
DisCo: A Multiagent 3D Coordinate System for Lattice Based Modular
Self-Reconfigurable Robots

Benoı̂t Piranda Frédéric Lassabe Julien Bourgeois

Abstract— Localizing each module in a modular self-
reconfigurable robot (MSR) is of paramount importance. In
MSR, the communication graph is directly mapped to the real
topology which makes the localization problem easy to solve.
However, some types of connectors can lose the orientation of
the modules, making the problem intractable. In this work,
we propose to build a coordinate system for 3D lattice-based
modular robots using a multiagent system. We present DisCo
algorithm, that uses one agent per module which can only
communicate with its connected neighbors and that does not
need a central coordination system. We show that the agents
can tackle any kinds of 3D lattice and we illustrate it with a
Face Centered Cubic lattice (12 neighbors) and a cubic lattice (6
neighbors). Using communications and only four states, DisCo
can also deduce the orientation of modules if the connectors do
not provide this information.

I. INTRODUCTION

Building a robot from a set of interconnected modules
has been an active research field for more than forty years
now. Each module forming such a modular robot can also be
enhanced by movement capabilities allowing reconfiguration
of the modules in space. Such kind of systems have been
called metamorphic robotic system and later on modular
self-reconfigurable robots (MSR). Lattice-based MSR are
one category of MSR in which the modules are aligned
on a regular lattice. To ensure scalability, these systems
use neighbor-to-neighbor communication such that adding
one more module cannot overload the network capability
compared to a bus. From a logical point of view, each
module can be seen as an agent communicating with its
neighbors and forming a multiagent system. An interesting
characteristics of MSR is that the network connection which
is a logical information, can also be interpreted as a physical
information: the location of each neighboring module.

This location of the connected neighbors is a crucial
information as it can be used to derive the shape of the
ensemble of robots. Building a global coordinate reference
system which can be applied to any kind of robots, consists
in locating the position of all modules in the lattice and
identifying their orientation.

If every module can have the relative location of its
neighbors and their orientation, the problem of building
the coordinate system is quite straightforward but it can
be impossible if the orientation information is missing.
Figure 1 shows a set of Blinky Blocks [11], which are robots
that can deduce the orientation of robots placed on the same

This work was partially supported by the ANR (ANR-21-CE33-0009)
and the EIPHI Graduate School (ANR-17-EURE-0002).

University of Franche-Comté, FEMTO-ST institute, CNRS, Montbéliard,
France [name].[surname]@femto-st.fr

b)a) reference

placed
but not

oriented

unknown
position
and
orientation

well placed
and oriented

may
compute
position

and
orientation

possible positions

Fig. 1. Illustration of the issue of the coordinates definition on Blinky
Blocks robots.(Better printed in color)

plane but cannot get vertical orientation of their top and
bottom neighbors. On the left picture, the reference robot is
the rightmost Blinky Block and it is able to communicate
the relative coordinates and orientations to all green robots.
Yellow robots on the second floor and above can be placed
but not oriented. The orientation and location of blue
Blinky Blocks could not normally be retrieved as they
are connected to yellow robots which do not know their
orientation. However, there is an algorithmic solution to
retrieve their position and orientation. The red Blinky Block
can not be placed and oriented at all and it is therefore not
possible to differentiate the 4 red robots connected to the
top yellow one (cf. Figure 1b). This can cause a collision
when moving without a sensor or can cause an incorrect
representation of the global shape of the robot.

In this paper, we propose DisCo, a robust multi-agent
architecture that builds a 3D coordinate system for lattice-
based modular robots. This algorithm uses one agent per
module which is able to communicate only with its direct
connected neighbors with no central coordination system. We
demonstrate that the agents can tackle any kinds of 3D lattice
even if the relative orientations of neighbors is not strongly
defined. We show experiments with a face centered cubic
lattice (the 3D Catoms [19], 12 neighbors) and a cubic lattice
(the Blinky Blocks [11], 6 neighbors). Using communications
and only four states, they can also deduce the orientation of
modules if the connectors do not give this information.

In the remainder of this paper, we study existing localiza-
tion algorithms for MSR and swarm. Second, we propose a
global generic positioning model which aims at solving the
positioning problem for any robot model (2D, 3D, mobile,
static). Third, we estimate our model performances by imple-
menting it on specific MSR platforms, through simulations

with VisibleSim [26], and through an implementation on real
hardware, the Blinky Blocks.

II. RELATED WORK

The first thing to localize modules into an ensemble is
to define a coordinate system which adapts to the different
kind of lattice. There are many of them like Bravais lattices
[3] but the most used in robotics is the Cartesian coor-
dinate system augmented with the orientation information.
In swarm robotics, modules are not aligned on a lattice
and most of the time the space is a 2D space, simplifying
the problem compared to a 3D one. Robots use wireless
communications (infrared, ZigBee, etc.) which are used to
evaluate the distance between them and build an approx-
imated coordinate system. In [14], McLurkin defines the
basic algorithms for sensor networks to determine physical
positions from network topology: distance estimation, error
estimation, neighbor counts and edge detection to cite a
few. In the amorphous computing project, first ideas of a
2D coordinate system for sensor networks is found in [1],
[5], [15] using communication propagated waves and three
anchors and it is refined in [16]. Minimizing communications
while having a sufficient accuracy is a complicated trade-off.
In [12], the authors propose to use co-variance intersection
[10] with moving robots.

Although there are similarities between swarm comput-
ing localization algorithms and modular robots coordinate
systems, the main difference lies in the fact that the com-
munication graph in modular robots is directly mapped
to the real topology. Chirikjian proposed in [4] the first
coordinate system for 2D hexagonal lattice without orien-
tation. A different and more detailed method is proposed
in [22] to localize robots in 2D and 3D for hexagonal
lattices but orientation works only for peripheral nodes as
it needs movement from the robots to reach a consistent
orientation. In [2], the authors use a coordinate system in 3D
without orientation to build self-assemble shapes. When the
number of modules and the imprecision of lattice increase,
a precise localization is difficult to achieve. In [6], the
authors propose an approximated 3D localization based on
probabilistic evaluation of localization using a Maximum
Likelihood Estimate (MLE) and a partition of the ensemble
between dense areas and sparse ones. The results don’t give
a precise coordinate system but rather a rough estimate of
the location, especially in sparse areas. In [9], the authors
propose an algorithm for localizing modules in a 2D grid,
without needing the orientation of the modules. This is the
closest work to what we propose and the main differences are
that they only consider a single topology and moreover only
in 2D. Furthermore, the algorithm is synchronous, meaning
that it needs a global clock or orchestration, and global
halting condition has not been implemented.

III. THE DisCo MULTI-AGENT ARCHITECTURE

A. Theoretical model

In this work, we consider lattice-based MSRs with robots
communicating with their connected neighbors using con-

nectors disposed on the surface of the robot.
In a first approach, we consider that we can express

the position and the orientation of the neighbor connectors
relatively to the local coordinate system of the robot. Under
this hypothesis, when a robot is connected to a neighbor,
it can get the relative orientation of this neighbor. This
constraint is very strong but can be solved by the latching
system. We will show in Section III-B that it is possible to
relax it using the network of robots.

In this article, we consider robots with 6 to 12 connectors
in 3D - which is the maximum number that can be reached
on spherical robots aligned in a Face Centered Cubic lattice
(FCC) lattice. Specialized robots may for instance have 12
connectors for 3D Catoms [19] or Datoms [20], 6 connectors
cubic Blinky Blocks [11], Roombots [25], MBlocks [23],
Pebbles [7] or Miche [8], 6 connectors for 2D hexagonal
robots (like mm catoms [18]), 4 for Crystalline [24] or Smart
blocks [21] in square lattice. Our method is also applicable to
heterogeneous robots combining several shapes of robots in
a same set. The only constraint is the position and orientation
of each connector in the local coordinate system of the robot.

1) The robot model: Our goal is to deduce the (xi, yi, zi)
coordinates for every robot of a connected ensemble (i ∈
[0..n]). Although most of the robots are placed in a 3D
environment, our model can process 2D environments by
simply assuming the z coordinate to be 0. Only knowing
its 3D coordinate is not sufficient enough for a robot to be
part of a global coordinate system. It must also know its
orientation defined by its angles related to the (~X, ~Y , ~Z)
vectors of the global coordinate system. Then, each position
and orientation of a robot k may be described by an homo-
geneous transformation matrix Mk.
For each robot, we consider a list of connectors Ci (i ∈
[0..m]) which are placed and oriented in the local coordinate
system of the robot applying a matrix Wi.

2) Computing the position of a neighbor: If we consider
a robot A, already placed in a referential, and connected to
another robot B using the connectors Ci from A and Cj from
B, then, the position and orientation of this second robot is
given by the following relation:

MA ·Wi · S =MB ·Wj (1)

Where S is the symmetry operator which must be applied
to Ci to get the orientation of Cj . We can express MB from
MA in the general case by:

MB =MA ·Wi · S · (Wj)
−1 (2)

Equation 2 shows that robot B can deduce its position and
orientation using the matrix MA ·Wi received from A.
We can then deduce the following algorithm:

• First, elect the Coordinate System Origin (CSO), which
set its local matrix MCSO to the identity and flood
(MCSO ·Wi) to all its direct neighbors.

• Then, when a module B receives the matrix for the
first time, it computes its position and orientation MB

applying Equation 2, and sends the (MB ·Wi) to all its
neighbors but the sender.

B. Real case, an algorithm to relax constraints

When a robot is connected to a neighbor, the neighbor fill
one of the cell of the associated lattice, the position of the
neighbor can be deduced with confidence but its orientation
around the connector is not always known.

In the following, we present DisCo, a full distributed
algorithm to deduce the position and orientation of robots
even if connection information are partial.

We first use the Blinky Block robot shape, Blinky Blocks
are not fully symmetrical robots (see Figure 2 and 1),
these Lego like robots are placed vertically on the floor
or over a neighbor, but rotations around the vertical axis
cannot be detected by the hardware. As a consequence, we
must consider two kinds of connectors: lateral connectors
{East,North,West, South} sharing the horizontal plane
and the {top, bottom} connectors. For the lateral connectors,
only one orientation of connection is possible (the two
neighbors must be vertically aligned), then all robots placed
in the same horizontal plane of an already placed and
oriented robot are placed and oriented also as presented in
section III-A .

But for neighbors placed on the top face (or the bottom
face), there are 4 possible rotations around the vertical axis.
Then a Matrices message to a neighbor placed on one of its
{Top,Bottom} faces will embed 4 matrices.

On Blinky Block robots, the {East,North,West, South}
connectors Ci (with i ∈ [0..3]) are placed at the center of the
lateral faces. We express Wi by the following homogeneous
transformation matrices:

Wi =

cos

(
iπ

2

)
− sin

(
iπ

2

)
0 1

2 cos

(
iπ

2

)
sin

(
iπ

2

)
cos

(
iπ

2

)
0 1

2 sin

(
iπ

2

)
0 0 1 0
0 0 0 1

 (3)

And for the upper and lower faces:

WUpper =

1 0 0 0
0 1 0 0
0 0 1 1

2
0 0 0 1

 (4)

and

WLower =

1 0 0 0
0 1 0 0
0 0 −1 − 1

2
0 0 0 1

 (5)

For lateral connectors the symmetry matrix is unique and
equal to:

Slateral =

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 (6)

But for top and bottom faces, the symmetry matrix may be
one of the 4 following matrices Si with i ∈ [0..3]:

Si =

cos
(
iπ2
)
− sin

(
iπ2
)

0 0
sin
(
iπ2
)

cos
(
iπ2
)

0 0
0 0 −1 0
0 0 0 1

 (7)

We can notice that in the case of Blinky Blocks, when
several modules are placed one on top of the other, the
combinations of matrices can be simplified to obtain only
4 different matrices. But of course, the number of stored
matrices can become larger when modules are connected on
the side faces of these Blinky Blocks.

1) Orientation Resolution algorithm: The model starts by
choosing the CSO, which can be arbitrarily set (based on an
identifier value for instance), or elected with some constraints
in terms of connectivity. This CSO’s orientation is set to be
the global orientation.

Each agent placed on each robot stores a list of candi-
date matrices encoding potentials positions and orientations.
When a robot floods geometrical data, it sends the list of
all possible matrices to a connected neighbor. When the
neighbor receives this list, it merges it with its local current
list in order to add new possible matrices or to reduce the
list by confirming possibilities and/or by deleting others.
Each agent can take four different states, associated with the
size of the list of matrices.

• UNKNOWN is the initial state of the agents except the
CSO which is in PLACED AND ORIENTED state, it
means the agent has never received any matrix. This
state corresponds to an empty list of matrices.

• UNTRUSTED: More than one possible position have
been received. This situation appears when the list
contains more than one matrix and the matrices do not
correspond to the same position.

• PLACED ONLY: The list of matrices contains many
matrices but only the orientation differs.

• PLACED AND ORIENTED: The list of matrices is re-
duced to only one matrix which gives a sure position
and orientation of the robot.

As soon as an agent receives a Matrices Message
it goes from UNKNOWN to one of the three other states

Fig. 2. Two pictures of experiments with Blinky Blocks extracted from the
video.(Better printed in color)

Wai�ng

CSO

CSO elec�on

Solving

#matrices

Placed &
oriented

Placed
only

untrusted

Gradient

gradient end

start

Wai�ng
is CSO

Yes

No

change to CSO

change to Gradient

myMatrices {I}
Send Depth<1>
 to all neighbors

receive
AckDepth<>

Send Matrices<myMatrices x S> to all neighbors
myLevel 1

receive
AckSolve<c>

CSO
start

myNWA=0

Yes

myNWA --

Send Finish to
all neighbors

myNWA=0
Yes

myNWA --
myCont myCont & c

myCont
=end

myNWA send Solve<myLevel> to all neighbors

myLevel ++

Yes

No

receive Depth<d>
receive

AckDepth<child>

Gradient

d<myDistance

Yes
No

myDistance d
myParent sender
myNWA send Depth<d+1>
 to all neighbors but sender

Send AckDepth<not child>
 to sender

start
myParent
myDistance inf
myMatrices
myChildren

0

0

myChildren.add(sender)

is child

Yes
No

myNWA=0

Yes
Send AckDepth<child>
 to myParent

Send AckDepth<child>
 to myParent

myNWA=0

Yes

myNWA --

0

change to Solving

receive
Solve<d>

receive
AckSolve<c>

Solving

d=myDistance
Yes

No

Send Matrices<myMatrices x S>
 to all neighbors

myNWA send Solve<d>
 to myChildren

start
myMatrices
myCont end

0

Send AckSolve<cont>
 to myParent

#myChildren
=0Yes

No

Send AckSolve<end>
 to myParent

Send AckSolve<myCont>
 to myParent

myNWA=0

Yes

myNWA --

receive Matrices<M>

#myMatrices=0

Yes
No

oldSize #myMatrices
Merge(myMatrices,MxW-1)

myMatrices.add(M)

#myMatrices
< oldSize

Yes

Send Matrices<myMatrices x S>
 to all neighbors

receive Finish

#myMatrices
=1 Yes

No

change to
Placed only

samePlace
(myMatrices)

Yes
No

change to
untrusted

myCont myCont & c

change to
Placed &
oriented

Send Finish to myChildren

Fig. 3. On the left: the global graph of agents executed in the robots during the algorithm with transition events. On the right, the DisCo algorithm
detailed by agent.

depending on the size of the sent list of matrices.
In order to change their state, agents must receive a

message that embeds a list of matrices. Merging these ma-
trices with their local matrix reduces the number of possible
matrices. The merge function compares the current list of
matrices and the one received in the message in order to
retain only compliant ones. If the receiving robot has an
empty list, it copies all matrices from the source. Else, it
retains only the intersection of both matrices lists.

2) Messages and agent attributes: Each agent stores the
list of matrices in myMatrices. In our implementation, to
reduce the memory size of embedded variables, we compress
each matrix in 7 bytes (6 bytes for the coordinates and one
for the orientation, coded by the number of the connector
aligned with −→x).

3) Breadth first search algorithm: The main problem of
the algorithm is its termination, indeed an agent cannot know
when the process of matrices exchange is finished. Only
agents in PLACED AND ORIENTED state have finished the
process but all the others may wait for a new matrix forever.

To tackle this problem, we propose to use a Breadth First
Search (BFS) that activates step by step the diffusion of
the matrices to all children with the same distance to the
root module. When the farthest modules have finished their
diffusion and return an acknowledgment to the CSO, the
positioning process is finished.
The DisCo algorithm requires three main steps and 4 agent
states as shown in the right side of Figure 3. Initially, all
agents are in the ”Waiting” state:

1) The first treatment is the election of the CSO, the

elected module changes to ”CSO” state and the others
go to the ”Gradient” one.

2) The second step consists in creating a spanning tree
from the CSO, storing at each node the list of children
(myChildren attribute) and the distance to the CSO
(myDistance attribute), which corresponds to the
depth of the node in the tree. At the end of the process,
modules send an acknowledgment to the CSO, and
change to the ”Solving” state. Steps 1 and 2 may be
merged into one step when using an election algorithm
such as ABC-Center [17].

3) During the third step, the CSO agent sends its matrices
to all its children and activates all the nodes at the
same distance from itself and wait for an answer. It
activates all modules at distance 1 first, then modules
at distance 2, and so on. When activated, an agent
sends its matrices to all its neighbors. These matrices
are merged with the others in order to reduce the list
of possible positions. If the number of matrices is
reduced, it re-sends the new list to its neighbors.

4) Finally, the CSO broadcasts a message such that each
module will have its final state: ”PLACED AND ORI-
ENTED ”, ”PLACED ONLY ” or ”UNTRUSTED ”. Each
module is then ready to begin the execution of another
application which would need the coordinates and
orientations of the modules.

For more details, this algorithm uses 6 different messages
presented in the right part of the Figure 3. Depth and
AckDepth are used for building the spanning tree and in-
form the CSO at the end of this step. Solve and AckSolve

Fig. 4. 3 steps of the algorithm illustrated on the LegoGuy model (45,189
modules) using VisibleSim [26].
a) Election of the CSO module. b) Gradient from the CSO, the colors
represent the distance to the CSO. c) Merging of matrices. (Better printed
in color)

are needed for activating nodes and for informing the CSO
at the end of the activation. The message Matrices is sent
by activated nodes to exchange matrices between neighbor
modules. Finally, the Finish message is in charge of the
termination of the algorithm.

4) Generalization to 3D Catoms geometry and connec-
tions: The 3D Catom is a quasi-spherical module placed in a
FCC lattice and connected to up to 12 neighbors. Considering
two 3D Catoms, latched using two connectors, there are
two possible orientations called up and down as shown in
Figure 5. The IDs of a connector are written in black for
the up orientation and in red for the down orientation, the
axis represent the local coordinate frames. Figure 5b shows
the two possible orientations of a latched 3D Catom for the
same couple of connectors. The gray 3D Catom (left) is
latched using its connector #1, and the right 3D Catom uses
the same connector labeled #6 on the top (yellow) and #18
on the bottom (blue) depending on its orientation, up (top,
yellow) and down (bottom, blue). As a consequence, each
3D Catom placed in the FCC lattice can be oriented in 24
different ways. To implement the computation of neighbor
position on 3D Catoms, we define the twelve Wi matrices
(i ∈ [0..11]) deduced from the coordinate systems of the
connectors Ci. And we consider two symmetry matrices Sup
and Sdown which corresponds respectively to a rotation of
180° around the −→z and the −→y .

We implement DisCo in VisibleSim simulator to show the

Fig. 5. a) Zoom on a 3D Catom connector with its IDs: black for the ’up’
orientation and red for the ’down’ orientation. b) Two 3D Catoms linked by
the same connectors #1 and #6. On the top, right 3D Catoms (in yellow) is
oriented ’up’, on the bottom, right 3D Catoms (in blue) is oriented ’down’.

different steps of the DisCo algorithm. Figure 4a presents
our model made of 45,189 3D Catoms randomly oriented,
and the position of the elected CSO. In Figure 4b, the colors
represent the distance to the CSO after the gradient step. With
this configuration all modules are well placed and oriented
by the DisCo algorithm as it can be seen from the green
color of the Figure 4c.

5) Time complexity of the algorithm: As the computation
time is negligible in regards of the communication time,
the complexity of the ”Gradient” and the ”Solving” steps
is expressed in function of the time of sending and receiving
a message between two neighbors, named tc.

The ”Gradient” step consists in constructing a
spanning tree from the CSO module whose complexity is
O(d × tc) [13]. The ”Solving” step consists in activating
sequentially all the modules at a distance r = k, with
k ∈ [1..ε]. The complexity of this step is therefore
O (2×

∑ε
r=1 r) = O(ε2).

Whatever the position of the CSO in the configuration,
we have ε ≤ d where d is the ensemble diameter.
Therefore the time complexity of the whole algorithm is
O((d+ ε2)tc) ≈ O(d2 × tc).

This result can be checked in Figure 7, drawing the
simulation time in number of messages produced during the
simulation of the DisCo algorithm depending on the eccen-
tricity. It shows two graphs for two different models made of
a wide number of modules (up to 45,000) and an eccentricity
from 10 to 111. The two curves are aligned, which shows
that the time of the simulation does not depend on the shape
(nor the number of modules) of the configurations but on the
eccentricity of the CSO only.

IV. EXPERIMENTS AND RESULTS

The algorithm has been implemented both in real robots
Blinky Blocks and in the VisibleSim simulator. This last tool
allows to scale up the number of modules. In Figures 7 and
8, we use VisibleSim to compare the duration times for two
different shapes: a cube and the LegoGuy presented Figure 4.
These two objects being vectorial (CSG object as presented
in [27]), it is easy to increase the number of modules in
resizing the objects. We simulate 25 configurations made of
up to 46,656 3D Catoms.

We observe in Figure 8 that the shape of the configuration
has an effect on the simulation time for the same number of
modules. The cube being a dense object, other shapes will
have a larger diameter for the same number of modules,
which will produce a longer time of computation.

About memory used in modules during the algorithm,
it needs a fixed number of local variables (myDistance,
myParent, myChildren, etc.), plus the list of matrices.
The matrices are encoded in modules using 4 integer (3
for coordinates and one for the orientation). The number of
matrices depends on the size of ”one module large” loops.
When the ensemble is dense, for example in the shape of
Figure 4, the maximum number of matrices stored in a agent
is 4. But in the disadvantageous case presented Figure 6

Well placed
and oriented

CSO

Well placed but
2 orientations

2 possible
positions and
2 orientations

Fig. 6. Worst case configuration of 3D Catoms. Green modules are well
placed and well oriented. Orange one are well placed but many orientations
are possible. The position and orientation of the red module cannot be
deduced by the algorithm.(Better printed in color)

made of a thin line of 9 3D Catoms, the max number of
stored matrices reaches 16. In this example, 8 out of 11
modules are well placed and well oriented (in green or pink),
2 are well placed but 2 orientations are possible for each of
them (in orange), and the right isolated red module can have
2 possible positions and orientations.

The video1 shows the algorithm in action for the two
implementations. First in VisibleSim, we can see the propa-
gation of several messages in large sets of modules (up to
45,000). Then, we present many different executions of the
algorithm implemented on 17 to 450 Blinky Blocks. We also
show that the algorithm reacts to dynamical updates of the
configuration by adding and removing modules to a set of
modules that already have their coordinates.

V. CONCLUSION

When a latching connector in a lattice based MSR does
not give the orientation of the connected module, setting up
a coordinate system is not trivial. In this paper, we propose
a multiagent system which uses communication to solve this
loss of orientation in the general case of 3D lattice based
MSR, no matter the kind of lattice being used. The com-
plexity of the algorithm is in O(d2), d being the diameter of

1 Youtube video link: https://youtu.be/WH lP3kgpB8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80 100 120

D
ur

at
io

n
(t

c)

Eccentricity of the CSO

Cube
LegoGuy

Fig. 7. Duration of the simulation (expressed in function of tc) depending
on the eccentricity of the CSO for two shapes: a cube and the Lego Guy
model.(Better printed in color)

the system. We test this algorithm in two different contexts,
a simulator, to show the scalability and a real modular robot,
to prove our algorithm works in real conditions. We show
our method scales up to 45,000 robots in simulation and
using 450 real Blinky Blocks, we validated the dynamical use
of DisCo. Indeed, Blinky Blocks are connected/disconnected
during the execution of the algorithm without causing any
issue.

We envision several future works to enhance DisCo and
different applications that would benefit from a coordinate
system on MSR.
First, we observed that it is possible to enhance the algorithm
by adding a validation process that uses a larger neighbor-
hood. It would reduce the number of matrices by checking
if a possible orientation of a robot induces collisions or
connections that does not exist.
Then, the choice of the CSO could be enhanced by choosing
a central node, however, there is a trade-off to be studied in
the benefit of running a center election algorithm, which will
also use resources.
Many uses stem from having a consistent coordinate system
over a MSR, like for example, Fault detection and ID
assignment. Adjacent robots with faulty network connections
can detect the faults by combining information from the
coordinate system and from local communications and a con-
sistent coordinate system can concatenate x,y,z coordinates
into a unique software identifier.

REFERENCES

[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George
Homsy, Thomas F. Knight, Radhika Nagpal, Erik Rauch, Gerald Jay
Sussman, and Ron Weiss. Amorphous computing. Commun. ACM,
43(5):74–82, May 2000.

[2] N. Bhalla and C. Jacob. A framework for analyzing and creating
self-assembling systems. In Proceedings of the 2007 IEEE Swarm
Intelligence Symposium, page 281–288, USA, 2007. IEEE Computer
Society.

[3] A. Bravais. Mémoire sur les systèmes formés par les points distribués
régulièrement sur un plan ou dans l’espace. Journal de l’École
Polytechnique, 19:1–128, 1850.

[4] Gregory Chirikjian, Amit Pamecha, and Imme Ebert-Uphoff. Evalu-
ating efficiency of self-reconfiguration in a class of modular robots.
Journal of robotic systems, 13(5):317–338, 1996.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

5
×103

10
×103

15
×103

20
×103

25
×103

30
×103

35
×103

40
×103

45
×103

50
×103

D
ur

at
io

n
(t

c)

Size (number of modules)

Cube
LegoGuy

Fig. 8. Duration of the simulation (expressed in tc) in function of the
number of modules for two shapes: a cube and the Lego Guy model.

https://youtu.be/WH_lP3kgpB8

[5] Daniel Coore. Establishing a coordinate system on an amorphous
computer. In 1998 MIT Student Workshop on High Performance
Computing in Science and Engineering, MIT Laboratory for Computer
Science, 1998.

[6] Stanislav Funiak, Padmanabhan Pillai, Michael P. Ashley-Rollman,
Jason D. Campbell, and Seth Copen Goldstein. Distributed localization
of modular robot ensembles. The International Journal of Robotics
Research, 28(8):946–961, 2009.

[7] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One cen-
timeter modules for programmable matter through self-disassembly.
In 2010 IEEE International Conference on Robotics and Automation,
pages 2485–2492, 2010.

[8] Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche:
Modular shape formation by self-disassembly. The International
Journal of Robotics Research, 27(3-4):345–372, 2008.

[9] Paweł Hołobut, Paweł Chodkiewicz, Anna Macios, and Jakub
Lengiewicz. Internal localization algorithm based on relative positions
for cubic-lattice modular-robotic ensembles. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 3056–3062, 2016.

[10] S. Julier and J. Uhlmann. A non-divergent estimation algorithm in the
presence of unknown correlations. Proceedings of the 1997 American
Control Conference (Cat. No.97CH36041), 4:2369–2373 vol.4, 1997.

[11] Brian T. Kirby, Michael Ashley-Rollman, and Seth Copen Goldstein.
Blinky blocks: A physical ensemble programming platform. In CHI
’11 Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’11, pages 1111–1116, New York, NY, USA, 2011. ACM.

[12] John Klingner, Nisar Ahmed, and Nikolaus Correll. Fault-tolerant
covariance intersection for localizing robot swarms. Robotics and
Autonomous Systems, 122:103306, 2019.

[13] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1996.

[14] James D. McLurkin. Algorithms for distributed sensor networks.
Master’s thesis, University of California at Berkeley, 1999.

[15] Radhika Nagpal. Organizing a global coordinate system from local
information on an amorphous computer. Technical report, MIT, AI
Memo 1666, August 1999.

[16] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Organizing
a global coordinate system from local information on an ad hoc sensor
network. In Information processing in sensor networks, pages 333–
348. Springer, 2003.

[17] Andre Naz, Benoit Piranda, Seth Copen Goldstein, and Julien Bour-
geois. Abc-center: Approximate-center election in modular robots. In
IEEE RSJ International Conference on Intelligent Robots and Systems
(IROS 2015), pages 2951 – 2957, Hamburg, Germany, sep 2015.

[18] Andre Naz, Benoit Piranda, Thadeu Knychala Tucci, Seth Copen
Goldstein, and Julien Bourgeois. Network characterization of lattice-
based modular robots with neighbor-to-neighbor. In 13th International
Symposium on Distributed Autonomous Robotic Systems (DARS),
volume 6 of Springer Proceedings in Advanced Robotics (SPAR),
pages 415 – 429, London, United Kingdom, nov 2016. Springer.

[19] Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical
module for a huge modular robot to create programmable matter.
Autonomous Robot Journal, Special Issue: ‘Distributed Robotics:
From Fundamentals to Applications’, 42(8):1619–1633, 2018.

[20] Benoit Piranda and Julien Bourgeois. Datom: A deformable modular
robot for building self-reconfigurable programmable matter. In 15th
International Symposium on Distributed Autonomous Robotic Systems
(DARS 2021), Kyoto, Japan, jun 2021.

[21] Benoit Piranda, Guillaume Laurent, Julien Bourgeois, Cédric Clevy,
Sebastian Möbes, and Nadine Le Fort-Piat. A new concept of
planar self-reconfigurable modular robot for conveying microparts.
Mechatronics, 23(7):906 – 915, oct 2013.

[22] Greg Reshko. Localization techniques for synthetic reality. Master’s
thesis, Carnegie Mellon University, 2004.

[23] John W. Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus.
3d m-blocks: Self-reconfiguring robots capable of locomotion via
pivoting in three dimensions. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 1925–1932, 2015.

[24] Daniela Rus and Marsette Vona. Crystalline robots: Self-
reconfiguration with compressible unit modules. Autonomous Robots,
10(1):107–124, 2001.

[25] A. Spröwitz, R. Moeckel, M. Vespignani, S. Bonardi, and A.J. Ijspeert.
Roombots: A hardware perspective on 3d self-reconfiguration and
locomotion with a homogeneous modular robot. Robotics and Au-

tonomous Systems, 62(7):1016–1033, 2014. Reconfigurable Modular
Robotics.

[26] Pierre Thalamy, Benoit Piranda, Andre Naz, and Julien Bourgeois.
Behavioral simulations of lattice modular robots with visiblesim. In
15th International Symposium on Distributed Autonomous Robotic
Systems (DARS 2021), Kyoto, Japan, jun 2021.

[27] Thadeu Knychala Tucci, Benoit Piranda, and Julien Bourgeois. Ef-
ficient scene encoding for programmable matter self-reconfiguration
algorithms. In 32nd Annual Symposium on Applied Computing (SAC
2017), volume Morroco, Marrakesh of ACM International Conference
Proceedings, pages 256 – 261, Marrakech, Morocco, apr 2017.

	Introduction
	Related work
	The DisCo multi-agent architecture
	Theoretical model
	The robot model
	Computing the position of a neighbor

	Real case, an algorithm to relax constraints
	Orientation Resolution algorithm
	Messages and agent attributes
	Breadth first search algorithm
	Generalization to 3D Catoms geometry and connections
	Time complexity of the algorithm

	Experiments and results
	Conclusion
	References

