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Abstract 

Li-Ion batteries are among the key enablers of more sustainable use of energy. However, they need to be supervised 

and undergo continuous maintenance to assure safety and longevity. This paper focuses on the sensorless detection of 

the State of Temperature (SOT) of the Li-ion batteries during the operational life cycle of the battery irrespective of 

its state of charge. The paper presents the new Intelligent Gray Box Model (IGBM) to detect the SOT of Li-ion cells: 

that combines the three most powerful diagnostic tools Electrochemical Impedance Spectroscopy (EIS), Equivalent 

Circuit Model (ECM), and Artificial Neural Network Classifier (NNC). The work introduces the experimental test 

bench capable of emulating real-world and embedded constraints to conduct EIS onboard, its data preprocessing, and 

useful information extraction for the entire frequency spectrum. Furthermore, this paper presents a new hybrid 

parameter identification that combines the Whale Optimization Algorithm (WOA) and Levenberg Marquardt 

algorithm (LM) to identify the fractional order ECM. Finally, a neural network classifier is designed, optimized, and 

compared with different feature scaling techniques to evaluate its accuracy and robustness to detect and classify exact 

battery temperatures in real time from experimental data. 
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1. Introduction 

The green energy transition has highlighted the interest in researching alternative energy storage systems, Li-ion 

batteries dominate the market due to their high energy efficiency. As a result, multiple electric propulsion systems are 

opting for the use of Li-ion batteries for their improved energy density, safety, and prolonged lifecycles. Often in 

applications such as the automotive industry, the Li-ion batteries are designed at optimized performance limits to 

reduce the cost associated with Electric Vehicles (EVs). In real-life operations the conditions of the battery vary 

continuously and can reach extreme conditions, not suitable to meet its predefined lifecycle duration [1]. Factors such 

as temperature, rate of charge, and discharge cause the battery to accelerate its degradation and produce faulty behavior 

quickly. Hence, the need for continuous battery cell monitoring to determine its characteristics over the various 

operating cycles is of prime concern to optimize its primary life and redefine the secondary life of batteries. One such 

method, widely used, is the measurement of the internal electrical impedance of the battery cell which can identify 

parameters such as the state of health, charge, and temperature of the battery [2]. Various studies using EIS have been 

carried out in the laboratory environment to benchmark the characteristics of battery cells. However, the major 

constraint remains the same, these techniques are limited to laboratory applications. 

The optimal operation of batteries requires continuous monitoring of the quantities of stored and storable energy as 

well as a good assessment of the state of aging and the ability to meet the performance required by the application [3]. 

The current methods for temperature measurement require a large number of sensors, resulting in difficulty of 

organizing, servicing and maintenance using this large amount of data.   Moreover, the estimation of the states of 

charge and health of batteries in operation gives limited results involving drifts, leading to reductions in energy 

performance [4-6]. 



1.1. Classical Fault Detection and Management for Li-batteries 

Fault detection is critical and of prime importance in the operational lifecycle of Li-ion batteries, and in general for 

the safety of the user. Battery characteristics tend to be sensitive to the ambient temperature around them and are 

infamous for their thermal runaway and fire hazards [7]. An unmonitored excessive heating of the battery leads to its 

permanent destruction. The faults occurring inside a battery pack are usually inherited by individual cells. Hence 

individual battery cell monitoring techniques are being developed to detect defects, improper loads, hotspots of 

temperature, and harsh operational conditions and alert the Battery Thermal Management Systems (BTMS) to isolate 

and protect the battery units. Table 1 represents the faults occurring at cell level in a module of a battery pack. Faults 

occurring inside Li battery packs can be classified into various types depending on the source of the faults i.e., sensor-

related [8], mechanical stress-related faults, or misread-miscalculated faults such as unequal current and voltage loads 

from BMS leading to overcharging and undercharging of cells [9-10], localized heating of the cells which leads to 

faster capacity fading of the cells individually in a pack.  

Table 1: Cell level fault types. 

Faults   

Short Circuits  (1) Internal 

(2) External 

SOH (1) Capacity fade 

(2) Rapid SEI growth 

(3) Increased internal resistance 

SOC (1) Overcharge 

(2) Under charge 

SOT (1) Cell overheating 

(2) Thermal runaway 

(3) Low temperature, Capacity fade 

 

The temperature variation has a significant impact on the electrochemical processes of lithium-ion batteries, affecting 

their kinetic and thermodynamic properties [11]. The conductivity of the electrolyte affects the rate of solvation and 

desolvation of ions, which naturally increases the resistances involved in the charge and mass transfer processes. This 

relationship is often represented by Butler-Volmer equations and analyzed by the Arrhenius relation [12]. In this work, 

a temperature indicator is introduced, as State of Temperature (SOT) which indicates the internal temperature of the 

battery 𝑇𝑏𝑎𝑡 , as the intrinsic function of Electrochemical Impedance Spectroscopy (EIS) measured over a wide range 

of frequencies. SOT is mathematically expressed as Eq. (1) 

𝑆𝑂𝑇 °𝐶 = 𝐸𝐼𝑆 𝑓 [𝑇𝑏𝑎𝑡 ± (
𝑇𝑏𝑎𝑡 + ∆𝑇𝑏𝑎𝑡

𝑇𝑎𝑚𝑏

)] 
(1) 

Where, ∆𝑇𝑏𝑎𝑡≤ ±1°C accounts for the error in measurement, radial and longitudinal temperature variations across the 

battery surface. 𝑇𝑎𝑚𝑏  is the enforced operating temperature by the thermal chamber on the battery surface, assuming 

𝑇𝑏𝑎𝑡 = 𝑇𝑎𝑚𝑏  at thermal equilibrium and zero current. The presented work focuses on the detection of the SOT, 

including the SOC variations of the battery using the novel developed IGBM model. 

1.2. Diagnostic Methods  

The interplay between SOC, SOH, and SOT remains less explored for fault detection and diagnosis, most of the 

literature is based on the use of direct measurements followed by equivalent model parameter identification using 

Kalman filters [13]. The grey box models to indicate a relationship between EIS response and ECM were first proposed 

by Westerhoff et al. [14]. Gao et al. [15] presented a method to predict battery life using the relationship between EIS 

and ECM parameters. Several studies in literature follow a similar line of thought to estimate SOC and SOH of the 

battery [16-23]. Similarly, an equivalent circuit considering the internal temperature gradient was introduced by Jiang 

et al. [24], Zhang et al. [25], and  Zhu et al. [26]. It presents the empirical dependence between ECM parameters and 

the temperature of the battery. Another approach includes numerical and mathematical models [9, 27-30]. Damay et 

al. [31] and Inui et al. [32] proposes a method based on Butler-Volmer and Arrhenius equations, which optimizes the 

surface resistance of the battery to detect its temperature. However, this method yields excellent results at positive 



temperatures, but it performs poorly to detect negative temperatures of the cell. With the advance and flexibility of 

deep learning methods, many black box models use measurements directly from the battery to predict its states. Yang 

et al. [33] used a back-propagation regression neural network to predict the SOH of the battery with an error range of 

6-10% in estimation. Tong et al. [34] used Long Short Term Memory (LSTM) and hybrid ensemble learning to predict 

capacity fading over cycles, the study reports 0.2-1% of Mean Square Error (MSE) for different battery chemistry. 

While Ma et al. [35] proposed a multi-fault diagnosis method for Li-ion battery pack using Principal Component 

Analysis (PCA) to reconstruct the fault waveforms (ohmic resistance, OCV, and voltage across the battery from the 

experimental data. 

This article addresses the gap in the research by detecting the SOT of the battery cell, while the battery is still in 

service, irrespective of its SOC, and considering that the SOH remains constant during the experiment. Most of the 

literature on temperature detection of Li-ion batteries is based on the use of onboard thermal sensors, generating 

experimental data, making the diagnosis of SOT is often expensive and complex to manage for a battery pack. The 

method proposed in this paper provides a resilient method to classify battery cells at different temperatures robustly 

based on their impedance values using the NNC. The training of the network is done by using optimized equivalent 

circuit parameters which act as predefined strong input features. The ability to classify the SOT of batteries correctly, 

once the model is trained for a specific chemistry and cell type, provides an opportunity to implant the algorithm on 

onboard controllers, which can conduct EIS and later classify using the NNC. 

Table 2: State of Art in Battery Diagnosis.  

Study Diagnosis Technique Cell Type Fault Classification Characteristics  Reference 

Diego et al. 
(2022) 

ECM  

Electro-thermal model 
using constrained 

Zonotopes  

NA  
Simulation, 

Resistance 

Estimation   

-Incorrect Cooling  
-Internal Thermal  

-Core Temperature 
Rise 

(1) Purely mathematical model  

(2) Uses set-based Estimation. 
(3) 30-45% Estimation error in 

predicting three resistances 

[9] 

Zhang et al. 
(2022)  

Laboratory EIS, 
Equivalent Circuit 

LiCoO2 

NCM 

NCA 

State of Charge 

(SOC)  
The link between 

ECM and EIS   

(1) Simulated annealing Optimization.  

(2) MAE 2.6%  

(3) Offline  

[25] 

Zhu et al. 
(2015) 

Laboratory EIS +ECM  

Commercial 

Suzhou 

Phylion 8 Ah  

-Internal 

Temperature and 

SOC  

(1) Online Lookup table 

(2) Based on the Phase Shift of 

impedance to detect SOT, SOC  
(3) The method is redundant due to the 

few selected frequencies. 
(4) MAE Error 8% 

[26] 

Zongxiang et 

al. 

(2022) 

Weighted Pearson 
Coefficient, 

Sparse Data Observer  

Voltage, Current 
measurements 

Li-ion  
Short circuit and 
sensor Faults  

(1) Offline 
(2) Highly Sensitive to forgetting 

parameters.  

(3) Error % not reported.  
 

[28] 

Damay et al. 

(2021) 

Laboratory EIS + 

ECM, GITT 

Commercial 

LiFePO4,  
40 Ah   

-Internal 

temperature 
-Fixed SOC 

(1) Based on Butler Volmer and 

Arrhenius Equation. 
(2) Contribution of the amplitude of 

the excitation pulse and 
temperature. 

(3) Low accuracy at lower 

temperatures  

[31] 

Inui et al. 

(2021) 

Laboratory EIS + 

ECM 

Samsung:  

ICR18650-

22F, Sony: 
US18650GR 

NMC, 2.2 Ah 

 -Internal 
temperature 

- Fixed SOC  

 

(1) Based on Arrhenius Equation. 

(2) Strongly dependent on estimation 

of activation energy 
(3) No information for lower 

Temperatures (+10 to + 40°C) 

[32] 

Yang et al. 

(2017) 

HPPC Test + 

ECM+ Neural 
Network 

LiFePO4 
-State of Health 

SOH Estimation 

(1) Offline  

(2) Simple first-order ECM. 
(3) MAE Error 8%  

[33] 

 

Ma et al. 
(2022) 

PCA Fault waveform 

reconstruction   
Terminal Voltage, 

OCV, ohmic resistance  

Li -ion  

Connection faults 

and External Short 

circuit  

(1) Online  

(2) Highly Sensitive to Input Ohmic 
resistance and OCV, Voltage 

(3) Error % not reported 

[35] 



2. Novel Gray Box Methodology  

The proposed method in Fig. 1 depicts the novel Intelligent Gray Box Model (IGBM) that aims to develop an 

embedded integrated monitoring system which is capable of determining SOC, SOH, and SOT on a real-time basis 

for the onboard diagnosis system. The inspiration for this approach stems from studying and addressing the limitations 

observed in the individual methods documented in Table 2 of the literature. For instance, relying solely on EIS is 

susceptible to the specific frequency range chosen for establishing correlations between the SOC, SOH, SOT, and the 

operational condition of the cell. This limitation can result in less robust identification of the causes of faults. However, 

the gray box model addresses these shortcomings by combining the simplicity of EIS with hybrid optimized equivalent 

circuit parameter identification. Which then extracts the features (ECM parameters) from the entire EIS spectrum 

rather than only depending on several interesting frequency points. The extracted features are fed as input to a NNC 

to identify the SOT. The main advantage of this methodology is that the noises and stochastic errors of EIS 

measurements under different frequencies can be counteracted and thus retain more useful information between 

different input features and the predicted output. The method provides a possibility of transferring the learning of the 

model on an embedded controller for onboard applications, thus enabling a real-time online embedded diagnosis 

method. 

 
Figure 1: Intelligent Gray Box Model 

The principle of the presented IGBM is adaptable to different chemistries of Li-ion batteries, and other electrochemical 

energy storage systems like fuel cells, Na batteries, etc. and can hence, be used to predict the exact value of SOH, and 

or Remaining Useful Life (RUL), SOC and SOT of batteries.   

2.1. Electrochemical Impedance Spectroscopy  

Batteries are often subjected to fast dynamic changes to meet up the load demands, multiple slow and fast processes 

occur inside the battery while it’s in operation. These phenomena tend to interfere with each other and create complex 

behavior [36]. EIS is a non-destructive technique used to study the dynamic response of the battery by subjecting it to 

a small excitation current signal 𝐼(𝜔𝑡) and measuring its response voltage 𝑉(𝜔𝑡)signal (by galvanostatic method). Eq. 

(2) represents the impedance calculated from the current and voltage signals of the battery. 

𝑍 =
𝑉(𝜔)
⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐼(𝜔)
⃗⃗ ⃗⃗ ⃗⃗  

=
�̂� − 𝑂𝐶𝑉

𝐼
= 𝑍𝑟𝑒(𝜔) + 𝑗. 𝑍𝐼𝑚(𝜔)          (2) 
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2.2. Equivalent Circuit of Li-Ion Battery Cell 

  
 

Figure 2: General layouts for Li-ion batteries (a) internal structure of NMC (b) physical link between ECM and EIS.   

Equivalent circuit parameters are used to associate the physical effects occurring inside the electrochemical system, 

i.e., the battery cell. Fig. 2(a) presents the general structure of the Li-batteries where the positive electrode is made of 

the battery technology definition here Nickel Manganese Cobalt Oxide (NMC 111) cathode with 33% concentration 

each and the anode is made up of graphite [37]. As the battery ages, it tends to lose its capacity due to the rapid increase 

of the Solid Electrolyte Interphase (SEI), a layer that is developed by multiple charge and discharge cycles [24, 31]. 

It increases the resistance faced by ions in porous transfer, at the active site between the separator membranes. This 

impedance is represented in the frequential domain on the Nyquist plot as a semi-arc in Section 3 of  Fig. 2(b) 

Similarly, Section 1 represents the inductive effects caused by the movement of electrons in the wire and winding of 

internal electrodes. Section 2 represents the initial internal electric and ionic resistance encountered by the current 

collectors, active materials, electrolyte, and the separator within the battery. Following Section 4 showcases the charge 

transfer resistance experienced by ions [38]. Various equivalent circuits are presented in the literature describing 

thermal, electric, and kinetic models.  In reality, these are complex phenomena occurring at different time constants 

and the use of RC grid circuits ceases to be accurate. Eq. (3) describes a Constant Phase Element (CPE) that fine-tunes 

the fitting results by providing fractional order models to rectify the time constants.  

𝑍𝐶𝑃𝐸 =
1

𝑄(𝑗𝜔)𝜙
                      (3) 

where Q is the generalized capacitance and 𝜙  is the power depression factor. In parallel with resistance, CPE acts as 

a ZARC element, it is purely resistive when 𝜙 is 0 and it’s a pure capacitor when 𝜙 =1.  Section 5 represents the 

slower process of three different diffusions occurring inside the battery cell, namely the diffusion of lithium atoms in 

the active materials of both electrodes and the diffusion of lithium ions in the electrolyte [38, 39]. Traditionally it is 

represented by the Warburg element of finite length or finite space. However, in this study, we found using CPE 

element with variable power 𝜙 to represent the semi-infinite diffusion process as a function of the temperature of the 

battery to be more coherent. Thus, the above model expresses the relationship between ECM parameters and the 

electrochemical, thermal, and kinetic phenomenon of the battery.  

3. Experimental Setup  

The interest of developing this particular methodology of conducting EIS using an electronic load is to understand 

and be able to control and emulate all the constraints faced in an embedded environment, such as controlling the 

frequency of sampling and emulating the current profiles coherent to real-world driving cycles. The developed test 

bench presented in Fig. 3(a) and Fig. 3(b) is capable of rapid charge and discharge cycles, implementing accelerated 

capacity fading due to extreme temperature conditions, etc. All the operating conditions that might arise in the actual 

real world can be programmed and defined using the developed Human-Machine Interface in LabVIEW.   
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Figure 3: Experimental Test Bench (a) designed EIS set up (b)actual test bench (c) calibration unit. 

3.1 Data Acquisition and Processing 

The electronic load Chroma brand 63202A series, 600 V, 140 A, and the power source ITECH M3432, 60 V, 30 A 

are connected in parallel to allow charging and discharging regulation of the DC and AC components of the current 

in the battery, supplied by the user. The amplitude of the excitation signal is always kept below the nominal battery 

current to respect the linear domain of the model and validate the EIS readings. For precise data acquisition of signals, 

an oscilloscope of Tektronix model MDO3024 200 GHz is connected by its current and voltage probes across the 

circuit to measure the signals. Data signals for fixed 10,000 samples are recorded at each frequency of EIS 

measurement. National Instruments LabView 21 Virtual Instrument Software Architecture (VISA) was created to 

control, automate, and acquire the signal data.  

Fig. 3(c) illustrates the calibration unit which utilizes a printed circuit board based on a differential operational 

amplifier to enhance the signal-to-noise ratio. The board incorporates known resistances for both calibration and 

amplification of the sinusoidal battery voltage response. Then the amplified signal 𝑉𝑜𝑢𝑡 can be defined by Eq. (4) 

where 𝑉𝑏𝑎𝑡 is the cell voltage, 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 the voltage set to OCV and gain the amplification rate of the sinusoidal 

component of 𝑉𝑏𝑎𝑡.  

𝑉𝑜𝑢𝑡 = 𝑔𝑎𝑖𝑛 (𝑉𝑏𝑎𝑡 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡) (4) 

3.1.1 Preprocessing from Time to Frequential Domain 

The voltage and current signals acquired from the oscilloscope are in the time domain such that for each frequency 

point of measurement is recorded with their discrete time interval between samples, this discrete time is predefined 

and controlled by adjusting the number of periods k of the signal and its sampling frequency 𝐹𝑠 at which the data is 

acquired. The N samples of a signal allow the real and imaginary parts of harmonics of rank k to be computed. The 

rank of the corresponding harmonic to the excitation is defined as the number of measurement periods. The 

computation of current excitation 𝐼(𝜔𝑡) and its voltage response 𝑉(𝜔𝑡) in the frequency domain is carried out using Eqs. 

(5) and (6) of the Discrete Fourier Transform (DFT) as presented in the algorithm. (1), from the previous works of 

Depernet et al [40]. The computation of impedance at that frequency of excitation is computed by Eq. (7). The DFT 

function is described in the algorithm. (1), it performs an iteration over the number of frequency points set (ω), to 

store real 𝑍𝑅𝑒  and imaginary 𝑍𝐼𝑚 impedance values of the battery cell, the data is saved as a .mat file for that 

measurement and SOC level. 
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Algorithm 1: Discrete Fourier Transformation 

Input: Load the directory and path of  data files 

Define ω (10000, 9000, ...,0.03 Hz) 

for soc ∈= {(0,1,2,3, . .7)} %No.of SOC levels of cell  do 

      for 𝑖 ∈= {0, … . , 𝜔(𝑁𝑓)} %No.frequencies of EIS do 

            Import data files, I, V, k, n, N, dt (sampling time interval) 

            Perform DFT of V, I (Eq. 5, 6) 
            Calculate Real and imaginary parts of V, I for each harmonic rank n, 

k. 

{
𝐼𝑅𝑒(𝑓) =  

2

𝑁 
∑ 𝐼(𝑛) ∗ cos (

2𝜋𝑘𝑛

𝑁
)𝑁−1

𝑛=0

𝐼𝐼𝑚 (𝑓) =  − 
2

𝑁 
∑ 𝐼(𝑛) ∗ sin (

2𝜋𝑘𝑛

𝑁
)𝑁−1

𝑛=0

}                             (5) 

{
𝑉𝑅𝑒  (𝑓) =  

2

𝑁 
∑ 𝑉(𝑛) ∗ cos (

2𝜋𝑘𝑛

𝑁
)𝑁−1

𝑛=0

𝑉𝐼𝑚(𝑓) =  − 
2

𝑁 
∑ 𝑉(𝑛) ∗ sin (

2𝜋𝑘𝑛

𝑁
)𝑁−1

𝑛=0

}                            (6) 

Calculate Impedance values 𝑍𝑅𝑒 , 𝑍𝐼𝑚 using Eq. (7) 

{
𝑍𝑅𝑒 = 

(𝑉𝑅𝑒)∗(𝐼𝑅𝑒)+(𝑉𝐼𝑚)∗(𝐼𝐼𝑚)

(𝐼𝑅𝑒)
2+(𝐼𝐼𝑚)2

𝑍𝐼𝑚 = 
(𝐼𝑅𝑒)∗(𝑉𝐼𝑚)−(𝑉𝑅𝑒)∗(𝐼𝐼𝑚)

(𝐼𝑅𝑒)
2+(𝐼𝐼𝑚)2

}                                                (7) 

             Store 𝑍𝑅𝑒 , 𝑍𝐼𝑚  and ω 

        end 

        soc+=1 % move to next soc EIS readings 
end  

 

3.1.2 Validation of Experimental Test Bench  

 
 

Figure 4: EIS of the cell (a) repeatability of the set-up SOC 100%, 25 °C (b) different SOC of the cell, 25 °C.  

EIS setup in general tends to be very sensitive with respect to the connecting cables, the parasitic inductance of the 

apparatus used, the external influence of temperature or voltage flux deviation from the source, etc. Validation of the 

developed  test bench was carried out by conducting a set of 6 consecutive EIS under similar operating conditions for 

the same cell and the results are compared are shown in Fig. 4(a), EIS is measured with the direct current 𝐼𝑑𝑐 equal to 

0 A and excitation 𝐼𝑎𝑐  equal to 0.5 A maintaining the battery cell at 25°C and fully charged at SOC100% with 5 

minutes of rest time between each EIS. The Nyquist plot of the first EIS test is identical to the other five consecutive 

readings proving the robustness and fidelity of the setup to capture the same response at each repetition of the test, 

under similar conditions.  

      

     

      

     

      

 

     

    

                               

             

             

             

             

             

             

      

     

      

     

      

 

     

    

                               

       

      

      

      

      

      

      

      

a) b) 



𝑆𝑂𝐶 =  
𝐶𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠

𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙
∗ 100%  (8) 

𝐶𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 = ∫ 𝐼(𝑡) ∗ 𝑑𝑡
𝑡1
𝑡0

  (9) 

Eq. (8) describes the SOC indicator measuring the instantaneous capacity 𝐶𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠  of the battery to the rated 

maximum capacity 𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙  of the battery, where the instantaneous capacity is calculated by Eq. (9) and 𝑡0 = 0 s, 𝑡1 

= 720 s for 𝐼𝑑𝑐  = 1.3 A discharge current. 

3.2 Tests to Characterize Battery SOC and SOT 

The tests are conducted using a Samsung ICR18650-26F cylindrical cell, with cathode composition as NMC111, 3.7 

V nominal voltage, and 2600 mAh nominal capacity, cut-off voltage is specified by the manufacturer as 2.75 V and 

an initial AC impedance of equal or less than 100 mΩ at 1kHz. The battery cell is supposed to last 299 standard CC-

CV cycles [37]. The battery cell under tests has prior 2 years of calendar aging, it was stored in appropriate dry and 

stable thermal conditions at 25°C with none of the none of the cyclic aging. The entire test campaign of 480 tests was 

conducted in 2 consecutive weeks to avoid any SOH variation.  Table 3 describes the test campaign that was designed 

with the help of the LabVIEW based test bench supervision to conduct 6 consecutive EIS at each SOC level while 

controlling the temperature of the climate chamber. Four hours of rest in the set temperature of the climate chamber 

is respected before launching the EIS tests to achieve a uniform battery surface temperature (𝑇𝑏𝑎𝑡) and thermal 

equilibrium, which is monitored using two temperature sensors (Pt-100 and k-type thermocouple) placed centrally on 

the top of the surface of the cell throughout the test. Heating of the battery cell due to discharging, and excitation 

accounts for a ∆𝑇𝑏𝑎𝑡  of less than 0.1°C. Between each discharge of 10% SOC a rest time of 30 minutes is incorporated 

to achieve electrochemical equilibrium and to account for the OCV stabilization of the battery post-charge and 

discharge. Fig. 4(b) represents the first measurement of EIS at subsequent SOC levels between 100-30%. 

Table 3: EIS Test Campaign.  
Steps Process Units  

1 Charge Cell CC-CV  

Rest  

1.3 A, 3 h till 4.2 V 

24 h 

2 Set the Temperature of the cell in the thermal Chamber  4 h Before test 

3 Measure OCV, Calculate SOC  Instantaneous before Test  

4 6 EIS tests at 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙=100%, fully charged cell  𝐼𝑑𝑐 =0 A, 𝐼𝑎𝑐 =0.5 A, 0.03 Hz-10 kHz 

5 Discharge cell CC by 10% of 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1.3 A, 0.5 C for 720 seconds 

6 Rest  1800 seconds 

7 6 EIS tests  (𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 10)% 

Repeat (the steps 5,6,7 until SOC drops to 30%) 

 𝐼𝑑𝑐 =0 A, 𝐼𝑎𝑐 =0.5A, 0.03 Hz-10 kHz 

8 Repeat the procedure for all Temperatures   𝑇𝑎𝑚𝑏 = [-10, -5,0,5,10,15,20,25,30,35] °C 

4 Hybrid Estimation of Equivalent Circuit Parameters  

Parameter identification aims to find the value of the unknown ideally optimized parameter vector θ of the equivalent 

circuit model so that the identified model represents the experimental values as closely as possible [41]. Since the 

Nyquist plot represents both real and imaginary parts of impedance spectroscopy, essentially this becomes a 

minimization of the nonlinear least square problem as described in Eq. (10). 

{𝑚𝑖𝑛𝑥 𝐹(𝑥) = ∑ {(𝑍𝑅𝑒𝐸𝑥𝑝
(𝜔) − 𝑍𝑅𝑒𝑚𝑜𝑑𝑒𝑙

(𝜔, 𝜃))
2

+ (𝑍𝐼𝑚𝐸𝑥𝑝
(𝜔) − 𝑍𝐼𝑚𝑚𝑜𝑑𝑒𝑙

(𝜔, 𝜃))
2

}𝑁
𝑖   

(10) 

Model parameters are calculated based on ECM described in Fig. 5(a), Eq. (11) shows the total impedance of the 

proposed ECM model which is replaced in Eq. (10).  

𝑍𝑚𝑜𝑑𝑒𝑙 = {𝑅0 + 𝐿(𝑗𝜔) +
𝑅1

1 + 𝑅1𝑄1(𝑗𝜔)𝜙1
+

𝑅2

1 + 𝑅2𝑄2(𝑗𝜔)𝜙2
+

1

𝑄3(𝑗𝜔)𝜙3
} 

(11) 

𝑍𝑅𝑒𝑚𝑜𝑑𝑒𝑙
= 𝑓 {𝑅0, 𝑅1, 𝑅2, 𝑄1, 𝑄2, 𝑄3, 𝜙1, 𝜙2, 𝜙3, 𝜔}  (12) 



𝑍𝐼𝑚𝑚𝑜𝑑𝑒𝑙
= 𝑓 {𝑅0, L, 𝑅1, 𝑅2, 𝑄1 , 𝑄2, 𝑄3, 𝜙1, 𝜙2, 𝜙3, 𝜔}  (13) 

The real and imaginary parts of impedance are calculated by splitting denominators using Euler's formula. The 

dependency of ECM parameters in the objective function is defined as follows in Eqs. (12) and (13) and can further 

be accessed in Appendix A of the supplementary material. 

Thus, the estimation vector of the objective function has 10 parameters in  Eq. (14)  

𝜃 = 𝑓 {𝑅0, L, 𝑅1, 𝑅2, 𝑄1, 𝑄2, 𝑄3, 𝜙1, 𝜙2, 𝜙3, 𝜔}  (14) 

In most of the standard optimization processes, it is necessary to set appropriate initial conditions for the algorithm so 

that it can locate the global minimum and does not get stuck in a local minimum. To overcome this hurdle, we propose 

the hybrid optimization routine in Fig. 5(b), where the Whale Optimization Algorithm (WOA) acts as a global 

optimizer and pre-allocates a very close to true value initial guess (𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙) and then local optimization is carried out 

using the Levenberg Marquardt (LM) algorithm which refines and estimates the final local minimum. The Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) are used as the fitness evaluation metric. Mirjalili et al. [42], 

presented the WOA technique, it is a metaheuristic optimization algorithm inspired by the social behavior and hunting 

strategy of humpback whales in a group. The algorithm mimics the three phases of whales during their prey foraging 

search, encircle and attack to find the optimal solution. The number of search agents (whales) and the initial population 

is defined 𝑁, and the location of whales and potential solutions (location of prey) is updated at each iteration based on 

the probability function that favors exploration in high-dimensional space and potential of likely solutions found based 

on a fitting criterion.  

 
Figure 5: Hybrid Optimization (a)equivalent circuit Model of Li-ion cell (b)WOA and LM algorithm (c)comparison of various optimization 

techniques. 

The LM method combines both the Gauss-Newton method and the gradient descent method, at each iteration it 

minimizes the objective function 𝑚𝑖𝑛𝑥  𝐹(𝑥) by approximating second-order Taylor expansion around 𝑥𝑘  as the 

current estimate and new estimation at  𝑥𝑘+1  represented in Eq. (15)  
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𝐹(𝑥) ≈  𝐹(𝑥𝑘) +  (𝑥 −  𝑥𝑘)
𝑇𝐽𝑘

𝑇𝑓𝑘  +  
1

2
 ∗  (𝑥 −  𝑥𝑘)

𝑇𝐽𝑘
𝑇 𝐽𝑘 (𝑥 −  𝑥𝑘) 

 (15) 

a) 

c) 

b) 



where 𝐽𝑘 is the Jacobian matrix of 𝐹(𝑥)  evaluated at 𝑥𝑘, and 𝑓𝑘 is the vector of residuals evaluated at 𝑥𝑘  . To minimize 

the above approximation of 𝐹(𝑥) we set the gradient to zero, which yields  𝐽𝑘
𝑇𝐽𝑘 the Hessian unstable, as its positive 

definiteness cannot be ensured, to increase the stability and convergence. The LM algorithm uses scalar damping 

factor λ multiplied by the identity matrix such updated parameters 𝑝𝑘 are given as in Eqs. (16) and (17): 

The updated parameter vector is given as follows in Eq. (18): 

To evaluate the effect of the proposed parameter identification method, several existing algorithms such as particle 

swarm optimization (PSO), genetic algorithm (GA), and simulated annealing algorithm (SAA) were implemented and 

evaluated based on a fixed number of iterations and means square error metrics. The results of the comparison between 

various optimization techniques are depicted in Fig. 5(c). Using EIS data of battery cell at 25°C and SOC100% from 

measurement 1, the identified results are compared in Table 4. It can be observed that the proposed WOA-LM 

algorithm has the smallest RMSE error of 0.0144 Ω as compared to the SAA, GA, and PSO methods. The obtained 

parameters show great variation between them, indicating how highly non-linear the objective function is; thus, a 

highly accurate parameter identification method is necessary. 

Table 4: Comparison of Various Global Optimizers.  

Method 
𝐑𝟎 

(Ω) 
𝐋 

(μH) 

𝐑𝟏 

(Ω) 

𝐐𝟏 

(F.s(1-ф1)) 
𝛟𝟏 

𝐑𝟐 

(Ω) 

𝐐𝟐 

(F.s(1-ф2)) 
𝛟𝟐 

𝐐𝟑 

(F.s(1-ф3)) 
𝛟𝟑 

RMSE 

(Ω) 
Time 

(mins’ s”) 

SAA 0.0627 0.32 0.0167 2.8501 0.5732 0.0033 0.1684 0.9200 558.8 0.7156 0.0146 4’, 41.38” 

PSO 0.0604 0.13 0.0147 2.5593 0.8524 0.0044 0.0391 0.6832 432.3 0.7016 0.0198 3’, 19.27” 

GA 0.0597 0.32 0.0156 2.1500 0.6116 0.0048 0.0120 0.9983 515.5 0.5386 0.0149 7’, 53.06” 

WOA-

LM 
0.0626 0.32 0.0152 1.6561 0.6878 0.0042 0.0670 0.9990 458.8 0.6837 0.0144 2’, 39.54” 

4.1. EIS Results and ECM Validation  

4.1.1.EIS at different SOC of the battery cell 

To obtain a maximum of information from a minimum of experiments, the influence of temperature at constant SOC 

and the influence of SOC at constant temperature were studied for 43 frequencies between 10 kHz to 0.03 Hz. The 

effect of different SOC levels at a fixed temperature is nearly insignificant in the high-frequency zone irrespective of 

the SOT of the battery. Fig. 6(a) depicts the results of fitting between ECM parameters using and EIS results at 

different SOC levels at -10°C. As we see the effect of temperature influences directly on the distinction of SOC levels 

in the middle-frequency zone, a clear separation is observed in the lower-frequency zone from 30 Hz – 5 Hz. The 

Warburg tail appears at very low frequencies 3 Hz - 0.03 Hz as temperature decreases the appearance of the tail is 

delayed because of the slow diffusion of ions owing to the lower temperatures, hence the lowest frequency limit (0.03 

Hz) by EIS test bench has been adapted for all experiments.  The fitting results are presented in Table 5.  

 Table 5: ECM Parameters at different SOC of the battery at -10°C SOT.  

SOC% 
𝐑𝟎 

(Ω) 
𝐋 

(H) 

𝐑𝟏 

(Ω) 

𝐐𝟏 

(F.s(1-ф1)) 
𝛟𝟏 

𝐑𝟐 

(Ω) 

𝐐𝟐 

(F.s(1-ф2)) 
𝛟𝟐 

𝐐𝟑 

(F.s(1-ф3)) 
𝛟𝟑 

RMSE 

(Ω) 

100 0.07180 3.3E-07 0.1398 2.0193 0.7912 0.1422 1.6004 0.4565 325.7283 0.8500 0.0648 

90 0.07387 3.2E-07 0.2353 1.3744 0.5507 0.0081 0.1312 0.8555 323.0678 1.9378 0.0548 

80 0.07354 3.2E-07 0.1842 1.3993 0.5298 0.0050 0.1390 0.8630 324.3784 0.9578 0.0428 
70 0.07404 3.2E-07 0.1342 1.1247 0.6596 0.0195 0.4805 0.6539 321.9506 0.8914 0.0395 

60 0.07449 3.2E-07 0.1405 1.0880 0.6561 0.0183 0.4043 0.6755 310.4991 0.7135 0.0392 

50 0.07460 3.2E-07 0.1494 1.1597 0.6508 0.0207 0.5334 0.6355 589.5738 0.9178 0.0407 
40 0.07295 3.2E-07 0.1365 1.1618 0.6727 0.0609 1.9056 0.4494 899.6827 1.0457 0.0450 

30 0.07404 3.2E-07 0.0405 1.1806 0.9701 0.2209 1.7105 0.4630 1100.000 1.1267 0.0540 

(𝐽𝑘
𝑇𝐽𝑘  +  𝜆𝑘 ∗ 𝐼) ∗ 𝑝𝑘 = −𝐽𝑘

𝑇𝑓𝑘    (16) 

(𝑝𝑘 = (𝐽𝑘
𝑇𝐽𝑘 + 𝜆𝑘𝐼)

−1𝐽𝑘
𝑇𝑓𝑘) (17) 

𝑥{𝑘+1} = 𝑥𝑘 + 𝑝𝑘                                (18) 



The ohmic resistance 𝑅0 and inductance 𝐿 are almost constant. Higher changes are observed on 𝑅2 and 𝑄2 in the 

charge transfer globe, but the pattern remains highly nonlinear and complex due to the dominant effect of temperature, 

which can be explained due to slower chemical processes at low cell temperatures and corresponding higher cell 

impedance. Especially diffusion processes strongly depend on temperature, which is represented in Fick’s law by the 

diffusion coefficient. The Warburg 𝑄3 parameter shows a distinct increase with a decrease in SOC representing slow 

diffusion. At low temperatures, an interesting effect on the diameter of the second semi-circle can be seen clearly. In 

Fig. 6(a), from 100 to 60% SOC, the diameter of the second semi-circle decreases with SOC but increases again at 

lower SOCs. This effect could be due to the specific chemistry of the cell. The results of our study remain synchronous 

with the findings of [32, 36]. 
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Figure 6: Optimized fitting curves between experimental EIS and ECM (a) different SOC, -10°C (b) different SOT, 100% SOC (c) 

Arrhenius plot for obtained ECM parameters. 

4.1.2.EIS at different temperature of the battery cell 

Thermal equilibrium is achieved by resting the battery cell in the thermal chamber at set SOT for 4 h. The influence 

of SOT was investigated at ten points for both positive and negative temperatures between (-10°C to +35°C) at fixed 

SOC levels. Two clear groups of the spectrum can be seen in Fig. 6(b), the smaller globes belonging to the higher 

temperature range (35°C to 5°C) and the latter representing lower temperature spectrums (0°C to -10°C). The 

developed ECM of the battery is capable of correctly co-relating to experimental EIS curves. There is a negligible 

effect observed in the higher frequency zone and the first globe of SEI. At lower temperatures, the lithium plating and 

dendrite formation occurs [43], further the thermal energy of ions decreases, lowering their kinetic energy. Hence, the 

ions move slower through the interphase and accordingly, the resistance gets higher. The same effect can be applied 

to explain the second circle which is a mix of charge transfer and diffusion processes. Again, both processes are 

functions of temperature, and the resistance is thus higher. The increase in 𝑅0 at low temperatures is due to an increase 

in the viscosity of the electrolyte, and a reduction in its ionic conductivity. From 5°C to 20°C, the two globes are seen 

separately, as the temperature rises the globes cannot be distinguished. The Arrhenius plots of the resistances 𝑅0, 

𝑅1 and 𝑅2 are represented in Fig. 6(c) as function of temperature, since the plots are almost linear in nature from (0°C 

to 35°C) it allows to confirm the validity of the obtained ECM parameters [11,12].   

Table 6: ECM Parameters at different SOT of the battery with constant SOC 100%.  

SOT 

 

𝐑𝟎 

(Ω) 
𝐋 

(H) 

𝐑𝟏 

(Ω) 

𝐐𝟏 

(F.s(1-ф1)) 
𝛟𝟏 

𝐑𝟐 

(Ω) 

𝐐𝟐 

(F.s(1-ф2)) 
𝛟𝟐 

𝐐𝟑 

(F.s(1-ф3)) 
𝛟𝟑 

RMSE 

(Ω) 

-10°C 0.07180 3.0E-07 0.1398 2.0193 0.7912 0.1422 1.6004 0.4565 325.7283 0.8500 0.0648 
-5°C 0.07140 3.2E-07 0.0535 3.3439 0.8659 0.1165 1.6630 0.4619 300.2110 0.7733 0.0400 

0°C 0.07125 3.3E-07 0.0464 2.8843 0.8461 0.0803 1.5973 0.4841 254.1951 0.7020 0.0322 

5°C 0.06600 3.2E-07 0.0548 1.9499 0.6743 0.0173 0.3831 0.7162 295.5765 0.6859 0.0219 
10°C 0.06286 3.3E-07 0.0374 2.0015 0.6739 0.0131 0.4168 0.7061 297.0441 0.6903 0.0183 

15°C 0.06470 3.2E-07 0.0252 2.0007 0.6889 0.0113 0.4205 0.7238 297.0442 0.6429 0.0160 

20°C 0.06555 3.2E-07 0.0224 1.3914 0.6741 0.0055 0.3362 0.7534 435.7201 0.7344 0.0150 
25°C 0.06269 3.2E-07 0.0152 1.6561 0.6878 0.0042 0.0670 0.9990 458.8836 0.6837 0.0144 

30°C 0.06258 3.2E-07 0.0122 1.5800 0.7182 0.0032 0.1478 0.9997 432.1879 0.6752 0.0143 

35°C 0.06242 3.3E-07 0.0074 1.4942 0.7755 0.0031 0.0914 1.0000 439.6680 0.6236 0.0143 

The effects at high temperatures are much more complex than those at low temperatures. High-temperature conditions 

accelerate thermal aging by rapid increase in SEI layer, decomposition of electrolyte and binder material which could 

explain the complex fusion of the two globes into one [43], further complicating the identification of a pattern or direct 
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link between ECM parameters and SOT. To overcome the problem of depending on the most promising parameters, 

develop an empirical relation between ECM parameters and SOT. A neural network model is implemented which 

learns this hidden pattern between datasets and calculates the weight matrix for us.  

5. Artificial Neural Classifiers  

Neural networks can be defined as function approximates; the idea is to estimate an unknown function using it to 

classify the outcome to which it could belong. In order to identify the unknown function, both the inputs and the 

outputs of the function are labeled, this kind of classifier is called a supervised classifier and the neural network 

problem becomes supervised. Supervised neural networks pertains to a set of known outcomes. However, when the 

true sets of labels or predefined outputs aren’t provided then the errors are meaningless. This method is known as 

unsupervised learning. 

The goal of the NNC is to categorize temperature clusters within the ECM dataset obtained from experimental values, 

as outlined in Table 5 and Table 6, for each specific SOT measurement. Fig. 7(a) outlines the general steps followed 

by IGBM in SOT diagnosis. 

5.1 Data for AI model  

The biggest advantage of the proposed IGBM is the input data that it uses to implement Machine Learning. Many 

studies report using direct experimental signals to train a neural network, or they are based on statistical data analysis 

of ECM parameters [44]. In this study, we use the obtained parameters from the hybrid WOA-LM optimization method 

with fixed criteria of RMSE lower than 0.01Ω for all the experimental EIS tests i.e., 480 data sets at ten different SOT 

and eight different discharged SOC levels, six repetitive EIS are conducted at each point. Appendix B exhibits a 

detailed representation of all the ECM data as a pair plot used as an input to train the network. A pair plot visualizes 

the data to find the relationship between them where the variables can be continuous or categorical. It is used to 

understand the best set of features to explain a relationship between two variables or to form the most separated 

clusters. It also helps to form some simple classification models by drawing some simple lines or making linear 

separations in our dataset, for example by Support Vector Classifiers (SVC). Since the ECM are strongly influenced 

by SOC, SOT, and SOH as their effects are visible under similar frequency ranges, it is difficult to custom select a 

few frequency points for analysis as we lose useful information from the EIS spectrum. It is advised to use all the 

ECM parameters and not rely on empirical relationships established between a few ECM parameters such 𝑅2 and 𝑄2 

which showcase a strong analytical relationship in data. Fig. 7(b) shows a zoomed pair plot of 𝑅0 and 𝑅1 for raw data 

cluster visualization as a function of SOT.  
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Figure 7: SOT detection by IGBM (a) classifier development methodology (b)raw input data: clusters of ECM (c) architecture of the 

classifier.   

5.2 The Feed Forward Neural Network Classifier Model 

The feedforward NNC consists of input parameters, and hidden layers with the number of neurons (function 

approximates) which are mapped using activating functions to adjust the weights and optimize the input to output true 

values. The activation function helps nonlinear mapping of input 𝑥 on the output neurons at each layer. Table 7 

summarizes various methods that are used in neural network modeling and their significance. 

Table 7: Activation functions for deep network layers.  

Activation functions Description Mathematical Expression Eq. () 

Sigmoid (𝑥) Smooth S-curve-shaped function maps value 

between [0,1], best suited for binary classification 
problems 

𝐹(𝑥) =  
1

1 + 𝑒−𝑥
 

(19) 

Hyperbolic Tangent  

Tanh (𝑥) 

Maps the smoothed function between [-1,1], 

suited for hidden layers 𝐹(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 (20) 

Rectified Linear Unit  

ReLu (𝑥) 

The non-linear function returns 0 for -ve input 
values, for +ve returns input values itself, quick 

convergence [44] avoids the vanishing gradient 

problem 

𝐹(𝑥) = max(0, 𝑥) = {
0 (𝑥 ≤ 0)

𝑥(𝑥 ≥ 0)
 

(21) 

Leaky ReLu (𝑥) 

Variant of ReLu 

Prevents dead neurons for -ve input values by 
introducing a small slope (α) typically of 0.01 

𝐹(𝑥) =  max (𝛼 ∗ 𝑥, 𝑥)= {
𝛼𝑥 (𝑥 ≤ 0)

𝑥(𝑥 ≥ 0)
 

(22) 

Exponential Linear Unit 

Variant of ReLu 

Elu (𝑥) 

Prevent dead neurons for -ve input, Elu’s have 

negative values which push the mean of the 

activation closer to zero. 
 It reduces the effect of gradient disappearance in 

complex, longer, wider, multilayered networks. 

[45] 

𝐹(𝑥) =  max (𝛼 ∗ 𝑥, 𝑥)= {
𝛼 ∗ 𝑒𝑥−1 (𝑥 ≤ 0)

𝑥(𝑥 ≥ 0)
 

(23) 

Since data input is nonlinear with negative temperature influence, the use of ReLu activation was implemented as an 

activation function from Eq. (21). The Fig. 7(c) represents the general architecture of a feed forward neural network 

classifier adapted to SOT detection by IGBM. As outlined in Fig. 7(a) various steps are implemented to optimize and 

hyper tune this general architecture before training the network model for its best-case preprocessed input data.  

5.2.1 Data Scaling and Normalization  

The key to the development of an unbiased machine learning algorithm is the generation of good-quality features. 

Data normalization and scaling is the preprocessing step, where the data is transformed to have specific properties that 

can improve the performance of the model. It allows decreasing the predominance of possible outliers and noises in 

the dataset and improves the robustness of the results while reducing the computation time. In NNC and various 

clustering techniques, such as k-means clustering, support vector machine, or k-nearest neighbors, the cluster 
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assignment is highly dependent on the distance calculations between data points. Hence the choice of data 

normalization plays a crucial role in the successful implementation of ML algorithms. The data normalization typically 

involves scaling the input features to have zero mean and unit variance and adjusting the data input values to the range 

and similar units. For example, from the input parameters of the ECM, the inductance parameter 𝐿 remains 

significantly small 10−9 to 10−6, while resistances 𝑅1 and 𝑅2 are in the range of  10−1  to 10−4 . There are three main 

categories to standardize the data: Normalization, Linear scaling, and Non-linear Transformation. Each method 

described below in the Table 8  is implemented using the scikit library [46] on the input data set and the best-

performing scaler is implemented in the final network structure.  

Table 8: Scaling and Normalization of Data.  

Scaling-Normalizing 

Functions 

Description Mathematical Expression Eq. () 

Normalizers 
Norm L1 

Scales the data for each sample to have a unit norm 
‖𝑥‖, independent of the distribution of the samples. 

Based on the Manhattan distance ‖𝑥‖1, it is calculated 

as the sum of the absolute vector values 

𝑓(𝑥_𝑛𝑜𝑟𝑚1) =  
(𝑥)

‖𝑥‖1

 

 
‖𝑥‖1 = |𝑥1| + |𝑥2| + ⋯+ |𝑥𝑁| 

(24) 

Norm L2 Based on Euclidian distance ‖𝑥‖2  calculates the 

distance of the vector coordinates from the origin of 

the vector space  

𝑓(𝑥_𝑛𝑜𝑟𝑚1) =  
(𝑥)

‖𝑥‖2

 

 

‖𝑥‖2 = √|𝑥1
2| + |𝑥2

2| + ⋯+ |𝑥𝑁
2 | 

(25) 

Linear Scalers  

Standard scaler (𝑥) 

Scales the data to get mean 𝜇𝑥 = 0 and a standard 

deviation  𝜎𝑥 = 1  
𝑓(𝑥_𝑠𝑐𝑎𝑙𝑒𝑑) =  

(𝑥 − 𝜇𝑥)

𝜎𝑥

 (26) 

MinMaxScaler (𝑥) 

 

Scales the data between [0,1], by using maximum  

𝑥𝑚𝑎𝑥  and minimum 𝑥𝑚𝑖𝑛 of 𝑥 as limiting boundaries. 

It keeps the same distance ratio between original data 

points allowing smaller values compared to large ones 

𝑓(𝑥_𝑠𝑐𝑎𝑙𝑒𝑑) =  
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 

(27) 

MaxAbosulte Scaler (𝑥) A variant of the MinMax scaler uses the maximum 

absolute value of the data 𝑥 to scale it between [0,1] or 

[-1,1]. 

𝑓(𝑥_𝑠𝑐𝑎𝑙𝑒𝑑) =  
(𝑥)

(𝑚𝑎𝑥|(𝑥)|)
 

(28) 

Robust Scaler (𝑥) 

 

It removes the median (𝑥𝑚𝑒𝑑𝑖𝑎𝑛) and scales the data 

according to the Inter quantile range (𝐼𝑄𝑅).  Advised 

for the data with Outliers  

𝑓(𝑥_𝑠𝑐𝑎𝑙𝑒𝑑) =  
(𝑥 − 𝑥𝑚𝑒𝑑𝑖𝑎𝑛)

(𝐼𝑄𝑅)
 

(29) 

Non-Linear Transformer  
 

Quantile Transformer (𝑥) 

Transforms the data so that it follows a uniform or a 
normal probability distribution of the data. 

 The mapping is based on cumulative distribution 

function 𝜑  , and 𝑄−1 

Reduces the impact of outliers in the dataset 

𝑓(𝑥_𝑠𝑐𝑎𝑙𝑒𝑑) = (𝜑(𝑥)) ∗ 𝑄−1 

(30) 

Power Transformer (𝑥) 

Box-Cox  
 

 

Transforms the data monotonically and parametrically 

to map the data points in Gaussian-like distribution. 

Box-Cox does not support negative values of the data 

set, (𝜆) power of transformation 

𝐹(𝑥𝑖
𝜆) =  { 

𝑥𝑖
𝜆 − 1

𝜆
, (𝜆 ≠ 0)

ln( 𝑥𝑖) , (𝜆 = 0)

 
(31) 

5.2.2. Overfitting of the Network   

Overfitting happens when the machine learning model memorizes the pattern in the training data too well and fails to 

classify unseen data, resulting in poor performance of the model. The noise or fluctuations in the training data are seen 

as features and learned by the model. This leads to the model being outperformed in the training set but poor 

performance in the validation and testing sets. To avoid this problem several techniques are widely implemented such 

as Early stopping: learning is stopped by the model if it notices an increase in validation loss, Batch Normalization: 

re-normalizes the inputs at each hidden layer, Bias Regularization: L1/L2 discourages the network to adapt complex 

patterns dependent on input features. Changing model design parameters such as number of the hidden layers, and the 

number of neurons at each layer influences the validation accuracy and requires retraining of the model. A simpler 

solution is introduced known as the Dropout Layer, where the network randomly drops a certain prefixed number of 

neurons in a layer which motivates the model to learn more robust and less dependent features from input data. 

Preventing excessing learning by certain neurons in the training process. The drop rate is represented in Eq. (32), 

where 𝑎[𝑖]  is the output of the ith neuron and p is the dropout rate. During training, each neuron in the layer has a 



probability of 𝑝 of being set to 0, effectively dropping out that neuron. The remaining neurons are then scaled by a 

factor of  
1

(1−𝑝)
 to maintain the expected sum of the outputs as per Eq. (33). 

𝑎[𝑖] = 0, ∀ 𝑝 (32) 

𝑎[𝑖] =
𝑎[𝑖]

(1 − 𝑝)
 (33) 

 

5.3 Optimizing the Hyperparameters   

When building a high-quality, predictive classification model, it is important to select the right features (or predictors) 

and tune the parameters of the model, such as the best number of neurons in each layer, rate of learning, drop rate, and 

kind of activation function used to minimize the error between predicted and true values. The process of finding 

optimized parameters to run the model at the highest accuracy without overfitting or underfitting the network is known 

as hyperparameter tuning. In general terms, it is an optimization problem for several Design of Experiments (DOE) 

to verify which experimented set of parameters yields the best results. Techniques such as Genetic algorithm, PSO, or 

simple grid search with predefined ranges for parameters are used to find hyperparameters but they tend to be long 

and computationally expensive. Li et al. [47] proposed a non-stochastic novel infinite-armed bandit-based approach 

that purely explores the entire search space with an aim to minimize the distance between optimal solutions.  

The Hyperband optimization technique is used to optimize the model parameters of the feedforward NNC with data 

input from ECM parameters in a (480,11) data matrix as a function of SOC and SOT levels. The hyperband 

optimization of model parameters is described in the algorithm. (2). The function 𝑔𝑒𝑡_𝑏𝑒𝑠𝑡_𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (η) 

method starts by randomly sampling a set of hyperparameter configurations using function 𝐺(𝑛) for n random 

configurations to evaluate. Then at each model configuration, it iterates the training and evaluation for a small number 

of epochs (the number of times the dataset is passed to fit the training of the model), using evaluation metrics on the 

validation dataset it discards the poorly performing configurations and allocates more resources to the promising ones. 

It performs the memory and resource allocation, where R is the maximum resources available out of which it uses 

only B resources evenly among n configurations by the successive-halving procedure [47] for fixed values of n and r 

thus reducing the computation time and costs. η, is an input that controls the proportion of configurations discarded in 

each round of successive halving. 𝑠𝑚𝑎𝑥   is the most aggressive set of hyperparameter configurations for a tradeoff 

between 𝑛  and  
𝐵

𝑛
    resources. 

Algorithm 2: Hyperband optimisation 
input: R - maximum number of resources to allocate. 

           η - reduction factor for the number of configurations and epochs to evaluate in 
each round (default η = 3) 

 initialize: 𝑠𝑚𝑎𝑥 = (log𝜂 𝑅  ) 

𝐵 = (𝑠𝑚𝑎𝑥 + 1) ∗ 𝑅 

for s = {𝑠𝑚𝑎𝑥, 𝑠𝑚𝑎𝑥 - 1, ..., 0} do 

 

𝑛𝑠 = [
𝐵

𝑅
∗

η𝑠

(𝑠 + 1)
] 

𝑟𝑠 = 𝑅 ∗ η−𝑠 

     //begin successful halving of resources (n,r) 
      G = get_best_configuration_solution (η) 

   for  𝒊 ∈= {0, … . , 𝑠} do  

𝑛𝑖 = [𝑛𝑠 ∗ η−𝑖] 
𝑟𝑖 = 𝑟𝑠η

−𝑖 

𝐿 = {𝑟𝑢𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑓𝑖𝑔 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑡𝑠 𝑣𝑎𝑙𝑙𝑜𝑠𝑠( 𝑔, 𝑟𝑖) ∶ 𝑔 ∈ 𝐺} 

𝐺 = {𝑡𝑜𝑝_𝑘 (𝐺, 𝐿, [
𝑛𝑖

𝜂
]} 

end 

end 

return configuration with the smallest validation loss seen so far  

 



The function 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑡𝑠 𝑣𝑎𝑙𝑙𝑜𝑠𝑠( 𝑔, 𝑟𝑖)  calculate and returns the validation loss for that set of hyperparameters. While 

the function 𝑡𝑜𝑝_𝑘 returns the best-performing parameters. Table 9 presents the search space of hyperparameter 

optimization and the final optimized values obtained for the model architecture.  

Table 9:  Optimizing the network architecture. 

Hyperparameters Range Step Optimized Value 

Dense hidden layer 1 1 – 64 neurons 1 52 

Dense hidden layer 2 1 – 128 neurons 1 86 

Drop-out layer rate 0.2 - 0.9 0.1 0.3 
Learning rate  [0.01,0.001,0.0001,0.00001] - 0.01 

The final optimized architecture of the model with 52 neurons in hidden layer 1, 86 in layer 2, and a drop rate set of 

0.3 at a learning rate of 0.01. The relationship between input and hidden layers of output 𝑧𝐼 is represented by Eq. (35). 

Eq. (34) represents the weight matrix 𝐴𝐼, where 𝑊𝐼  is the weight and �⃗� 𝐼, is the bias vector, and I is the number of 

layers defined in the dense sequential model.    

(𝐴1) =  𝑥.∗ (𝑊1) + �⃗� 1 , Hidden layer1 (34) 

(𝑍1) =  𝑅𝑒𝐿𝑢(𝐴1) (35) 

(𝐴2) =  𝐴1.∗ (𝑊2) + �⃗� 2 , Hidden layer2 (36) 

(𝑍2) =  𝑅𝑒𝐿𝑢(𝐴2) (37) 

The SoftMax layer is the output Layer 3, it is often used in the output of classification problems with multiple classes, 

the function maps the input to a distribution probability predicting the most probable class out of all class labels in 

input data indicating a value between [0 to1] and the sum of classes is always 1, the number of neurons in this layer 

is always same to the number of classes in true labels i.e. here for 10 classes of SOT (-10°C, -5C, 0°C, 5°C, 10°C, 

15°C, 20°C, 25°C, 30°C, 35°C) 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐹(𝑥𝑖) =  
𝑒𝑥𝑖

𝑠𝑢𝑚(𝑒𝑥𝑗)
, ∀ 𝑖 = {1, … , 𝑁} 

(38) 

𝑠𝑢𝑚((𝑒𝑥𝑗)) =  ∑𝑒𝑥𝑖

𝑁

𝑖=0

, ∀ 𝑖 = {1, … , 𝑁} 
(39) 

where 𝑥𝑖 is the output of the ith neuron in the previous layer, (𝑁) is the number of classes, and (𝑒𝑥) denotes the 

exponential function. Integrating Eqs. (38) and (39) to predict the output of the SoftMax Layer 3 in the model we get 

Eqs. (40) and (41) respectively. 

(𝐴3) =  𝐴2.∗ (𝑊3) + �⃗� 3 , Softmax layer 3 (40) 

(𝑦𝐼) =  𝑅𝑒𝐿𝑢(𝐴3) % final predicted label output (41) 

6. Prediction and Evaluation of the State of Temperature of the battery cell 

The model is trained for 1500 epochs using the train method for 60% of the input scaled dataset, it is then validated 

on 15% of the dataset and, the last 25% is used to evaluate the network as test samples. Table 10 shows the results of 

the study where all the data scaling methods from Table 8 were implemented on NNC. They are compared based on 

the training time required, the number of epochs to reach the converging solution, and the test performance accuracy. 

In general, the data transformers tend to perform better than most linear scalers or normalizers. Chanal et al. [48] 

obtained similar results with quantile transformers outperforming other scaling methods, thus the architecture of the 

model is optimized and validated to retain best-performing weights and biases. From Fig. 8(a) we can see, the proposed 

network converges in less than the first 75 epochs in the training and with a training time of 2 min and 41 seconds on 

a standard runtime environment of 12 GB CPU with a testing loss of 0.09 cross-entropy error for 120 random test 

samples for the best performing quantile uniform scaler. The classification accuracy measures the proportion of 



correctly classified samples out of the total number of samples. It is defined in Eq. (42) where TP -True Positives, TN 

- True Negatives, FP- False Positives, and FN -False Negatives. 

 

 Figure 8: Classifier metrics (a)accuracy of the classifier network (b) prediction by the classifier (c) confusion matrix of the classifier.  

Table 10: Effect of data scaling on classifier performance. 

Scaler Optimized Model 
Training 

loss 

Training Time 

min, sec 

Epochs to 

Converge  

Testing 

loss 

Testing 

Accuracy 
FMI 

Norm L1 36,77,0.4,0.01 2.0584 2’, 47.18” 9 2.186009 0.40% 0.003333333 

Norm L2 63,115,0.8,0.01 2.0584 2’, 47.18” 15 2.186009 12% 0.31887407 

Standard 64,107,0.2,0.01 0.3557 2’, 35.70” 7 0.215613 98% 0.965410242 

MinMaxScaler 61,94,0.2,0.01 0.0912 2’, 45.35” 66 0.079683 100% 1 

MinAbsScaler 9,78,0.5,0.01 0.4084 2’, 13.61” 320 0.293059 95% 0.905090265 

Robust Scaler 40,114,0.4,0.01 0.3886 1’,59.07” 9 0.858677 98% 0.909602696 

Quantile Uniform 52,86,0.3,0.01 0.1048 2’, 41.74” 55 0.09038 100% 1 

Quantile Normal 16,77,0.3,0.01 0.047 2’, 58.07” 23 0.110921 98% 0.96061389 

Box-Cox PT 30,103,0.2,0.01 0.291877 1’, 55.60” 108 0.291877 96% 0.915951207 

While the Fowlkes-Mallows Index (FMI) in Eq. (43) is an evaluation metric used in clustering analysis to measure 

the similarity between two clustering. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (42) 

b) 

a) 

c) 



𝐹𝑀𝐼 =
(𝑇𝑃)

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)
  (43) 

The FMI ranges from 0 to 1, with a value of 1 indicating that the two clusterings are identical. A low FMI suggests 

that the two clusterings are dissimilar. The Fig. 8(b) represents the predictions of the test samples provided by the 

classifier, correctly classifying the data into each temperature group whereas Fig. 8(c) represents the confusion matrix, 

it provides a detailed breakdown of the model’s performance by evaluating how many times the model correctly 

classified each sample into its appropriate true class. Generally, the diagonal matrix depicts a higher accuracy score. 

For every group of the true SOT class, the IGBM is able to predict with 100% accuracy and zero confusion between 

different sets of the SOT.  

Conclusion 

In this paper, a fractional order ECM model is applied to analyze the EIS of the Li-ion battery cell, and a novel state 

of temperature detection of cells based on an intelligent gray box model is presented. The methodology provides 

insight to implement the trained algorithm on the embedded system to identify the SOT of cells in a battery pack 

without the addition of external sensors. It can be further exploited to locate the hotspots inside the battery pack, which 

might eventually lead to thermal runaway or local profound degradation of the cell and the overall performance of the 

battery system. 

The main conclusions of the article can be summarized as follows: 

(1) A method to conduct EIS coherent to embedded constraints, with a detailed explanation of experimental 

design is presented, and its signal processing and transformation to the frequency domain is illustrated.  

(2) The fractional order ECM is used to create a model of the battery considering the electro-chemical, thermal, 

and kinetic behavior of the battery, it corresponds well with the experimental values of EIS. The dynamic 

response of the battery is well captured and co-relates with the physical link between EIS and ECM. Also, 

the proposed hybrid parameter optimization method is found to be very efficient and robust. The 10 

parameters of ECM can be identified with both a wide range and a 95% confidence interval for 480 EIS tests. 

(3) The article describes in detail the architecture and implementation of optimized hyperparameters in NNC. It 

compares various data scaling methods, and finally, the best-performing classifier parameters are 

implemented in IGBM.  

(4) EIS of a battery is extremely sensitive to temperature, state of charge, and aging. In this study, it is used as 

an indicator to identify the surface temperature of the cell, irrespective of its state of charge. Based on the 

relationship between estimated circuit parameters of ECM, the proposed SOT detection method by IGBM 

can identify with 100% accuracy of the 10 different SOT out of 120 EIS test samples. 

The elevated performance of IGBM as compared to literature methods which depend solely on certain frequencies of 

interest is due to the fact the network is intentionally trained using ECM parameters as input features and useful 

information. So, it is the network learning the hidden patterns between the 10 ECM parameters, SOC% of the cell, 

and its associated temperature. It is far more sophisticated, robust, and precise as compared to the statistical models 

retaining 2-3 parameters of ECM. Another advantage of the method is that it doesn’t use the voltage and current 

signals directly from EIS to train the network as those signals tend to be noisy which affects the performance of regular 

black box models. Moreover, IGBM has the potential to be applied in real-time diagnosis based on online EIS 

measurement, thus filling the gap between research and application for real-world use. The method can be applied to 

most electrochemical energy storage systems, such as fuel cells, Na, and solid-state batteries. 
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