system. It also presents the notions of TP

trace and TP execution associated to the test purpose. The notion of trace is
used to guide the test generation tool LTG that computes several executions for
each trace.

2.1 B Abstract Machines

First introduced by J.-R. Abrial [Abr96], a B abstract machine defines an
open specification of a system by a set of operations. Intuitively, an operation

1 http://www.leirios.com

has a precondition and modifies the internal state variables by a generalized
substitution. An operation is provided with a list of parameters and can return
results.

We address a particular class of specifications of reactive systems. Our specifi-
cations are defensive, i.e. we assume that an operation terminates if it is invoked
with well typed parameters. That means that we consider environments that
respect a contract: they always call the operations with well typed parameter
values. We also assume that any operation returns a status word that codifies a
report of its execution. Therefore in the remainder of the paper, operations are
defined as in Def. 1.

For defining a B abstract machine, we need to remind the reader of the
notions of B predicates and B generalized substitutions. B predicates on a set
of variables x are denoted by P (x), R(x), I(x), T (x), . . . In the remainder of
this paper, the predicate I(x) denotes an invariant and T (p) denotes a typing
predicate on the parameter variables p. When there is no ambiguity on x, we
simply denote the predicates by P , R, I, . . . We denote by S the B generalized
substitutions and by E, F , . . . the B expressions. Given a substitution S and a
post-condition R we are able to compute the weakest precondition P , such that
if P is satisfied, then R is satisfied after the execution of S. The weakest precon-
dition, defined in [Abr96], is denoted by [S]R. We denote by 〈S〉R the expression
¬[S]¬R, intuitively meaning that if 〈S〉R is satisfied, then a computation of S

exists terminating in a state satisfying R. Given a B substitution S, a particular
predicate denoted by prdx(S) defines the relation between the values of the state
variables x before the execution of S and the values of the state variable x′ after
the execution of S. prdx(S) is the pre-post predicate of S. It is defined in Def. 2.
A B abstract machine is defined as in Def. 3.

Definition 1 (Operation). Let Si be a substitution. Let swi be a status word
and pi be a list of parameter names. Let Ti(pi) be a typing predicate on pi. An
operation named opi is defined as swi ← opi(pi) = PRE Ti(pi) THEN Si END.

Definition 2 (prdx). Let S be a substitution. The predicate prdx(S) is defined
as prdx(S) = 〈S〉(x = x′).

Definition 3 (B Abstract Machine). A B abstract machine M is a tuple
〈x, I, Init, OP 〉 where

– x is a set of state variables,
– I is an invariant predicate over x,
– Init is a substitution called initialization,
– OP is a set of operation definitions as in Def. 1.

We denote as XM (where X ∈ {x, I, Init, OP}) a component of the B model
M. If there is no ambiguity on the model that is considered, we simply denote
it by X . A model M defines a set AM of operation names and a set PredM of B
predicates over the state variables x of M.

The test cases are finite executions. We first define the notion of B trace
of a B abstract machine in Def. 4. Intuitively, a B trace is a finite sequence of
operation names starting after the initialization.

Definition 4 (B Trace). Let M = 〈x, I, Init, OP 〉 be a B abstract machine. A
trace is a finite sequence τM = Init; op1; op2; . . . ; opn where opi is the name of an
operation (∈ AM) defined in OP as in Def. 1.

Several executions can be associated to a B trace because, for any operation
opi, there are possibly several parameter values vi of pi that satisfy the typing
predicate Ti(pi). As can be seen in Def. 5, an execution is an instance of a B
trace with parameter values for every operation call that satisfy the precondition
Ti(pi).

Definition 5 (B Execution). Let M = 〈x, I, Init, OP 〉 be a B abstract ma-
chine. Let τM = Init; op1; op2; . . . ; opn be a trace of M. σM = (op1(v1), w1);
(op2(v2), w2); . . . ; (opn(vn), wn) is an execution associated to τM, denoted by σM ∈
ExecB(M, τM), if there is a sequence of state variable values u0; u1; u2; . . . ; un,
a sequence of status words w1; w2; . . . ; wn and a sequence of parameter values
v1; v2; . . . ; vn such that

– [x′ := u0]prdx(Init),
– for any i ∈ 1..n: [pi := vi]Ti(pi) ∧ [x, x′, swi, pi := ui−1, ui, wi, vi]prdx(Si).

Since we assume our specifications to be defensive, there is at least one exe-
cution associated to a B trace if Ti(pi) is a satisfiable typing predicate. Thanks
to that, we assume that the executions respect the contract, i.e. the environment
(simulated by the test generator) always calls the operations with well-typed pa-
rameter values. In other words, the typing precondition is interpreted as a guard
in B event systems, in such a way that the test generator chooses parameter
values that satisfy the guard, i. e. the typing predicate Ti(pi). Moreover, the
operation call opi(vi) from the state ui−1 gives the new state variable values ui

and returns the status word wi. ui−1, ui, wi and vi satisfy the pre-post predicate
of Si.

2.2 Test Purpose

We have defined in [JMT08] a language for describing test purposes, that com-
bines operation calls and target state descriptions. Its semantics is given as a
labelled transition system as in Def. 6. A test purpose TP is bound to a B
abstract machine M that is the specification of the system under test. We say
that TP is defined on M. We give a unique name to any transition in a set
T = {t1, t2, . . . , tn}. The binding between TP and M is such that the transi-
tions of TP are labelled by the names of the operations of M in AM, and a state
predicate of PredM on the variables x of M is associated to any state of TP.

Definition 6 (Test Purpose). A test purpose on a model M is a tuple 〈Q, q0,

T, λ, Qf〉 where Q is a finite set of states, q0 ∈ Q is the initial state, Qf ⊆ Q is
the set of terminating states, T ∈ T → Q×AM×Q is a finite set of named and

labelled transitions denoted by ti 7−→ qi−1
opi

→ qi, and λ ∈ Q→ PredM is a total
function that associates a state predicate, denoted by λ(qi), to every state.

A test purpose TP defines a set of finite traces that represents a set of sym-
bolic test cases. We call each trace a TP trace (see Def. 7). A TP trace is that
of a finite sequence of transitions that must be well formed w.r.t. the transi-
tion relation of TP. These symbolic test cases must be instantiated as test cases
(non symbolic), called TP executions (see Def. 8) by a symbolic animator from
a behavioural model M and some coverage criteria. In Def. 8, an execution is a
finite sequence of pairs made of an operation call provided with the values of its
parameters, and the expected status word value returned by the operation call.

The executions are easy to compute by a test generator when the TP traces
are sequences of operations whose names have all been instantiated. Backtracking
may be necessary to satisfy the constraints set by the predicates for the states
to reach, and the enabling conditions of the operations.

Definition 7 (TP Trace). A finite sequence of transitions τTP = t1; t2; . . . ; tn
is a trace of a test purpose TP if there are qi ∈ Q and opi ∈ AM, 0 < i ≤ n, such

that for any i ∈ 1..n, ti 7−→ qi−1
opi

→ qi ∈ T and qn ∈ Qf .

Given a trace τTP, there are zero or many executions of τTP on the B abstract
machine on which TP is defined.

Definition 8 (TP Execution). Let M = 〈x, I, Init, OP 〉 be a B abstract ma-
chine. Let τTP = t1; t2; . . . ; tn be a trace of a test purpose TP = 〈Q, q0, T, λ, Qf 〉
defined on M. σTP = (t1(v1), w1); (t2(v2), w2); . . . ; (tn(vn), wn) is an execution
associated to τTP, denoted by σTP ∈ ExecTP(M, τTP), if there are a sequence
of state values of TP q0; q1; q2; . . . ; qn, a sequence of state variable values of M

u0; u1; u2; . . . ; un, a sequence of status words values w1; w2; . . . ; wn and a se-
quence of parameter values v1; v2; . . . ; vn such that:

– [x′ := u0]prdx(Init),

– for any i ∈ 1..n: ti 7−→ qi−1
opi

→ qi ∈ T ,
– for any i ∈ 1..n: [pi := vi]Ti(pi) ∧ [x, x′, swi, pi := ui−1, ui, wi, vi]prdx(Si) ∧

[x := ui]λ(qi).

As for the B executions, several TP executions can be associated to a TP

trace for the same reasons. But in the TP executions, every operation call
opi(vi) must moreover lead to a state that satisfies the target state predicate
λ(qi) which is associated to the target state qi of the test purpose. For that, in
Def. 8, we have added the following condition for any i: [x := ui]λ(qi). Conse-
quently, it is also possible that no execution is associated to a TP trace if there
is no sequence u1; u2; . . . ; un of state variable values that satisfy the sequence
λ(q1), λ(q2), . . . , λ(qn) of target state properties.

3 Process of Property Based Testing

Our process for generating tests uses a test purpose as selection criterion and a
B behavioural model as oracle.

Fig. 1. Process for Generating and Executing Tests from a B model and a Test Purpose

The complete process is described by Fig. 1. The left part of Fig. 1 shows
how the set of abstract test cases is first computed, whereas the right part shows
how these tests are finally executed on the IUT and the verdict is delivered.

Computing the abstract test cases is obtained by a symbolic animation of
the TP traces on a B machine MTP that is the synchronized product between
the B model M and the test purpose TP. The synchronized product between M

and TP is computed according to the expression in B that is given in Sec. 4. The
result is a B machine MTP whose executions are the possible executions from
M that conform to TP. Besides, TP is unfolded as a finite set of TP traces (see
Def. 7) τTP, i.e. as sequences of transition names (each one labelled with an un-
parameterized operation call) defined according to TP, but without the target
states. This set computes all the TP traces whose last state is terminating, and
whose length is lower or equal to a maximum length defined by the tester.

We use LTG, the test generator from Leirios, to instantiate the TP traces.
LTG proceeds by symbolic animation. Notice that any other tool with similar
capabilities could be used for that purpose. The principle is to “guess” values for
the parameters of the operations that make it possible to execute the sequence
of operations as described by a particular trace τTP of the test purpose. In other
words, TP executions are computed from τTP and MTP. The parameter values
are computed in LTG by a constraint solver, that finds some values that make
the sequences of operations of τTP reach the target states given in the TP. No
execution is computed when the target states are impossible to reach. The status
words are also computed as expected by MTP for these parameters. Additionally,
from one TP trace τTP, LTG will try to compute a different TP execution for
each of the behaviours of the last operation of τTP: every branch of an operation
described as a control structure (such as a conditional structure) is called a
behaviour of the operation.

The tests computed by this procedure have the abstraction level of the model
M of the system. They can not be executed as such on the IUT. They have to
be concretized by the concretization layer CL which converts the instantiated
operation calls of the TP execution into a script executable on the IUT. This
computes a set of concrete tests. These concrete tests can then be executed
on the IUT, from which the output values (the status words) are observed. The
concretization layer also gives the correspondence between the status words from
the IUT and the ones from the model. This allows delivering the verdict of the
test by comparing the values really returned by the IUT with the ones predicted
by the model.

4 Combining a Model and a Test Purpose for Security

Test Generation

In Fig. 2, we define how to express in B the synchronized product MTP of a
behavioural model M described as a B abstract machine, and a test purpose
TP on M. MTP includes the abstract machine M so that it can read the state
variables x of M, and it can synchronize any transition t of TP with a call to
an operation of M labelled by t. The variable Cq represents the current state
reached by the last transition executed in the test purpose TP. The initial state

is q0. For any transition ti (such that T (ti) = qi−1
opi

→ qi), we define an operation
also called ti in MTP. Its parameter values must satisfy the typing predicate
Ti(pi) of the operation opi that is called. This operation is enabled if the current
state is qi−1 and if there are state variable values x′ and a status word value
sw′

i after ti that satisfy the pre-post predicate of the body of the operation opi

and the target state predicate of the test purpose λ(qi). When these conditions
hold, the operation ti calls the operation of the test purpose opi and places the
system in the target state qi of the test purpose.

Theorem 1 establishes the soundness of the method. For a TP trace τTP =
t1; t2; . . . ; tn (see Def. 7), any B execution (see Def. 5) of the B composed abstract
machine MTP for the B trace τMTP

= InitMTP
; t1; t2; . . . ; tn is a TP execution (see

Def. 8) of τTP on the abstract machine M. Theorem 2 establishes the method
completeness.

Theorem 1 (Soundness). Let MTP be the B composition of a B model M and
a test purpose TP on M as in Fig. 2, and let τTP be a TP trace then,

ExecB(MTP, InitMTP
; τTP) ⊆ ExecTP(M, τTP).

Proof. The proof relies on the fact that, the difference between the B executions
of the model M and the TP executions of M, is that, the target predicate λ(qi)
holds in every target state qi of the TP execution. This condition is also satis-
fied in the B execution of MTP since we add this condition in the guard of its
operations ti (see Fig. 2). Moreover, it is obvious that the B executions of MTP

and the TP executions of M compute the same sequence of states as TP, and
execute the same sequence of operation calls as M.

MACHINE M
VARIABLES x
INVARIANT I
INITIALISATION Init
OPERATIONS

. . .
swi ← opi(pi) =

PRE Ti(pi) THEN Si END
. . .

END

MACHINE MTP

INCLUDES M
SETS Q = {q0, . . . , qn}
VARIABLES Cq
INVARIANT Cq ∈ Q

/* Cq : current state of TP */
INITIALISATION Cq := q0

OPERATIONS
/* for any ti 7−→ qi−1

opi→ qi ∈ T */
/* we define an operation ti s.t. */
. . .
swi ← ti(pi) =
PRE Ti(pi) THEN

SELECT Cq = qi−1 ∧ ∃(x
′, sw′

i) ·
(prdx(Si) ∧ [x := x′]λ(qi))

THEN swi ← opi(pi) || Cq := qi

END
END;
. . .

END

Fig. 2. Combination of a model M and a test purpose TP on M

Theorem 2 (Completeness). Given a B composition MTP of a B model M, a
test purpose TP on M and a TP trace τTP,

ExecTP(M, τTP) ⊆ ExecB(MTP, InitMTP
; τTP).

The proof is straightforward.
Our implementation with LTG computes the B execution of MTP with the

semantics given in Def. 5. It is sound, but not complete because the constraint
solving algorithm is time limited.

5 Case Study

5.1 IAS case study

This work was done in the framework of the RNTL POSE project, that brings
together industrial (GEMALTO, LEIRIOS, SILICOMP/AQL) and academic
(LIFC/INRIA CASSIS project, LIG) partners. The problem is the validation
of a system conformity to its security policy, especially for smart cards.

Experiments have been made with a real size industrial application, the IAS
platform. Prior to the project, a behavioural model in B had been written by
the LIFC and Leirios, from which structural tests had been computed and ex-
ecuted on an IAS implementation by Gemalto. We have extended these tests
with security ones.

IAS is a standard for Smart Cards developed as a common platform for e-
Administration in France, and specified in [GIX04] by GIXEL. IAS provides

services to the other applications running on the card. IAS conforms to the
ISO 7816 standard.

The file system of IAS is illustrated with an example in Fig. 3. Files in IAS
are either Elementary Files (EF), or Directory Files (DF), e.g. file 01 and
file 02 in Fig. 3. The file system is organized as a tree structure whose root is
designed as MF (Master File).

The Security Data Objects (SDO) are objects of an application that contain
highly sensitive data such as PIN codes (e.g. pin2 in Fig. 3) or cryptographic
keys, that can be used to restrict the access to some of the application data.

DF: file_02

DF: file_01

MF: (root)

PIN: pin2

DF: file_03

EF: file_04KEY: key1

Fig. 3. A sample IAS tree structure

The access to an object by an operation in IAS is protected by security rules
based on security attributes. The access rules can possibly be expressed as a
conjunction of elementary access conditions, such as Never (which is the rule
by default, stating that the command can never access the object), Always (the
command can always access the object), or User (user authentication: the user
must be authenticated by means of a PIN code).

Let us present the variables of the model that we use in an example of a test
purpose given in Sec. 5.2. Let X ID be a set of X identifiers, where X is either DF,
PIN, OBJ or SDO. The variable current DF (∈ DF ID) stores the current selected
DF. The variable pin2 dfParent (∈ PIN ID 7→ DF ID) associates to a PIN the
DF where it is located. The variable rule 2 obj (∈ SDO ID ∪ {always, never}↔
OBJ ID) associates to a SDO the object that it protects. If the object is always
(resp. never) accessible, then the SDO is replaced by the value always (resp.
never). The variable pin authenticated 2 df (∈ PIN ID ↔ DF ID) associates
to a PIN the DF where the PIN is authenticated.

Consider for example the data structure shown in Fig. 3. pin2 7→ file 01 ∈
pin2 dfParent means that the PIN object pin2 is located in the DF file 01.
pin2 7→ file 02 ∈ rule 2 obj means that the access to the DF file 02 is
protected by a user authentication over the SDO pin2. If pin2 7→ file 02

∈ pin authenticated 2 df, then the access to the DF file 02 is authorized,
otherwise it is forbidden.

For creating objects, the commands are CREATE FILE DF, PUT DATA OBJ PIN -

CREATE, ... For navigating, they are SELECT FILE DF PARENT, SELECT FILE DF -

CHILD, ... For setting the values of attributes, they are RESET RETRY COUNTER,

CHANGE REFERENCE DATA, VERIFY, ... For changing the life cycle state of objects,
they are DEACTIVATE FILE, ACTIVATE FILE, TERMINATE FILE,...

5.2 Test Purpose Example

Here, we exhibit one of the test purposes written for the experimentation of our
approach. The property to be tested is “to access an object protected by a PIN
code, the PIN must be authenticated”. We associate with this property a test
purpose that causes the loss of the PIN authentication in all possible ways, and
then tries to access the object.

. (VERIFY | CHANGE REFERENCE DATA
| (RESET . SELECT FILE DF CHILD) | RESET RETRY COUNTER
| (SELECT FILE DF PARENT . SELECT FILE DF CHILD))

 (current DF = file 01 ∧ file 01 /∈ pin authenticated 2 df[{pin2}])
. SELECT FILE DF CHILD (current DF = file 02)
.[CREATE FILE DF | DELETE FILE | ACTIVATE FILE | DEACTIVATE FILE
| TERMINATE FILE DF | PUT DATA OBJ PIN CREATE]

Fig. 4. Example of a test purpose — execution step

This test purpose is instantiated on the example of Fig. 3, for which we
imagine that the access to the DF file 02 is protected by an authentication over
the PIN pin2. The tester can describe this test purpose by regular expressions,
as illustrated in Fig. 4. They are easily translated into the automaton shown in
Fig. 5. The state properties in the states s1 to s7 are defined as B predicates over
the state variables of the B model M, as in Fig. 4. The transitions from the state
s0 to the state s4 aim at building the data structure surrounded by a dashed line
in Fig. 3. The first transition creates a new DF (file 01). The second creates
a PIN object (pin2) into the DF file 01, and gains an authentication over it.
The third transition creates the DF file 02 into the DF file 01. The fourth
transition resets the current DF to file 01, in order to start the core of the
test. As a result, the DF file 02 is protected by the PIN pin2 (located in the
DF file 01) for all possible access commands. The PIN pin2 is authenticated.

The following transitions translate the regular expression in Fig. 4, and show
the core testing stage, describing the testing of the security property in three
steps. First, the transitions between s4 and s5 describe all the possible ways
for losing the authentication (for instance, a failure of the VERIFY command or
a reset of the retry counter) over the PIN pin2. The transition from s5 to s6

selects the DF file 02. Finally, the transitions between s6 and s7 describe the
application of the access commands inside the DF file 02 to test the access
conditions. The state s7 is the terminating state.

5.3 Experimentation and results

In this part, we give the results of an experimentation done with the B model of
IAS which is 15500 lines long. The complete IAS commands have been modelled
as a set of 60 B operations.

We first discuss what knowledge of the model is required to write the test
purposes, and then we present our experimental results.

s0 s1 s2

s3

s4 s5

s6s7

CREATE FILE DF PUT DATA OBJ PIN CREATE . VERIFY

CREATE FILE DFSELECT FILE DF PARENT

VERIFY

CHANGE REFERENCE DATA

RESET . SELECT FILE DF CHILD

SELECT FILE DF PARENT . SELECT FILE DF CHILD

RESET RETRY COUNTER

SELECT FILE DF CHILD
CREATE FILE DF

DELETE FILE

ACTIVATE FILE

PUT DATA OBJ PIN CREATE

DEACTIVATE FILE

TERMINATE FILE DF

Fig. 5. Example of a test purpose

Designing test purposes The description language is based upon regular
expressions, which makes it easy to use. But designing a test purpose requires
some knowledge of the model. The tester must know the names of the different
operations of the model, and of the state variables and constants to describe
the states to reach. Moreover, he must choose the right behavioural level for
the description of the test purposes, to ensure good performances of the test
generation. For example, inserting a state to reach between two operation calls
allows reducing the search space, but requires searching which conditions ensure
the execution of the second operation without reducing its reachable behaviours.

Experimentations We have experimented with three different test purposes,
which gave a total of 183 tests that have been run on the IAS implementation.
The test purpose example shown in Fig. 5 gave 30 test TP traces, which have
produced 35 TP executions. This is because sometimes there are several possible
behaviours to cover in the last operation of the TP trace.

The two other test purposes were for testing possible bad interpretations of
the access conditions due to a mechanism of short references to the security
objects, and the effects of life cycle changes on the authentication of a PIN. In
these various test campaigns, we have successfully instantiated every TP trace,
except when they contained unreachable states (w.r.t. the constraints on the
operations sequencing). Furthermore, we have begun an experimentation to test
the POSIX compliance of a file system. We have already generated 250 test
sequences (from 5 test purposes) for this case study. By now, these sequences
are able to test non-trivial executions of the system with basic operations.

Experimental results The tests that we have generated are not redundant
w.r.t. the tests computed with static coverage criteria like behaviour coverage.
This is because the test purposes force the test generator to reach some given
states or to apply some operation sequences, which would not have been neces-
sarily reached or covered otherwise. These tests address some situations which

have been identified as potential vulnerabilities, and which were not addressed
by the previously generated structural tests.

We illustrate the difference between tests based on a test purpose and struc-
tural tests through the example of the aforementioned property: the access to
DF file 02 is protected by PIN code pin2. The automaton associated to the
TP that we have considered for this property is shown in Fig. 5. Let us imagine
the same kind of automaton, but for a structural test related to this property.
Structural testing will exercise the property in two ways: by gaining an authen-
tication over pin2 and successfully accessing file 02, or by not gaining the
authentication and thus failing to access file 02. The simplest (and shortest)
way not to gain the authentication is by not calling the VERIFY command: this
is what LTG does for this example.

s0 s1 s2

s3s4

CREATE FILE DF PUT DATA OBJ PIN CREATE · VERIFYOK

CREATE FILE DF

CREATE FILE DFOK

DELETE FILEOK

ACTIVATE FILEOK

PUT DATA OBJ PIN CREATEOK

DEACTIVATE FILEOK

TERMINATE FILE DFOK

Fig. 6. Structural testing for an authorized access

s0 s1 s2

s3s4

CREATE FILE DF PUT DATA OBJ PIN CREATE

CREATE FILE DF

CREATE FILE DF
¬OK

DELETE FILE
¬OK

ACTIVATE FILE
¬OK

PUT DATA OBJ PIN CREATE
¬OK

DEACTIVATE FILE
¬OK

TERMINATE FILE DF
¬OK

Fig. 7. Structural testing for an access denial

The automata for these two cases are respectively given in Fig. 6 and Fig. 7.
In these two automata, the initialization stage is (almost) identical to the au-
tomaton for the TP, because we want to compare the tests based on the same
data structure. In comparison to Fig. 5, the only difference is about the VERIFY

command that is given with its expected result (denoted by the subscript OK) in
Fig. 6, and absent from Fig. 7.

Then the core testing stage only consists of trying to access file 02, which
is always refused, as denoted by the subscript ¬OK in Fig. 7, and always allowed
in Fig. 6 (in Fig. 5, the expected result of every access command should be ¬OK).

The value-added of the tests from the TP is to force the coupling between
a successful authentication and (later) an access denial. In other words, two
operation behaviours are coupled in the same execution, whereas they were not
tested together with structural testing.

Another advantage of using test purposes is that they are issued from a po-
tential vulnerability, to which the tests computed can be linked. This traceability
is more difficult to obtain for structural tests.

6 Conclusion and Future work

We have presented in the B framework a method for generating tests from test
purposes in a behavioural model based testing context. The tests generated are
additional w.r.t. the structural ones [BLLP04, SLB05]. The method has been
validated on a real-size industrial application. The method makes use of already
existing material, written for model based structural testing: the behavioural
model and the concretization layer. Additionally, test purposes are written to
describe how to test behavioural properties.

The method easily ensures the traceability of the tests generated to the orig-
inal test purpose, since the tests are computed from them. Also, with the trace-
ability mechanism for functional test generation that we use, we know which
operation behaviours have been covered.

Many other works use test purposes as selection criteria to extract tests from
a model. The test purposes are described by temporal properties in a temporal
logic, input output Labelled (Symbolic) Transition Systems ioLTS (ioSTS), or
use cases.

By exploiting its ability to produce counter-examples, a model-checker can
be used to compute tests from temporal properties [ADX01]. These techniques
are restricted to finite systems. The TGV approach [CJMR07, JJ05], uses ex-
plicit test purposes to extract tests from specifications, both given as ioLTS or
ioSTS [JJRZ05]. Our approach also addresses infinite systems, like ioSTS. ioSTS
are specifications where the data are integers and booleans, whereas the B mod-
els define more complex set data structures. So, our approach is based on set
constraint solving techniques whereas ioSTS use integer abstract interpretation
and constraint solving techniques.

In [SML06], the authors present a test case generation algorithm from B event
systems and use cases by refinement. There are three main differences with our
approach. Our method reuse abstract B machines and a concretization layer CL

dedicated to the functional test generation. Therefore we do not refine the test
cases. Moreover, our test purposes are more expressive use cases that contain
target state information.

Also, as a difference with the above cited approaches, we have showed in a
previous work [MJP+07] how the test purposes can be automatically computed,
by modelling some test needs as syntactic transformation rules that transform
behavioural properties.

We are currently working at identifying and writing such transformation
rules, based on the IAS case study. This work needs to be developed by studying
many other case studies (for instance, the mini-challenge that proposes to design
and verify a POSIX compliant flash-based system [JH07]) in order to produce
rules sufficiently generic to be applicable to a variety of examples.

Rules could also be automatically deduced from the syntactic expression of a
property, as suggested by [BDGJ06] for properties expressed in JTPL, a temporal
logic for JML.

References

[Abr96] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[ADX01] P. Amman, W. Ding, and D. Xu. Using a model checker to test safety
properties. In ICECCS’01. IEEE Computer Society, 2001.

[BDGJ06] F. Bouquet, F. Dadeau, J. Groslambert, and J. Julliand. Safety property
driven test generation from JML specifications. In FATES/RV’06, volume
4262 of LNCS, pages 225–239. Springer, 2006.

[BLLP04] E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test se-
quences from formal specifications: GSM 11-11 standard case study. Soft-
ware: Practice and Experience, 34(10):915–948, 2004.

[CJMR07] C. Constant, T. Jéron, H. Marchand, and V. Rusu. Integrating formal ver-
ification and conformance testing for reactive systems. IEEE Transactions
on Software Engineering, 33(8):558–574, August 2007.

[EFHP02] E. E. Farchi, A. Hartman, and S. S. Pinter. Using a model-based test gener-
ator to test for standard conformance. IBM Systems Journal, 41(1):89–110,
2002.

[GIX04] GIXEL. Common IAS Platform for eAdministration, Technical Specifica-
tions, 1.01 Premium edition, 2004. http://www.gixel.fr.

[JH07] R. Joshi and G. Holzmann. A mini challenge: build a verifiable filesystem.
Formal Aspects of Computing, 19(2):269–272, June 2007.

[JJ05] C. Jard and T. Jéron. TGV: theory, principles and algorithms. Software
Tools for Technology Transfert, 7(1), 2005.

[JJRZ05] T. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection
based on approximate analysis. In TACAS’05, volume 3440 of LNCS, pages
349–364. Springer, 2005.

[JL07] E. Jaffuel and B. Legeard. LEIRIOS Test Generator: Automated test
generation from B models. In B’2007, volume 4355 of LNCS, pages 277–
280. Springer, 2007.

[JMT08] J. Julliand, P.-A. Masson, and R. Tissot. Generating security tests in
addition to functional tests. In AST’08. ACM Press, May 2008.

[MJP+07] P.-A. Masson, J. Julliand, J.-C. Plessis, E. Jaffuel, and G. Debois. Auto-
matic generation of model based tests for a class of security properties. In
A-MOST’07, pages 12–22. ACM Press, 2007.

[SLB05] M. Satpathy, M. Leuschel, and M. Butler. ProTest: An automatic test
environment for B specifications. In MBT’04, volume 111 of ENTCS, pages
113–136, 2005.

[SML06] M. Satpathy, Q.-A. Malik, and J. Lilius. Synthesis of scenario based test
cases from B models. In FATES/RV’06, volume 4262 of LNCS, pages
133–149. Springer, 2006.

[UL06] M. Utting and B. Legeard. Practical Model-Based Testing - A tools ap-
proach. Elsevier Science, 2006.

