
Fault Tolerance Technique Using Bidirectional
Hetero-Associative Memory for Self-Reconfigurable

Programmable Matter
Abdallah Makhoul and Jad Bassil

University of Franche-Comté
FEMTO-ST Institute, CNRS, Montbéliard, France

{first}.{last}@femto-st.fr

Abstract—Programmable Matter (PM) based on modular
robots is a material which can be reprogrammed to have different
shapes and to change its physical properties on demand. It can be
deployed in several domains and has a variety of applications in
construction, surgery, environmental science, space exploration,
etc. PM is composed of a big number of limited resources
connected robots called modules or particles to form its shape.
These modules communicate with each other and move around
each other dynamically in order to switch from one configuration
to another. Due to the limited resources of modules and the
high number of packets that transit within the system, it is very
challenging to ensure packet delivery with high reliability. In this
paper, we are using a Bidirectional Hetero-Associative Memory
(BHAM) networks to improve the reliability and fault tolerance
in PM. The idea is to let modules sending packets with smaller
size without loosing any information. Furthermore, this model is
also capable to remove noise from received packets. The proposed
approach is tested on a real programmable matter blinky blocks
platform as well as via simulations. We studied two versions
of artificial neural networks based on storage capacity. The
experimental results show that the studied approach is efficient
in reducing the size of packets that transit in the system thus
reducing energy consumption and it is capable to detect and
remove noise and correct noisy packets.

Index Terms—Modular robots, programmable matter, artificial
neural networks, reliability, energy saving

I. INTRODUCTION

The vision for programmable matter (PM) [1] is to create a
material which can be reprogrammed to have different shapes
and to change its physical properties. PM could be deployed
in different domains while promising to have a variety of
applications in construction, surgery, environmental science,
space exploration, etc. For example, imagine a material that
has been pre-programmed so that it can transform itself
in complicated ways in response to environmental events.
Examples of exciting future applications are robotic ensembles
monitoring hostile environments (e.g., nuclear), delivering
drugs in the human body, educational robots and a new set
of robotic toys [1], [2].

There are various ways to implement programmable matter.
One is to build it as a huge modular self-reconfigurable
robot composed of a large set of independent micro-robots
connected to each other. The connections to one another
form the overall shape of the system and called modular
robot. These micro-robots can have different forms (spherical,

cubic, etc.). Beyond sensing, processing and communication
capabilities, a modular robot includes actuation and motion
capabilities that allow it to reconfigure its shape by rearranging
connections between modules [3] [4]. They must be able to
stick to each other and move around their neighbours. Hence,
the main task of a modular robots system is to reconfigure
its shape in order to accommodate for variable conditions
that need to be met in order to complete a given final goal.
For example, one can program the robots so that, starting
from an initial configuration without any holes, they can self-
reconfigure into a line containing all the robots, without ever
breaking the connectivity of the system [4], [5]. In figure 1
we show the self-reconfiguration of modular robots from the
initial shape to the goal which is done in a distributed manner.

Fig. 1. An example of self-reconfiguration of Modular Robots.

Modular robotic systems are distributed systems composed
of several thousands of particles or modules with low compu-
tational and energy resources. Furthermore, the connections
between modules are made via connectors that maintain
connections between them while exerting shear forces. As it
turns out, the strength of the connectors directly influences
the robustness of the structure of the system and may lead
to a noisy data transmission. Therefore, one of the main
challenges in this system is to detect faulty packets while
minimizing energy consumption. Saving energy in a modular
robot can be made by two ways, the first one by reducing
the number of movements when it changes its shape from an
initial configuration to a final configuration [6]. The second
one is to reduce the size of the packets/data transmitted in the
system [7]. On the other hand, due to the connector fragility
and the system dynamics, a packet may not be successfully
transmitted to the destination and this can lead to several
dysfunctions.



In this paper, an artificial neural network model is pro-
posed based on Bidirectional Hetero-Associative Memory
(BHAM) [8] learning model allowing a modular robot system
to correct erroneous packets and send packets with less size.
The idea is that the modules send packets with small size
to save energy. Then, once these packets are received, the
destination node will regenerate the original packets using
the BHAM and the association model. Indeed, the BHAM
is capable of recalling the associations between packets. This
model is tested on a real blinky blocks [9] programmable mat-
ter platform and via simulations. The obtained results showed
the efficiency of the proposed approach in reducing energy
consumption of the modules and detecting and correcting
erroneous packets.

In the literature several compression methods with error
detection have been proposed to low resource networks (e.g.
Wireless sensor networks) [10], [11], [12], [13], [14]. Unfor-
tunately, these compression techniques still very complex, re-
quire high processing capabilities and need additional commu-
nication for programmable matter based modular robots with
very low computational resources. Therefore, in this paper we
propose a new technique dedicated to PM based Bidirectional
Hetero-Associative Memory with low complexity.

The reminder of this paper is organized as follows. Sec-
tion II presents a background about Bidirectional Hetero-
Associative Memory Networks. In Section III the methodology
of using BHAM for programmable matter and modular robots
is presented. Section IV is dedicated to experimental and
simulation results. Section V concludes the paper and gives
some directions for future work.

II. BIDIRECTIONAL HETERO-ASSOCIATIVE MEMORY
(BHAM) NETWORK

Bidirectional Hetero-Associative Memory (BHAM) [15],
[8] is a supervised neural network model with the ability to
memorize the associations between input and output patterns
without need of continuous learning. These associations will
be stored only once and recalled by the BHAM for pat-
terns recognition. These networks are called hetero-associative
memory, where for a given input pattern, it returns another
output pattern of a different size. This property is very useful
for programmable matter (PM) where the objective is to reduce
the size of the transmitted packets. The main objective of this
work is to retrieve a packet (pattern) given a packet with less
size and even noisy packets.

The architecture of a BHAM is presented in Figure 2. The
idea is to use this network in order to encode the associations
between two sets of vectors A and B. It is a bidirectional
network, in other terms if the input is a vector of the Set A
with dimension n then the network recalls the corresponding
vector of dimension m in the Set B ; Similarly, if the input
is a vector of the Set B with dimension m then the network
recalls the corresponding vector of dimension n in the Set A.
In this case we consider m < n.

Fig. 2. BHAM Architecture.

The learning step of BHAM is mainly the computation of a
weight matrix W between the p pairs of patterns. This matrix
is calculated by following Equation 1.

W =

p∑
l=1

XlY
T
l (1)

where, X and Y are bipolar vectors with elements values are
of 1’s or -1’s.

After the calculation of the matrix W , the following equa-
tions will be used in order to recall Yl for corresponding Xl

and recalls Xl for corresponding Yl.

Xl = SGN(WYl) (2)

Yl = SGN(WTXl) (3)

where SGN is a bipolar threshold function similar to the
classical threshold function and defined as follows:

SGN(x) =

{
1 if x ≥ 0

−1 if x < 0
(4)

In this paper we propose to use the BHAM model in order to
construct associations between two sets of packets of different
sizes m and n. The idea is to let a module transmits packets
of size m and the destination module will retrieve the original
packet of size n by recalling the BHAM associations, where
m < n in order to save energy and increase reliability and
fault tolerance.



III. BHAM FOR PROGRAMMABLE MATTER :
METHODOLOGY

There is a set of actions encoded as packets that can be
used in a modular robots. In Figure 3 we give an example of
encoding some actions in PM as bipolar vectors. For example
in a scaffold [4] topology, several actions have been defined in
order to achieve the goal shape (e.g. rotate: asks the modules
to turn around its neighbor, Idle modules: should wait to
be called by other modules, Free Agent: when a module is
called to enter the reconfiguration scene, Coordinators packets:
means that the module is docked in the root position of a tile,
etc.). In this context, we consider that a module in a modular
robot must send a packet from a set P of packets as shown
in 3 where each packet has a size of n bits. To reduce the
energy consumption of the modules, our objective is to reduce
the size of the messages/packets exchanged between modules.
Furthermore, it is more likely to have errors, noise and faulty
packets in packets with larger size. Therefore, one solution is
to reduce the size of the transmitted packets while associating
them to the original large-size packets using the BHAM model.
This ensures the optimisation of the energy consumption and
better fault tolerance and reliability in modular robots and
programmable matter.

Fig. 3. An example of encoding PM actions (packets) into Bipolar 2D-Patterns
Map.

Fig. 4. An example of packets associations.

The BHAM model learns the associations of packets/vectors
in order to associate each packet of size n to a less size
packet of size m as presented in the example of Figure 4.
In this figure we show an example of original packets of size
10 bits that will be replaced by packets of size 5 bits to be
transmitted in the network of modular robots. In a second step,

these vector/packets will be transformed to bi-polar vectors X
and Y as presented in figure 5. In this figure, the BHAM
learns the associations encoded into the two vectors X and Y.
We notice that both, input and output have the same number
of vectors/packets. However, as BHAM is hetero-associative
memory model, the sizes of input and output vectors are
different. In the example of Figure 5 it is shown that the size
of the input packets is 10, while the size of the output packets
is 5.

Fig. 5. Bipolar vector associations using BHAM.

A. Illustrative Example

Let us consider the example presented in Figure 5. Instead
of transmitting the packets P1, P2, and P3 the modules
send their associated packets Pa1, Pa2, and Pa3. Following
Equation 1 the weight matrix W is calculated:

W =



3 1 −1 1 3
1 3 −3 3 1
1 3 −3 3 1
1 3 −3 3 1
3 1 −1 1 3
1 3 −3 3 1
−3 −1 1 −1 −3
−3 −1 1 −1 −3
−3 −1 1 −1 −3
3 1 −1 1 3
1 3 −3 3 1



To retrieve P1 (corresponding bipolar vector X1) from the
transmitted packet Pa1 (corresponding bipolar vector Y1) and
following Equation 2 we compute X1 = SGN(WY1) as
follows:



SGN(



3 1 −1 1 3
1 3 −3 3 1
1 3 −3 3 1
1 3 −3 3 1
3 1 −1 1 3
1 3 −3 3 1
−3 −1 1 −1 −3
−3 −1 1 −1 −3
−3 −1 1 −1 −3
3 1 −1 1 3
1 3 −3 3 1


×


1
1
−1
1
1

) = SGN



9
11
11
11
9
11
−9
−9
9
11


=



1
1
1
1
1
1
−1
−1
1
1


So the corresponding vector/packet X1 is found. The same
operations can be done to find the other associations between
the original and corresponding packets/vectors while recalling
the BHAM network.

B. Recall of faulty packets using BHAM

Let us consider in this example that the packet Pa1 is
received by the modules with errors. Assume that 2 of 5 bits
(the first and third bits in the vector) of the bipolar vector
X1 are distorted due to noise and then the received bipolar
vector at one of the modules of the modular robot for Pa1

is Y
′

1 = ([−1, 1, 1, 1, 1]) instead of ([1, 1,−1, 1, 1]). Then to
retrieve the received packet, we compute the product WY

′

1 as
follows:

SGN(WY
′

1 ) = SGN(W ×


−1
1
1
1
1
1

) = SGN(



1
3
3
3
1
3
−1
−1
1
3


) =



1
1
1
1
1
1
−1
−1
1
1


This result shows that the corresponding packet or vector of

the received noisy vector Y
′

1 is X1. Therefore, if the received
vector is corrupted the BHAM network will be able to recall
and retrieve the correct vector. Furthermore, BHAM networks
are known to be more reliable with fault packets due to missing
bits than of erroneous bits.

C. Size of the associated vectors/packets

In this section, we will discuss how to choose the size m of
the packets/vectors Pai to transmit within the network. Indeed,
the size of these packets will depend on the total number of
different packets (vectors) corresponding to the events that
occur in a modular robots systems (e.g. rotate, idle module,
free agent, coordinator, etc.). Even if the original packet size is
large and the total number of different packets to handle/store
is small then the size of the associated packets Pai will be
small. Let assume the size of the original packet is n (e.g
n > 100 bits) and the number of different packets/events is
p (e.g. 10 events), then the size of the associated packets will
be less or equal to p (e.g. m ≤ 10 bits) and this can ensure
fault tolerance and reliability in the system. In other terms, the
size of the packets to transmit should not exceed the number
of associated pairs of packets.

D. Memory capacity

The memory capacity of a BHAM network is defined as
the minimum between the number of inputs in the first layer
(the size of the original vector or packet) and the number of
output in the second layer (the size of the vector or packet
to be transmitted by the modules). Therefore, the limit of
storage of BHAM is linear with this minimum and then
BHAM can store only a small number of packets [16]. This
can be sufficient in some cases or algorithms dedicated to
Programmable Matter but not in all types of applications.
On the other hand, it has been shown that the exponential
nonlinearity content addressable memory has a high storage
capacity which is exponential with the number of bits and
can ensure a higher error correcting capabilities [17]. The
authors in [17] present a neural network model for the
BHAM with exponential nonlinearity called Exponential
BHAM (eBHAM) in order to have more memory capabilities.
Hence, the eBHAM model has higher capacity for packets
pair or vector pair storage than the BHAM networks. For
the programmable matter applications and depending on
the needs for each application we can use eihter BHAM
as explained before or the eBHAM model. The using of
eBHAM will be explained in the next section.

1) Exponential BHAM (eBHAM) for Programmable Matter:

The eBHAM model can be used in the context of Pro-
grammable Matter. For this, let us consider the example
presented in Figure 5. We consider we have several com-
bination pairs given by {(P1, Pa1), (P2, Pa2), (P3, Pa3),
..., (Pp, Pap)} with their respective bipolar vectors {(X1,
Y1), (X2, Y2), (X3, Y3), ..., (Xp, Yp)}. The sizes of the
original vectors and the transmitted vectors are respectively
n and m where m < n. In order to retrieve the original
vector X(x1, x2, ..., xn) while receiving the transmitted vector
Y (y1, y2, ..., yn) with an eBHAM model, we use the following
equation for X :

X = SGN(

p∑
i=1

Xi × αYi.Y ) (5)

where (X.Y ) denotes the inner product of vectors X and
Y and α is a number greater than one.

For example, to retrieve P1 (corresponding bipolar vector
X1) from the transmitted packet Pa1 (corresponding bipolar
vector Y1) using eBHAM and following Equation 5 as follows:

First we compute the inner products as follows:

< Y1.Y1 >= 5, < Y1.Y2 >= −5 and < Y1.Y3 >= −1
(6)

Then suppose that α = 2, we compute:

αYi.Y1 for i = 1, 2, 3 then we find (25, 2−5, 2−1) =
(32, 1/32, 1/2) then the retrieved vector is



SGN(32×X1 + 1/32×X2 + 1/2×X2)
= SGN(32.4, 31.4, 31.4, 31.4, 32.4, 31.4,−32.4,−32.4, 32.4, 31.4)
= SGN(1, 1, 1, 1, 1, 1,−1,−1, 1, 1)
= X1

So the corresponding vector/packet X1 is found. The same
operations can be done to find the other associations between
original and corresponding packets/vectors while recalling
eBHAM network. Furthermore, eBHAM can be used to recall
faulty packets with high capability to correct them. In the
literature, we can find several variations of eBHAM that try
to outperform the performance of eBHAM in some situa-
tions [18], [19], [20]. The use of these networks is very similar
to the networks presented in this paper.

IV. EXPERIMENTAL RESULTS

To show the efficiency of the proposed approach, a Python
based simulator was developed. Furthermore, a real experi-
mentation was done using the blinky blocks 1 [9] platform.
Blinky Blocks are 4 cm cubic modules that connect to form a
modular robot. Each module has an ARM Cortex M0 32-bit
controller and can be attached with up to 6 neighbors using
magnets. They can communicate neighbor-to-neighbor using
serial links present on the 6 block faces. A special module
as shown in Figure 6 is connected to a power supply and
shares the power with the ensemble using dedicated pins. The
same module can be connected to a computer to receive and
transmit the program to be executed to all the modules. All
Blinky Blocks execute the same program. They can light up
in colors using RGB leds and can be programmed to change
their color.

Fig. 6. A Blinky Block module.

We conducted experiments on 24 Blinky Blocks placed
in a 6x4 rectangle and we varied the size of the BHAM
network (i.e. the size of the bipolar vectors as well as the
number of the associated packets/patterns) randomly. For each
run of simulation or experimentation, after the selection of
packets, the weight matrix was computed. Then the blinky
blocks modules send low size packets where the destination

1https://www.programmable-matter.com/technology/blinky-blocks

modules use the BHAM model to recall orginal packets. The
objective of our simulations and experimentation is to show
the ability of BHAM used for programmable matter to reduce
energy consumption and to correct faulty/noisy packets. All
the results presented after are the average of several executions
(5 at least).

A. Original packets recalling without noise

The objective of these series of experimentation was to
test the proposed approach in recalling non-faulty packets.
In other words, the idea was to test the capability of the
network to recall original large-size packets from transmitted
low-size packets in order to reduce the energy consumption
and the probability of errors. For each execution of simulation
or experimentation, after computing the weight matrix, the
proposed approach was tested to recall non-noisy packets. In
all these simulations and experimentation, it was clear that
BHAM was able to recall original packets with 100% of
success.

B. Original packets recalling from faulty-packets using BHAM

In these series of experimentation, the performance of the
proposed approach was tested on noisy packets. The objective
is to show the ability of a BHAM network in recalling the
correct associated packet from a noisy received packet. We
induced errors in the sent packets by flipping b bits at random
positions. We varied b from 1 to 3 when the packet’s size is
5, from 1 to 5 when the packet’s size is 10 and from 1 to 7
when the packet’s size is 15. We also varied the percentage
of erroneous packets transmitted in the network in the same
run of the algorithm from 10% to 40%. For each number of
erroneous packets and number of erroneous bits in a packet,
we calculated the average number of modules which was not
able to recall the correct original packet. Furthermore, the
number of associated packets pairs was varied.

1) Percentage of correct recall of BHAM:
The objective of this section is to show the efficiency of
BHAM in correcting faulty received packets while varying the
sizes of the original packets (n) and the associated packets to
be transmitted (m). For these series of experimentation we
considered three pairs of packets association. The modules
of the modular robot exchanged the packets with errors.
Moreover, the percentage of faulty packets transmitted in the
network was varied. Figures 7, 8 and 9 present the obtained
results while varying the couple (m,n) as follows (5, 10),
(10, 20), and (15, 30) respectively.

From these results we can clearly notice the ability of
BHAM to recall original packets from noisy packets. For
instance, for one bit or two bits errors the BHAM can recall
almost 100% correct original packets from faulty packets.
Moreover, in the worst case where 5O% of the bits in the
faulty packets are erroneous and 40% of the packets transmit-
ted in the modular robots system are erroneous, the BHAM
was able to correct up to 50% of these erroneous packets.
On the other side, we can notice in these figures that when



Fig. 7. size of packets: m = 5, n = 10.

the size of the BHAM (m, n) increases for the same number
of the packets pairs association, the percentage of corrected
packets increases also. For instance, for 3 erroneous bits in
the transmitted packets and 30% of the transmitted packets are
noisy, the percentage of corrected packets by BHAM networks
of sizes (5, 10), (10, 20) and (15, 30) are respectively 69%,
80% and 98%.

Fig. 8. size of packets: m = 10, n = 20.

Fig. 9. size of packets: m = 15, n = 30.

2) Number of packets pairs association: Our objective in
this experimentation is to show the behavior of the BHAM
network when the number of associated packets pairs increases

while the size of the network (m,n) remains unchanged. In
Figure 10 we varied this number between 3 and 5 for the
same size (15, 30). It is shown in this result that when the
number of associated packets pairs increases, the percentage
of corrected packets decreases but not drastically. For instance,
for the same network size and for packets with 5 erroneous
bits, the percentage of corrected packets was behind 100%
for three packets pairs and decreases for 4 and 5 associated
packets. As mentioned before, to have a reliable programmable
matter or modular robot system the size of the transmitted
between modules should not exceed the number of associated
pairs of packets. Therefore, it is important to choose the size of
the packets to transmit according to the number of associated
pairs of packets.

Fig. 10. size of packets: m = 15, n = 30.

C. Original packets recalling from faulty-packets using
eBHAM

The aim of these experimentation and simulations is to
show the efficiency of eBHAM in recalling correct packets
from faulty received ones. The eBHAM was implemented and
tested on the Blinky Blocks platform composed of 24 modules.
We consider the size of the eBHAM network as m = 15
and n = 30. The obtained results are shown in Figure 11.
We can clearly see the efficiency of eBHAM in correcting
received erroneous received packets. For instance and in the
worst case where more than 5O% of the bits in the faulty
packets are erroneous and 40% of the packets transmitted in
the modular robots system are erroneous, the eBHAM was able
to correct up to 60% of these erroneous packets. Furthermore
when comparing the two networks eBHAM and BHAM, it
is shown that eBHAM has higher capabilities than BHAM in
recalling faulty packets and memory capacity.

V. CONCLUSION AND FUTURE WORK

In this paper we have proposed an approach that exploit the
Bidirectional Hetero-Associative Memory (BHAM) model in
order to ensure reliability, fault tolerance and energy saving
in programmable matter based on modular robots system.
This model is one iteration trained neural network which is
capable to storing and recalling original large size packets
while receiving transmitted packets with smaller size. This



Fig. 11. Packets recalling using eBHAM.

model is based on binary or bipolar vectors association. We
also introduced exponential BHAM model that has larger
storage capacity.

To show the efficiency of the proposed approach, both
simulation and experimentation were done while using a real
platform composed of modular robots based on blinky blocks.
The obtained results showed that BHAM can recall correct
packets from low sizes transmitted packets. Furthermore, we
studied the behaviour of the model when packets or vectors
are altered by different level of noise (e.g. flipping randomly
from 10% to 50% of the bits in the transmitted packets). The
obtained result was satisfactory.

Although we obtained acceptable results, it was deduced
that recalling correct packets for various incomplete or faulty
packets requires a BHAM network of huge sizes, and big
amount of memory cells. Therefore, one of our future work
will consist on studying a new variation of BHAM networks
to improve the storage capacity and fault tolerance. It can be
coupled with another recurrent neural networks as a second
phase to recover noisy packets.

Furthermore, a second step in our future work is to propose
a new BHAM that is work not only with binary values but
also with real one. Then a blinky block platform can be
modeled as a bidirectional associative memory neural network
in a distributed and parallel manner where each module
will correspond to one neuron. The idea is to resolve more
complex problems like 2D image reconstruction and 3D object
recognition by the modular system itself.

VI. ACKNOWLEDGMENT

This work is partially funded by the EIPHI Graduate School
(contract “ANR-17-EURE-0002”).

REFERENCES

[1] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
matter,” Computer, vol. 38, no. 6, pp. 99–101, 2005.

[2] P. Thalamy, B. Piranda, and J. Bourgeois, “Engineering efficient and
massively parallel 3d self-reconfiguration using sandboxing, scaffolding
and coating,” Robotics Auton. Syst., vol. 146, p. 103875, 2021.

[3] E. Hourany, C. Stephan, A. Makhoul, B. Piranda, B. Habib, and J. Bour-
geois, “Self-reconfiguration of modular robots using virtual forces,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2021, Prague, Czech Republic, September 27 - Oct. 1, 2021.
IEEE, 2021, pp. 6948–6953.

[4] P. Thalamy, B. Piranda, and J. Bourgeois, “Distributed self-
reconfiguration using a deterministic autonomous scaffolding structure,”
in Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019, 2019, pp. 140–148.

[5] M. Gerbl and J. Gerstmayr, “Self-reconfiguration of shape-shifting
modular robots with triangular structure,” Robotics and Autonomous
Systems, vol. 147, p. 103930, 2022.

[6] Y. Dai, C.-F. Xiang, Z.-X. Liu, Z.-L. Li, W.-Y. Qu, and Q.-H. Zhang,
“Modular robotic design and reconfiguring path planning,” Applied
Sciences, vol. 12, no. 2, p. 723, 2022.

[7] J. Bassil, M. Moussa, A. Makhoul, B. Piranda, and J. Bourgeois, “Linear
distributed clustering algorithm for modular robots based programmable
matter,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January
24, 2021. IEEE, 2020, pp. 3320–3325.

[8] R. A. Vázquez, H. Sossa, and B. A. Garro, “A new bi-directional
associative memory,” in Mexican International Conference on Artificial
Intelligence. Springer, 2006, pp. 367–380.

[9] B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein, “Blinky blocks:
a physical ensemble programming platform,” in CHI’11 extended ab-
stracts on human factors in computing systems, 2011, pp. 1111–1116.

[10] Y. Zhang, J. Wang, C. Huang, and L. Li, “Application of compressed
sensing based on logistic chaotic sequence in acoustic signal,” in 2022
4th International Conference on Image, Video and Signal Processing,
2022, pp. 139–142.

[11] N. K. Pathak and R. Kumar, “Energy-intensive data compression in
order to extend the life span of the network,” in Electronic Systems
and Intelligent Computing. Springer, 2022, pp. 663–669.

[12] Y. Yang, H. Liu, and J. Hou, “A compressed sensing measurement
matrix construction method based on tdma for wireless sensor networks,”
Entropy, vol. 24, no. 4, p. 493, 2022.

[13] C. Habib, A. Makhoul, R. Darazi, and R. Couturier, “Real-time sampling
rate adaptation based on continuous risk level evaluation in wireless body
sensor networks,” in 13th IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications, WiMob 2017,
Rome, Italy, October 9-11, 2017. IEEE Computer Society, 2017, pp.
1–8.

[14] A. Makhoul and C. Pham, “Dynamic scheduling of cover-sets in
randomly deployed wireless video sensor networks for surveillance
applications,” in 2nd IFIP Wireless Days, WD 2009, Paris, France,
December 15-17, 2009. IEEE, 2009, pp. 1–6.

[15] R. A. de los Monteros, J. H. S. Azuela et al., “A bidirectional hetero-
associative memory for true-color patterns,” Neural Processing Letters,
vol. 28, no. 3, pp. 131–153, 2008.

[16] V. Folli, M. Leonetti, and G. Ruocco, “On the maximum storage capac-
ity of the hopfield model,” Frontiers in Computational Neuroscience,
vol. 10, 2017.

[17] Y.-J. Jeng, C.-C. Yeh, and T.-D. Chiueh, “Exponential bidirectional
associative memories,” Electronics Letters, vol. 26, pp. 717–718, 1990.

[18] M. Wang and S. Chen, “Exponential bidirectional associative memory
based on small-world architecture,” in Third International Conference
on Natural Computation (ICNC 2007), vol. 1, 2007, pp. 391–397.

[19] S. Chen, H. Gao, and W. Yan, “Improved exponential bidirectional
associative memory,” Electronics Letters, vol. 33, no. 3, pp. 223–224,
1997.

[20] W. Baoyun, Z. Qing, and H. Zhenya, “New exponential bidirectional
associative memory,” Journal of Electronics (China), vol. 13, no. 1, pp.
56–60, 1996.


