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Abstract

This study proposes a dynamic simulation-based framework that utilizes swarm intelligence algorithms to optimize the design of
hybrid assembly lines in the automotive industry. Two recent discrete versions of Whale Optimization Algorithm (named VNS-
DWOA) and Gorilla Troops Optimizer (named DGTO) were developed to solve the assembly line balancing problem. The effec-
tiveness of these algorithms was compared to six conventional meta-heuristics as well as the solution proposed by process design
experts. The experimental results show that our methods outperform the conventional meta-heuristics and achieve comparable or
better results than the experts’ solution. Particularly, VNS-DWOA, being the top performer, has consistently provided averagely
remarkable enhancements of cycle time, ranging from 7% when compared to the process expert’s solution to 20% maximum im-
provement compared to all other methods. The findings of this study highlight the effectiveness of utilizing swarm intelligence
algorithms and dynamic simulation-based frameworks as well as the potential benefits of implementing these digital methods in
industrial settings, as they can significantly accelerate and enhance the optimization of assembly line design particularly and reduce
time to market generally.

Keywords: Industry 4.0, Assembly Line Balancing, Swarm Intelligence, Discrete Metaheuristics, Combinatorial Optimization,
Distributed Algorithms.

1. Introduction

The design of an assembly line is a complex process that
consists in finding an optimal solution among almost infinite
combinations of scenarios. This procedure carries consider-
able weight, as it directly affects both manufacturing costs and
the quality of the end product. In essence, Assembly Line De-
sign comprises three key components: the Manufacturing Bill
Of Material (MBOM), which is the product’s recipe specifying
the list of components, assembly tasks and precedence graph;
the layout, which encompasses the physical manufacturing en-
vironment such as workstations, storages, and operators; and
the assembly scenario, which depicts the sequence of assembly
tasks and their allocation to specific workstations and workers.
Until now, the traditional manual way of designing an assem-
bly line involves gathering a team of experts from various de-
partments, such as production, manufacturing, engineering and
logistics, to brainstorm and design the optimal layout of the
assembly line. The team members typically rely on their exper-
tise and experience to propose potential solutions and debate
the pros and cons of each alternative. The team may iterate
over multiple designs until reaching a consensus on the final
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assembly line solution. While this approach can leverage the
collective expertise of the team members and allow for valuable
insights and recommendations, it may also suffer from subjec-
tivity, bias, and limited scope due to the team members’ expe-
rience and background. Moreover, the manual process can be
time-consuming, labor-intensive and prone to errors, especially
when dealing with complex assembly line balancing problems
in large-scale production environments.
This problem is known as the general formulation of the As-
sembly Line Balancing Problem (ALBP), a term regularly em-
ployed to refer to the decision-making process that aims to opti-
mally partition and balance the assembly tasks among the work-
stations and workers in relation with some objectives in a con-
tinuous production system. ALBP handles the distribution of
tasks among workstations and workers ensuring that a mini-
mum number of resources have approximately the same amount
of work to do. This strategy improves different key performance
indicators (KPI) such as the cycle time, the overall equipment
effectiveness, and production costs [2, 22]. The configuration
of an assembly line is a multiplex process considered NP-hard
[18]. The optimization of this system is an important part of
many commercial manufacturing models and has gained atten-
tion from both industrial and research partners.
The ALBP has three main classes: ALBP-1 minimizes re-
sources for a given cycle time, ALBP-2 finds a balanced assign-
ment solution with minimum cycle time for a fixed number of
resources, and ALBP-E maximizes total line efficiency through
task and workstation combinations. ALBP-1 is less significant
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in current industrial contexts since resource numbers are pre-
determined based on machine time and have minimal variation.
ALBP-3 is more complex as it aims to simultaneously mini-
mize cycle time and resource numbers. We chose ALBP-2 for
our study due to its variability and optimization potential. Opti-
mizing resource allocation using ALBP-2 allows us to balance
complexity and practical applicability. Industrial gains focus on
optimizing allocation scenarios rather than layout changes due
to existing machine investments.
To summarize, given a set of tasks, the objective is to minimize
the cycle time, or equivalently, to maximize the production rate
by finding the best feasible scenario assigning the tasks to the
workstations and workers while managing other constraints.
Different types of assignment restrictions or constraints are con-
sidered:

• Precedence constraints: the tasks are partially ordered
by anteriority relations defining a precedence graph that
should be respected.

• Incompatibility restrictions: some assembly tasks cannot
be carried out on the same workstation to prevent dis-
tortion of parts or robot’s incompatible trajectories. As-
signments not allowed for these reasons are commonly re-
ferred to as forbidden assignments.

• Manufacturing rules: they include all the company stan-
dard process rules to be respected such as Hoshin rules
[15] and one piece flow concept.

This work aims to perform a comprehensive experimen-
tal study of enhanced state-of-the-art swarm intelligence-based
meta-heuristics to solve the constrained ALBP-2 for predefined
layouts in the automotive industry.
Our research actively supports the digital transformation of the
industry by developing an intelligence-based tool specifically
designed for manufacturing line design workshops and digital
twin tools [38, 32, 41]. This tool enables faster and more ef-
ficient creation of assembly lines, ultimately reducing the time
it takes to bring new products to market. Additionally, our re-
search provides valuable insights and recommendations for op-
timizing existing assembly lines, leading to increased produc-
tivity and efficiency. On the academic side, our work signif-
icantly contributes to the evaluation and application of swarm
intelligence-based methods in a real industrial setting. We fo-
cus on a specific use case and thoroughly investigate the effec-
tiveness of these methods, particularly their impact on search
efficiency. Furthermore, we explore various techniques such
as discretization, utilization of different transfer functions, and
hybridization with other heuristics to enhance the performance
and effectiveness of swarm intelligence-based methods in solv-
ing complex optimization problems.

2. Background

The development of search and optimization algorithms has
been a significant area of computer science, artificial intelli-
gence and operations research over the past few decades. In

particular, exact optimization algorithms are methods that guar-
antee to find the optimal solution to a given problem within a
finite number of steps. These algorithms rely on mathemati-
cal programming and linear algebra techniques to explore the
search space and systematically identify the best possible solu-
tion. On the other hand, meta-heuristic algorithms are general-
purpose search algorithms that can be applied to a wide range of
optimization problems. They are designed to find high-quality
solutions in a shorter amount of time, even when dealing with
very large search spaces [35].
Swarm intelligence, which has inspired the development of sev-
eral meta-heuristic algorithms, is based on the study of collec-
tive behavior in decentralized, self-organized systems, called
search agents, such as groups of animals or social insects. Par-
ticle Swarm Optimizer (PSO) [20] is recognized as one of the
earliest swarm-based algorithms. It involves a group of par-
ticles that moves around in a search space and communicates
with each other to find the optimal solution to a given problem.
Another example is Ant Colony Optimization (ACO) [13], a
family of algorithms that are inspired by the foraging behavior
of ants. Grey Wolf Optimizer (GWO) [26] is inspired by the
social hierarchy and hunting behavior of grey wolves, while the
Whale Optimization Algorithm (WOA) [25] is inspired by the
hunting behavior of humpback whales. These different algo-
rithms have been used to solve a variety of optimization prob-
lems, including the traveling salesman problem, routing and
scheduling problems [4].

Optimizer Year Citations Type Behavior

SA [8] 1983 51107 D Physics-based
GA [20] 1992 26434 D Evolution-based
PSO [20] 1995 67564 C Swarm-based
ACO [13] 2006 13876 D Swarm-based
GWO [26] 2014 6165 C Swarm-based
WOA [25] 2016 3731 C Swarm-based
GTO [1] 2021 402 C Swarm-based
TSO [46] 2021 66 C Swarm-based

SFOA [21] 2022 24 C Swarm-based

Table 1: Most Known Meta-heuristics & Recent Swarm-based Algorithms
Summary (D: Discrete, C: Continuous)

The No-Free-Lunch theorem [45] asserts that even though
there are various meta-heuristic algorithms, the demand for ad-
ditional ones exists. This is because a meta-heuristic algorithm
that performs the most on a particular type of problem may not
achieve the same level of performance when applied to a dif-
ferent type of problem. Therefore, it is essential to create more
problem-oriented meta-heuristics that are customized to each
problem’s specific features. Thus, a meticulous examination
and comprehension of the problem’s structure is a mandatory
prerequisite, along with the invention of innovative search tech-
niques.
Recently, Swarm intelligence-based algorithms have shown re-
markable progress in solving global optimization problems,
with Gorilla Troops Optimizer (GTO) [1], Sheep Flock Op-
timization Algorithm (SFOA) [21], Tuna Swarm Optimiza-
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tion (TSO) [46], Gannet Optimization Algorithm (GOA) [29]
and Honey Badger Algorithm (HBA) [17] being examples of
such very recent algorithms. These algorithms have outper-
formed traditional and advanced optimization methods on vari-
ous benchmark functions in terms of efficiency and outcomes.
Apart from designing new algorithms, researchers have also
explored the hybridization of meta-heuristics with other tech-
niques like local search, machine learning, or other meta-
heuristics to enhance their effectiveness. These hybrid algo-
rithms can be created by combining operators, parameters, or
components of the parent algorithms in different ways. Sev-
eral articles show that the resulting hybrid algorithm can be
more robust, efficient and effective than the parent algorithms.
Rajpurohit et al. [33] have proposed a hybrid algorithm that
combines the features of Jellyfish search optimizer (JSO) and
Sine–cosine algorithm to create a new algorithm that outper-
forms both individual algorithms. Al-Betar et al. [3] have com-
bined adaptive β-hill climbing as a local search algorithm with
six swarm-based meta-heuristics to boost the training process of
neural networks. Another recent method for predicting a back
break in open-pit blasting with high accuracy has been intro-
duced by Dai et al. [11]. This approach combines the strengths
of random forest (RF) and particle swarm optimization (PSO)
to create a new hybrid intelligence approach.
We opted to further develop the Whale Optimization Algorithm
(WOA) due to its consistent performance and reliability when
discretized using heuristics or transfer functions. Moreover,
WOA demonstrated impressive outcomes across a diverse set of
combinatorial problems, as supported by the studies conducted
by Becerra et al. (2022) [6], Wang et al. (2023) [44], and Yu
et al. (2022) [49]. On the other hand, our emphasis on the Go-
rilla Troops Optimizer (GTO) stemmed from its novelty and the
potential it carries in addressing the limitations of conventional
optimization methods. As a relatively recent approach, GTO in-
troduces enhanced search operators, introducing fresh perspec-
tives and innovative techniques. By leveraging the cooperative
behavior observed in gorilla troops, GTO presents a compelling
solution for overcoming the inherent challenges within our spe-
cific problem domain.

3. Related Works

Most research on the Assembly Line Balancing Problem
(ALBP) has mainly concentrated on a static assessment of the
assembly line, assuming that the cycle time of each resource is
simply the sum of the individual tasks duration of the tasks per-
formed by that resource without considering the dynamic inter-
actions between workers, workstations and all equipment along
the line. While this static approach is quite fast, it only provides
a basic approximation of the real cycle time of the assembly
line. As a result, this approximation may not accurately capture
the true cycle time, potentially leading to inaccuracies in the
optimization process. This, in turn, could impact the effective-
ness of the search and exploration process of the optimization
method used.

Initially, there were numerous efforts to address ALBP
through the use of exact methods, especially integer and lin-

ear programming and dynamic constrained programming [7,
43, 23]. Recently, Yadav et al. [47] proposed a mathemati-
cal model of the robotic assembly line problem to find an ex-
act solution approach to this constrained problem. However,
these methods always fail in solving complex combinatorial op-
timizations, their run-time experiences a significant surge and
has no practical relevance when considering real-world prob-
lems [24]. Consequently, several researchers shifted their at-
tention towards recent meta-heuristic methods due to their abil-
ity to provide near-to-optimum solutions in a reasonable time
[28, 39, 34]. Chen et al. [9] have implemented a bi-level multi-
objective genetic algorithm to optimize the number of stations
and their workload smoothness. Tang et al. [40] have proposed
an improved multi-objective multifactorial evolutionary algo-
rithm to optimize assembly production and equipment mainte-
nance by treating it as a multi-task optimization problem.

Using swarm intelligence algorithms to solve the ALBP rep-
resents a significant challenge due to their primary focus on
continuous optimization problems, making them less effective
in solving discrete problems. To address this limitation, dis-
cretization strategies can be employed to modify these algo-
rithms. A potential solution to this issue is presented by Porns-
ing et al. [31], who introduced a new approach for discretiz-
ing a variant of Particle Swarm Optimization (PSO), resulting
in improved efficiency and performance when tackling discrete
problems. Similarly, a new hybrid binary whale-hawks repre-
sentation was presented by Alwajih et al. [5] using a transfer
function to convert the continuous attributes in binary to solve
the features selection problem. The reverse problem, called the
disassembly line balancing problem (DLBP), was also tackled
by Yao et al. [48], as they have focused on the implementation
of a novel metaheuristic algorithm called cat swarm optimiza-
tion (CSO) and have demonstrated its effectiveness in solving
type-1 DLBP.
Owing to the mixed-integer, nonlinear and dynamic behav-
ior of our problem, previous adaptations are no longer useful.
Proper changes and problem-oriented modifications should be
included to address our real-world discrete problem [24].
To summarize, we are encountering three main issues in di-
rectly applying state-of-the-art meta-heuristics:

• They are generally problem-independent methods, with no
prior knowledge about the real problem as a guide.

• They are generally continuous and cannot be directly ap-
plied to discrete problems.

• Search space knowledge is not fairly propagated through
the search agents of the methods.

For that, we propose enhanced, discrete and problem-oriented
versions of swarm intelligence-based optimizers based on
Whale Optimizer Algorithm and Gorilla Troops Optimizer and
compare them with six conventional benchmark algorithms.

4. Mathematical Model Formulation

Given a list of tasks T = {t1, t2, . . . , tn}, a list of identical
parallel workstations S = {s1, s2, . . . , sm} and a list of workers
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W =
{
W1,W2, . . . ,Wp

}
. We note P the set of pairs of tasks

(i,k) such as i precedes k, and F is the set of pairs of tasks (i,k)
such as i and k cannot be assigned to the same workstation. An
assembly scenario is mathematically modeled by the (n × m)
assignment matrix As :

As =


a1,1 a1,2 . . .
...

. . .

am,1 am,n

 (1)

Where ai, j = 1 if the task ti is assigned to workstation s j and 0
otherwise.

n: total number of tasks.

m: total number of workstations.

p: total number of manual workers.

i: the index of tasks, i=1,...,n

j: the index of workstations, j=1,...,m

P: the set of precedence pairs.

F: the set of restricted pairs.

CT: the overall cycle time of the assembly line.

MT: the machine time (automatic).

WC: the work content (manual).

TT: the technical time (additional).

Each task ti is composed of three time components: machine
time (MT), technical time (TT), and work content (WC). MT
is the time required for machines or robots to perform the task,
while TT includes technical actions like launching the operation
or opening the workstation door. WC pertains to human actions,
such as handling and transferring parts between workstations.
The optimization problem is expressed by Equation (2a):

min
(ai, j)

CT (As,W) (2a)

s.t.
m∑

j=1

ai, j = 1 , i = 1, 2, . . . , n, (2b)

m∑
j=1

j · ai, j ≤

m∑
j=1

j · ak, j ∀(i, k) ∈ P (2c)

ai, j , ak, j ∀(i, k) ∈ F (2d)
ai, j ∈ {0, 1} ∀i ∈ {1, 2, . . . , n} (2e)

Constraint 2b expresses that every task is assigned to a unique
workstation, Equation 2c refers to the precedence constraint.
Constraint 2d, also known as the incompatibility constraint, en-
sures that incompatible tasks are not assigned to the same work-
station. The goal of the optimization problem stated in equation
2a is to minimize the global cycle time of the assembly line,
which refers to the time taken to finish a single unit of the prod-
uct. This cycle time is influenced by both the assignment of

tasks to workstations and the assignment of workers to work-
stations, as each task consists of three components: MT, TT,
and WC. To simplify the problem, each operator is assigned to
a fixed set of workstations.

CT (As,W) = max
j=1,..,m

 n∑
i=1

ai, j

(
MTi + TTi, j +WCi, j

) (3)

The machine time (MTi) is deterministic and exclusively de-
termined by the task ti, while the technical time (TTi, j) and
work content (WCi, j) are subject to fluctuations throughout the
assembly cycle due to their dependence on both the task and
the workstation, making the problem more complicated. Our
objective is to assign tasks to workstations in a way that mini-
mizes the total time needed to perform all three types of actions
(MT, TT, WC). Prior research in this area has generally em-
ployed objective functions that consider only machine times of
the tasks, and such functions have demonstrated efficacy in es-
timating cycle time for static assembly lines that involve only
one type of assembly action. Nevertheless, in our specific use
case, which encompasses three different types of actions per
task, computing the global cycle time is more complex. To ad-
dress this challenge, we have created and integrated a sophisti-
cated manufacturing process simulator into our framework.

5. End-to-End Framework

Our proposed global framework, named Automatic Manu-
facturing Design Optimizer (AMDO), consists of three primary
blocks as demonstrated in Figure 1. Firstly, the optimizer gen-
erates improved solutions and explores new assembly scenarii.
Then, the decoder converts the mathematical representation of
the solution proposed by the optimizer (As) into an XML file
format, which is transmitted to the simulator. Solution eval-
uation is conducted using a discrete event simulator, specifi-
cally customized for industrial use, called ManufactSim [30]
and showcased in Figure 2. The simulator estimates the assem-
bly line’s cycle time by dynamically simulating the assembly
process, including the machine time of each workstation, the
working time of the operators per workstation and all related
technical interactions. The results are then returned to the opti-
mizer to enhance the previously proposed candidates.
As previously stated, determining the assembly cycle time can

be difficult using traditional analytical methods due to the com-
plexity and flexibility of hybrid assembly lines. These meth-
ods often simplify the process and do not account for dynamic
interactions and fluctuations. However, using a simulator can
provide an advantage as it allows for the consideration of these
factors. Simulators are designed to capture the behavior of com-
plex systems over time, including the dynamic interactions and
fluctuations that occur within the system. They provide a more
accurate representation of the system by incorporating a greater
level of detail and complexity. Our internal studies have shown
that it is typically necessary to produce at least 30 parts on av-
erage to achieve a stable cycle time of the assembly line. Our
simulator offers a low-cost, secure and efficient way to estimate
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Figure 1: Our proposed simulation-based optimization framework.

Figure 2: Graphical interface of ManufactSim (Manufacturing Line Simulator).

KPIs of a given assembly scenario. It takes 2 seconds on aver-
age to simulate the assembly of 30 products. The development
of a fast simulator was the main inspiration behind the creation
of this entire framework.

6. VNS-Discrete Whale Optimizer

6.1. Original WOA

The Whale Optimizer Algorithm (WOA) [25] is inspired
by the hunting behavior of humpback whales. Humpback
whales adopt an attacking method called the bubble-net attack-
ing method which includes three steps: encircling prey, spiral-
ing update position, and searching for the prey. The whale’s
population size is set at the beginning of the optimization.

6.1.1. Encircling prey
In this process, the location of the so-far best solution (the

prey) is identified and surrounded. The whales move closer and
progressively to the location of the prey to encircle it starting
from an initial position that can be given or selected randomly.
This behavior is expressed in Equation (4).

X(t + 1) = X∗(t) − A · D

D =| C · X∗(t) − X(t) |
(4)

A = 2 · a · r1 − a

C = 2 · r2
(5)

where X and X∗ denote respectively the position of a whale
and the so-far best solution, A and C coefficient vectors, r1, r2
uniform random numbers between 0 and 1, and a = 2 · (1 −

iter
itermax

).

6.1.2. Spiral Update behavior
During the hunting phase, each humpback whale updates its

position following a spiral path using the mathematical model
in Equation (6):

X(t + 1) = D′ · ebl · cos(2πl) + X∗(t)
D′ =| X∗(t) − X(t) |

(6)

where X is the position vector of a whale, X∗ is the so-far best
solution (or the prey), l is a uniform random number between
[-1, 1].

6.1.3. Searching for prey
To avoid getting stuck in local optima, the random search ap-

proach is proposed as an imitation of the mechanism of search-
ing for the prey using the following equations:

D =| C · Xrand(t) − X(t) |
X(t + 1) = Xrand(t) − A · D

(7)

Xrand is a random whale from the population at the current iter-
ation.

6.2. Our proposed VNS-DWOA
The original WOA was designed for continuous optimiza-

tion problems and is not suitable for addressing our problem di-
rectly. We present a new discrete WOA by modifying its opera-
tors and adding VNS as a local heuristic search. This approach
combines the global search of WOA with VNS’s local search
capability, providing a powerful and effective hybrid optimizer
to our problem.
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6.2.1. Discrete Prey Encirclement
As mentioned above, Whale Optimizer Algorithm adopts

shrinking encirclement to update the positions of the whales.
For our case, we mimic this behavior by following the so far
best solution to help the whales approach the global optimal so-
lution from their original position.
This continuous operation is replaced by a new discrete ex-
ploitation operator, modeled by the following equation:

ai, jmin (t + 1)← ai, jmax (t)
ai, jmax (t + 1)← ai, jmin (t)

(8)

Where  jmin = arg min(CT1(t), · · · ,CTm(t))
jmax = arg max(CT1(t), · · · ,CTm(t))

(9)

We denote that i is the index of a randomly selected task from
the list of tasks done in the workstation with the highest work-
load in the previous iteration t (ai, j(t) = 1).
The whales adjust their positions using Equation (9), which in-
corporate information about the workload of each workstation
from the previous scenario. The aim is to re-balance and re-
distribute tasks efficiently. If the workload variance is high,
the algorithm selects a couple of tasks at random from the bot-
tleneck workstation (i.e., the one with the highest workload)
and reassigns them to the workstation with the lowest work-
load. This strategy mimics the encircling of prey by humpback
whales, who use their prior knowledge to explore promising
sub-optimal regions that may contain good solutions (preys).

6.2.2. Discrete Spiral Update
Discretizing the spiral behavior of the original WOA is not

straightforward. To preserve the effectiveness of this operator,
we propose an initial step of encoding the assignment vector As

as a continuous matrix Bs on which will be applied the spiral
update. This relationship between the discrete matrix As and
the continuous position matrix Bs is given by Equation (10)

As = Φ(Bs) =


ϕ(b1,1) ϕ(b1,2) . . .
...

. . .

ϕ(bm,1) ϕ(bm,n)

 (10)

Where

ai, j = ϕ(bi, j) =

1, If rand > 1
1+e−bi, j (t)

0, else
(11)

The original spiral update is applied on the continuous values
of the position matrix Bs as written in Equation (12)

Bs(t + 1) = D′ · ebl · cos(2πl) + B∗s(t)
D′ =| B∗s(t) − Bs(t) |

(12)

The continuous position matrix Bs is therefore squashed and
converted back to the corresponding discrete assignment vector
As using the transfer function Φ. The discrete spiral operator is

encapsulated in Equation (13)

As(t + 1) = Φ(D′ · ebl · cos(2πl) + B∗s(t))
D′ =| B∗s(t) − Bs(t) |

Bs(t) = Φ−1(As(t))

(13)

Using this approach, we are able to apply the original spiral up-
date on our discrete solution matrix As through the intermediary
of the position matrix Bs.

6.2.3. Seaching for the prey with VNS
Searching for the prey is done randomly in the original ver-

sion. To further improve the computational performance, we
replace the random search with Variable Neighborhood Search
(VNS) developed by Hansen et al. [27]. This mechanism is
based on systematic changes of neighborhoods to escape from
local minimum [16]. Three neighborhood search operators are
used:

• Swapping: randomly select two elements corresponding
to different tasks and exchange their positions.

• Insertion: randomly select two elements corresponding to
different tasks and then insert one to the front of another.

• Randomizing: select randomly a possible task to be as-
signed to a randomly selected workstation.

The pseudo-code of VNS-DWOA is given as follows (Algo-
rithm 1)

Algorithm 1 VNS-DWOA
Input: Np, MaxIter
Output: Best Solution

procedure VNS-DWOA
Generate random population of Np whale
while i < MaxIter do

for each whale As in population do
Calculate the objective function of the whale

end for
A∗ is the so far best solution
for each whale As in population do

Update a, A and C using Equation (5)
if rand(0, 1) > 0.5 then

if | A |< 1 then
Update the whale position using Eq. (9)

else
Update the whale using VNS Operators

end if
else

Update the whale by discrete spiral by Eq.
(13)

end if
end for

end while
return A∗ Best Solution

end procedure
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7. Discrete Gorilla Troops Optimizer (DGTO)

7.1. Original GTO
Artificial Gorilla Troops Optimizer (GTO) is a recent meta-

heuristic developed by Abdollahzadeh et al. [1] and inspired by
the social behavior of the gorilla troops in which five strategies
are imitated, including moving to an unknown area, migrating
to other gorillas, moving to known places, following the silver-
back, and competing for adult females. These different strate-
gies illustrate the process of exploration and exploitation in the
gorilla kingdom.

7.1.1. Exploration phase
During the exploration phase, three mechanisms are em-

ployed. The first mechanism of moving to unknown places is
selected when rand < p. If rand ≥ 0.5, the mechanism of move-
ment towards other gorillas is chosen. Otherwise, the mecha-
nism of migration to a known location is to be selected. This
exploration phase is modeled in Equation (14)

GX(t + 1) =


(UB − LB) · r1 + LB, rand < p
(r2 −C) · Xr(t) + L · H, rand ≥ 0.5
X(i) − L · (L · (X(t) −GXr(t)) + r3 · (X(t) −GXr(t))) , rand < 0.5

(14)
where GX(t + 1) shows the candidate gorilla’s position vector
in the next iteration. X(t) is the current gorilla’s position vector,
r1, r2, r3, and rand are uniform random values between 0 and 1,
and p is a hyper-parameter that determines the probability of se-
lecting random migration. UB and UL are the upper and lower
bounds of our solution variables. Xr is a randomly selected go-
rilla from the entire population. C, L and H are calculated using
the following equations

C = (cos (2 · r4) + 1) ·
(
1 −

It
MaxIt

)
(15)

L = C · l (16)

H = Z · X(t) (17)

Where MaxIt is the total value of iterations to perform the op-
timization, l is a random value in the range of -1 and 1, r4 is
a uniform random value between 0 and 1 while Z is a uniform
random value in the range of [-C, C].

7.1.2. Exploitation phase
The exploitation phase in GTO implies two strategies: fol-

lowing the silver-back and competing for adult females. The
silver-back is considered the troop leader who takes decisions.
The W parameter should be specified before starting the pro-
cess. If C ≥ W, the strategy of following the silver-back is se-
lected. This behavior is mathematically expressed

GX(t + 1) = L · M · (X(t) − Xsilver−back) + X(t) (18)

M =


∣∣∣∣∣∣∣ 1N

N∑
i=1

GXi(t)

∣∣∣∣∣∣∣
g

1
g

(19)

g = 2L (20)

X(t) represents the position vector of the gorilla, Xsilverback is the
position vector of the silver-back gorilla. GX(t + 1) is the po-
sition vector of the candidate gorilla. L can be calculated using
Equation (16). If C ≤ W, the strategy of competing for adult
females is used. This mechanism imitates the competition of
adult gorillas with other males for mature females and is coded
as follows

GX(t + 1) = Xsilver-back − (Xsilver-back · Q − X(t) · Q) · A

Q = 2 · r5 − 1 (21)

A = β · E (22)

A is a coefficient vector to determine the degree of violence in
conflicts and is calculated using β, a parameter to be given value
before the optimization operation while r5 is a uniform random
value between 0 and 1.

7.2. Our proposed DGTO
The original version of GTO is performed as well on a con-

tinuous space. So, many issues need to be resolved regarding
its implementation to our discrete problem. At the time of writ-
ing this article, there is no published discrete version of this
algorithm. Because of its superior results in benchmarks, it was
more relevant to keep the original model of GTO and use the
discrete mapping function Θ expressed in Equation (23).

As = Θ(X) =


s1, 0 ≤ xi < r1

s2, r1 ≤ xi < r2
...

sm, rn−1 ≤ xi < 1

(23)

We also present the discrete distance between the search agents
(gorillas), calculated using Equation (24)

< Ap
s , A

q
s >=

n∑
j=1

d j, d j =

{
1, | ap j − aq j |, 0
0, | ap j − aq j |= 0 , p , q (24)

Where Ap
s and Aq

s are respectively the p-th and q-th search
agents, ap j refers to the j-th element of the p-th search agent.
Based on that, the discrete exploration phase is mathematically
modeled by Equations (25) and (26)

As(t + 1) =


Θ[(UB − LB) · r1 + LB], rand < p
Θ[(r2 −C) · Xr(t) + L · H], rand ≥ 0.5
Θ[X(t) − L ·

(
L· < As(t), Ar

s(t) > +r3· < As(t), Ar
s(t) >

)
], rand < 0.5

(25)
Where

X(t) = Θ−1(As(t)) (26)

As(t) and X(t) are respectively the gorilla assignment vector
and its continuous position vector at the iteration t, while Ar

s(t)
and Xr(t) are respectively a random gorilla vector and its cor-
responding position vector. C, L and H are calculated using
Equations (15), (16), and (17).
For the discrete exploitation phase of our DGTO, the competi-
tion for gorilla females is done using Equation (27)

As(t + 1) = Θ(Xsilver-back− < Asilver-back
s , As(t) > ·Q · A) (27)
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On the other hand, following the silver-back strategy by Equa-
tion (28)

As(t + 1) = Θ(L · M· < Asilver-back
s , As(t) > +X(t)) (28)

Where
X(t) = Θ−1(As(t))

Xsilver-back = Θ
−1(Asilver-back

s )
(29)

The pseudo-code of DGTO is presented below (Algorithm 2)

Algorithm 2 DGTO
Input: p, β, W, Np, MaxIter
Output: Best Solution

procedure DGTO
Generate random population of Np gorilla
while i < MaxIter do

for each gorilla As in population do
Update each gorilla position by exploring (Eq.25)
Calculate the objective function of the gorilla

end for
A∗ is the so far best solution (silver-back)
for each gorilla As in population do

Update C, L and H using Eqs. (15), (16), (17).
if C > W then

Update gorillas by conflicting for females
(Eq. 25)

else
Update gorillas by following silver-back (Eq.

28)
end if
Calculate the objective function of the new gorilla

end for
A∗ is the so far best solution (silver-back)

end while
return A∗ Best Solution

end procedure

8. Experimental Results

8.1. Use Case

Our approach is tested on a use case involving a hybrid
assembly line comprising four welding machines (V-cells),

each equipped with a welding robot and has two identical
workstations, and four manual workers. Followed by 3 end-of-
line stations (Figure 3).

Figure 4: Task Sequence of the use case’s product: 24 parts assembled by 35
welding task

The exhaust system, which is the product being manufac-
tured, is comprised of 24 components that require 35 welds to
be assembled as shown in Figure 4.
We note that the best assembly scenario proposed by the pro-
cess expert (PE) has a cycle time of 118 seconds and an average
balancing error between resources of 6 seconds.

8.2. Experiments
To evaluate the effectiveness of the proposed algorithms, the

following methods are being considered for comparison:

• Simulated Annealing (SA): the search space is explored
by randomly generating new candidate solutions and per-
forming small changes over the so-far best solution. A
better solution is always accepted, while a worse solution
might be accepted with a certain probability that decreases
over time and is controlled by a temperature parameter
[42].

• Genetic Algorithm (GA): the placement and allocation de-
cisions for all tasks in this method are determined by the
GA operators (mutation, crossover, and selection).

• Particle Swarm Optimizer (PSO): the solution generation
is based on the movement of particles through the search
space and the update of their position in the direction of
the best solution found so far by the swarm [37].

• Ant System with Random Search (ASrm): The solution
space is inhabited by a group of ants that modify the

Figure 3: Our use case’s U-shape assembly line layout
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overall level of pheromone during each iteration. An im-
proved solution is selected by the quantity of accumu-
lated pheromones [50]. We use a random search for local
search.

• Ant Colony System with Random Search (ACSrm): A
variant of ASrm is employed to reach the optimal solution
by updating the pheromone level both locally and glob-
ally. Local pheromone updates are permitted for all ants,
whereas only the so-far best solution can perform global
updates [10].

• Discrete Grey Wolf Optimizer (DGWO): the solution
space consists of a population of grey wolves, where each
wolf represents a possible solution. Then, the population
is iteratively updated, using a transfer function, by follow-
ing the guidance of the three fittest solutions, referred to
as alpha, beta, and delta [36].

• Random Guessing: the solution is constructed at random
without any specific strategy or guidance. This approach
involves randomly selecting a solution from a set of possi-
ble solutions and repeating the process until an acceptable
solution is found.

All experiments were conducted on a Windows computer
with Intel(R) Core(TM) CPU i9 3.50GHz and 128 GB RAM.
All methods were launched for the same execution time of 1
hour for 40 runs. For each of the 40 optimization trials, an
independent initial population is randomly generated. The
table 2 restates the parameters of the implemented methods.

T0 and α are respectively the initial temperature and the cool-
ing factor of the simulated annealing (SA). pmut and pcros are
respectively the probability of mutation and the crossover of
the genetic algorithm (GA). C1 is the inertia weight and C2,C3
are the acceleration coefficients of PSO. PE is the pheromone
evaporation (known also as the learning rate) of both ASrm and

Optimizer Pop. Size Init. Parameters Iterations

SA 1 T0 = 1, α = 1 - it/itmax 1000
GA 25 pmut = 0.2, pcros = 0.8 200
PSO 100 C1 = C2 = C3 = 0.5 1000

ASrm 100 PE = 0.01 1000
ACSrm 100 PE = 0.01 1000
DGWO 25 None 100

VNS-DWOA 25 None 100
DGTO 25 p = 0.03, β = 3, W = 0.8 200

Table 2: Parameters of the methods (Population Size, Hyper-parameters and
number of iterations).

ACSrm. p, β and w are the parameters of DGTO presented in
section 7.

8.3. Results & Analysis
We showcase the outcomes of 40 optimization runs con-

ducted to compare the performance of the different algorithms
that were evaluated. The aim is to identify the most promising
algorithms based on their performance.

Optimizer Best Worst Mean Median SD

SA 110.64 137.33 120.10 118.05 6.37
GA 107.91 150.96 121.44 121.41 6.38
PSO 108.63 145.20 128.73 127.55 6.06

ASrm 111.10 135.17 123.94 123.14 5.34
ACSrm 111.26 136.07 122.60 123.14 6.11
DGWO 115.10 126.40 126.40 127.03 5.40

VNS-DWOA 104.45 118.50 111.16 111.07 3.84
DGTO 113.00 124.32 119.80 120.00 2.90

Random 120.66 183.22 140.24 136.82 15.01

Table 3: The best, worst, mean, and standard deviation (SD) values of assembly
cycle time produced by all optimizers in seconds.
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Figure 5: Box-and-whiskers plot comparing the performance of the algorithms for the Assembly Cycle Time Minimization over 40 runs.
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As shown in Table 3, the optimization method VNS-DWOA
exhibits superior performance compared to the other methods
in terms of average cycle time, and best and worst solutions,
with only a slightly higher deviation rate than DGTO. Addi-
tionally, VNS-DWOA was able to generate assembly scenarios
with lower cycle times than those proposed by the process ex-
pert (PE) in the use case. Notably, all of the optimization meth-
ods tested outperform random guessing, indicating that even the
simplest of methods can provide significant improvements over
purely random selection.
These findings are further reinforced by the box-and-whisker
plot presented in Figure 5, which provides clear evidence that
throughout all 40 experiments, VNS-DWOA consistently gen-
erates an assembly scenario with a cycle time comparable to, if
not better than, the one proposed by the process expert within
an hour of computation time.

When conducting experiments that involve multiple opti-
mization algorithms, it is necessary to compare their perfor-
mances accurately and reliably. Statistical tests provide a rigor-
ous approach to evaluating the differences between the perfor-
mances of these algorithms. However, the normality assump-
tion that underlies many commonly used statistical tests is often
violated when analyzing such data. To overcome this issue, a
non-parametric statistical test analysis is recommended.

One of the most commonly used non-parametric tests for
multiple comparisons is the Friedman test [12]. This test is
used to compare the mean ranks of three or more groups and
is robust to the presence of outliers or skewed data. The null
hypothesis H0 in the Friedman test is that there is no significant
difference in the performance between all the optimizers.
If the Friedman test reveals a significant difference between the
algorithms, it is important to conduct further analysis to deter-
mine which pairs of algorithms are different. The Bonferroni-
Dunn test [19] is a suitable posthoc test that allows for the com-
parison of all algorithms to one another using adjusted signifi-
cance levels based on the number of pairwise comparisons be-
ing made. The Wilcoxon rank-sum test [14] is another pairwise
comparison test that compares the ranks of two groups to deter-
mine if there is a significant difference between them.

The results of the Friedman test, as reported in Table 5, indi-
cate a significant difference between the performances of some
of the algorithms being tested, as evidenced by a p-value of sig-
nificantly lower than 0.05. This means that we can reject the
null hypothesis H0 and conclude that at least some of the algo-

Optimizer Avg. Ranking χ2 statistic p-value

VNS-DWOA 1.33
SA 3.75

DGTO 3.98
GA 4.43

ACSrm 4.98 167.53 4.22E-32
ASrm 5.45

DGWO 6.25
PSO 6.55

Random 8.28

Table 5: Friedman test for the comparison between the optimizers

rithms have significantly different performances.
However, the Friedman test is unable to provide information
regarding which pairs of algorithms exhibit significant differ-
ences. Therefore, we use the Bonferroni-Dunn test, a posthoc
test that was applied to every pair of algorithms, resulting in 36
unique pairs. Table 4 summarizes the p-values obtained from
this test.

Based on the average ranking, the results of Bonferroni-Dunn
test (Table 4) indicate that only VNS-DWOA algorithm is able
to significantly perform differently than all the other 8 meth-
ods with a very low p-value. If we take the highest p-values
calculated for VNS-DWOA, which is 2.10−4, this means that
the probability of observing such a difference in performance
by chance is less than 0.02%, which is a strong indication of
the superior performance of VNS-DWOA. Moreover, DGTO,
SA, and GA exhibit significantly better performance than PSO,
DGWO, and Random Guessing. On the other hand, ASrm and
ACSrm only present better results than Random Guessing. PSO
is the only algorithm that does not demonstrate a significant
difference when compared to random guessing. However, this
does not imply that random guessing is superior, but rather that
we lack sufficient statistical evidence to reject the null hypoth-
esis for PSO/Random Guessing comparison. The Bonferroni-
Dunn test is known for being a conservative test, meaning that it
controls the family-wise error rate by adjusting the significance
level for multiple comparisons. Therefore, the significant dif-
ferences found between VNS-DWOA and the other algorithms
are reliable and robust.

In order to confirm the best performers, we conduct multiple

P-value SA GA PSO ASrm ACSrm DGWO VNS-DWOA DGTO Random

SA - 1.0 1E-4 0.08 1.0 5E-4 7E-04 1.0 9E-13
GA 1.0 - 0.01 1.0 1.0 0.04 3E-06 1.0 2E-09
PSO 1E-04 0.01 - 1.0 0.38 1.0 2E-17 5E-4 0.09

ASrm 0.08 1.0 1.0 - 1.0 1.0 9E-12 0.19 1E-04
ACSrm 1.0 1.0 0.38 1.0 - 0.80 9E-09 1.0 1E-06
DGWO 5E-4 0.04 1.0 1.0 0.80 - 2E-16 1E-3 0.03

VNS-DWOA 7E-04 3E-06 2E-17 9E-12 9E-09 2E-16 - 2E-4 6E-31
DGTO 1.0 1.0 5E-4 0.19 1.0 1E-3 2E-4 - 7E-12

Random 9E-13 2E-09 0.09 1E-4 1E-06 0.03 6E-31 7E-12 -

Table 4: P-values of Bonferroni-Dunn test: Green refers to the significant difference, Red reflects no significant difference (p ≤ 0.05).
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Better than VNS-DWOA SA DGTO GA ACSrm ASrm DGWO PSO Random

VNS-DWOA - 1E-10 2E-12 3E-08 3E-11 2E-11 9E-13 1E-11 9E-13
SA - 0.20 0.09 0.03 9E-04 1E-05 3E-06 6E-12

DGTO - 0.12 9E-03 1E-04 2E-07 1E-06 9E-13
GA - 0.12 0.01 2E-04 7E-05 6E-10

ACSrm - 0.18 3E-03 1E-03 1E-10
ASrm - 0.07 1E-03 8E-10

DGWO - 0.12 1E-07
PSO - 1E-04

Random -

Table 6: The Wilcoxon sum-rank test results for the comparison of the algorithms (p ≤ 0.05) -the row method better than the column method-.

pair-wise comparisons using the Wilcoxon sum-rank test. Since
we want to know which method has the lowest sample of cycle
time, we use the alternative hypothesis ”less” which means that
we are testing whether the first sample is significantly less than
the second sample. In this case, the null hypothesis H0 would
be that the median difference between the two samples is not
less than zero.
Wilcoxon sum-rank test results, recapitulated in Table 6, con-
firm the superiority of VNS-DWOA over all other eight meth-
ods with very low p-values. Additionally, the test results reveal
that SA and DGTO are both on the same level, and they sig-
nificantly outperform GA, ACSrm, ASrm, PSO, DGWO, and
Random Guessing, with p-values less than 0.05, in finding min-
imized assembly cycle time.

To sum up, the statistical analysis performed on the experi-
mental data using the Freidman Test, Bonferroni-Dunn test, and
Wilcoxon sum-rank test indicate that the VNS-DWOA method
outperforms all other methods tested. Specifically, the VNS-
DWOA method consistently achieved higher quality solutions
than the other methods, and its performance remained sta-
ble and correct even as it converged to high-quality solutions.
These results suggest that the VNS-DWOA method is a reliable
and effective optimization technique for the given problem do-
main. Therefore, it may be a promising approach to consider
for future studies or applications in this field.

VNS-DWOA, as a hybrid optimization algorithm, combines
the strengths of both Variable Neighborhood Search (VNS) and
Whale Optimization Algorithm (WOA). VNS is known for its
ability to escape local optima and explore different regions of
the search space, while WOA’s discrete encircling behavior can
efficiently converge to high-quality solutions by re-balancing
iteratively the workload taking into account its overall impact
on all equipment. In contrast, the statistical study revealed
that certain techniques, such as Particle Swarm Optimization
(PSO) and Grey Wolves Optimizer (GWO), exhibited poor per-
formance, possibly due to their difficulty in handling discrete
variables and executing discrete search operations.

Lastly, the dynamic simulation-based framework used in the
study may have also contributed to the superior performance
of VNS-DWOA. By incorporating realistic constraints and in-
teractions between different components of the hybrid assem-
bly line, the framework has provided a more realistic and accu-
rate representation of the optimization problem, facilitating the
search agents’ ability to navigate through their exploration and

exploitation processes with greater precision and accuracy.

9. Conclusion

In conclusion, we presented two recent swarm intelligence-
based methods, VNS-DWOA and DGTO, to solve a general
version of type-2 hybrid assembly line balancing problem. We
have used a discrete event simulator to accurately estimate the
cycle time of the assembly line based on a given scenario. The
optimization algorithms were tested on a real industrial use case
and compared with six other state-of-the-art meta-heuristics as
well as random guessing. The performance of the methods was
assessed using three different statistical tests on 40 independent
runs: Friedman test, Bonferroni-Dunn test and Wilcoxon sum-
rank test.
The results obtained from our study clearly demonstrate the su-
perior performance of the VNS-DWOA method compared to
all other methods, including the state-of-the-art approaches. In
terms of average cycle time, best solutions, and worst solu-
tions, the VNS-DWOA consistently outperforms its counter-
parts without any exceptions. Remarkably, within just approx-
imately 1 hour of execution, the VNS-DWOA method is capa-
ble of generating assembly scenarios that exhibit a 7% lower
cycle time compared to the scenarios proposed by the process
experts. This highlights the remarkable efficiency and effective-
ness of the VNS-DWOA method.
Furthermore, our study shows that the DGTO method performs
significantly better than several other methods, namely GA,
ACSrm, ASrm, PSO, DGWO, and Random Guessing. With an
average achieved cycle time of 119 seconds, the DGTO method
outperforms these competitors. However, it falls short of sur-
passing the performance of the process experts and the VNS-
DWOA method, as it has not consistently achieved a lower cy-
cle time on average. These findings have been validated through
rigorous statistical analysis, as indicated by the low p-values ob-
tained from the three statistical tests.
The research can be further extended to include the analysis of
optimal parameters adjustment to enhance the performance of
the proposed algorithms. Furthermore, we plan to incorporate a
global cost function that takes into account equipment costs and
other relevant factors. Moreover, we aim to develop a continu-
ous learning block that can add the concept of lessons learned
to the assembly line design. This will enable the correction of
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design mistakes made previously and allow for dynamic adjust-
ment of constraints based on the feedback dataset.
Overall, our research provides a valuable contribution to the
field of hybrid assembly line design and optimization. Our
swarm intelligence-based framework offers an effective and
efficient approach to solving assembly line design problems,
which has significant implications for the automotive indus-
try and beyond. We believe that the proposed methods can be
adapted and extended to various manufacturing and production
settings, offering practical and actionable insights for process
improvement and optimization.
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