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Abstract 

In this paper, we extend the single degree of freedom (1DOF) model to a lumped circuit model derived 
analytically with three degrees of freedom (2D+1DOFs) for modelling the mechanical-to-electrical 
conversion by a serial bimorph piezoelectric cantilever. The model is based on a minimal finite 
element analysis interpolation of the beam bending with two mechanical nodes and four symmetrical 
electrical nodes. The model satisfies Hamilton’s principle, Euler-Bernoulli kinematic assumptions 
and constitutive piezoelectric equations. The 2D+1DOFs are the transverse displacement, the rotation 
at the tip end, and the voltage output. The DOFs result from the application of three external actions: 
the vertical tip force, the tip torque and the net electrical charge on the electrodes. The dynamic 
balance of the bimorph is described by three electromechanical coupled equations that are 
equivalently rendered by two mutually coupled electronic resonant lumped circuits driven by the 
mechanical DOFs, and an output circuit involving the charge and the external load. As compared to 
1DOF equivalent circuit, this model introduces analytically and parametrically the geometry of the 
beam and its properties for transient and frequency-domain analysis using computer-aided electronics 
software. The results of the model are compared to the simulations done by using commercial finite 
element modelling software and the experimental measurements of a symmetric LiNbO3/stainless 
steel/LiNbO3 serial bimorph beam resonating at 35.7 Hz. Monte Carlo simulations including 
uncertainty on geometrical parameters show less than 2% of uncertainty on open circuit voltage and 
resonance frequency. Our lead-free bimorph shows an electromechanical coupling of k2 = 5.2 %.  
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1. Introduction 

There is a drastically increasing number of communicating sensors with the expansion of Industry 
4.0, the Internet of Things (IoT), the Internet of Humans/Health (IoH), smart cities or autonomous 
vehicles [1, 2, 3]. It is becoming necessary to simplify energy supply while offering sustainable solutions. 
Energy micro-source based on piezoelectric conversion is an appealing solution for micro-electric 
energy supply [4, 5] in case of shocks, vibrations and movement conversion and it can be used for indoor 
(industrial machinery, cars) and outdoor (human body movements, wearables, bridges) [6, 7] 
applications.  
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Meanwhile, the most common mechanical structures used for this purpose are resonant cantilevered 
beams based on lead containing piezoelectric materials (PZT, PMT-PT). In this case, the piezoelectric 
material has the capability of converting flexural deformation into an electric voltage [8]. Piezoelectric 
harvesters can generate suitable voltage levels (typically from 1 V to 20 V, depending on the volume 
of the active layer), and high-power density (> 300 μW/cm3) for IoT sensors. However, to meet RoHS 
and European REACH regulations, the material chosen in this work is lead-free LiNbO3, which, as 
recently shown, presents equivalent electromechanical properties to commonly used PZT ceramics [9, 

10]. This piezoelectric material is available in the form of cheap large single crystals (up to 150 mm 
diameter). Moreover, we have shown that a simple unimorph cantilever presented a high 
electromechanical coupling (k2) for vibrational energy harvesting applications [11], opening new 
opportunities for lead-free micro-energy sources adapted to daily basis user electronics autonomous 
solutions [12]. Recently, LiNbO3 has been also used to power IoT nodes, either with commercial 
radiofrequency modules [13] or Bluetooth [14]. Nevertheless, these papers evaluated LiNbO3-on-silicon 
unimorphs. Bimorph structures are expected to double the performances. Recently, some authors have 
also evaluated LiNbO3 bimorph structures with opposite polarization directions in two piezoelectric 
layers for actuation and energy harvesting [15,16], but in the form of thick single crystals and no 
optimization of the electromechanical coupling has been performed. 

Concerning the modelling of piezoelectric flexible energy harvesters (or micro-electric generators), 

an early analysis was based on inertial electromechanical transducers [17]. The spring (k) – mass (m) –

 damper () system of relative motion z(t) was moving out of phase with the generator housing under 

an input motion y(t). Assuming that the damping was due to the electrical conversion, the maximum 

power output at resonant frequency,  was proposed to be P = m  3 z(max)
2. Roundy and al. [18] 

extended this model by replacing the electrical conversion damping,  ’, by a lumped circuit made of 

a transformer as in Mason’s circuits [19]. In terms of unidirectional motion, the 1DOF system 

introduced a bridge between the mechanical and the electrical circuit interface. Moreover, the authors 

proposed analytical expressions for evaluating spring (k) – mass (m) – damper () in the case of a 

bimorph bending cantilever. Meanwhile, modelling of a piezoelectric cantilever beam introducing 

continuous media with piezoelectric elements was proposed by Tiersten [20], Tanaka [21], and duToit 

et al. [22]. The model is based on Hamilton’s principle and Bernoulli’s approximation to analyse the 

response of a piezoelectric energy harvester. However, the reported works are missing an electrical 

equivalent circuit model, and its application with a suitable electronic interface. In fact, the analysis 

of literature shows a loose correspondence between electrical and mechanical engineering for 

modelling either the mechanical system [23,24], or the electrical interfaces [25,26,27,28].  
In this paper, we present an extension of 1DOF model based on Hamilton’s principle applied on a 

bimorph piezoelectric beam. The model is presented in part 2.1 and Supplementary Material. Three 
coupled equations with two mechanical degrees of freedom, and one electrical port are used to model 
our harvester. One of the originalities of this paper is to present a lumped equivalent electronic circuit 
of the coupled equations mainly based on two resonant circuits and coupling loops. In our model, he 
approximated linear theory of piezoelectricity was employed along with the hypothesis of no free 
charges and body forces. The circuit is solved with standard computer-aided electronics software in 
part 2.2. In part 3.1, we describe the preparation of our samples and the determination of the 
parameters of the model. The results of our model are computed in transient and frequency-domain 
simulations in part 3.2 with the experimental parameters. For the first time, the bimorph cantilevers 
based on LiNbO3 and stainless steel were fabricated and their performance in terms of vibrational 
energy harvesting were characterized. The experimental and modelling results on voltage output and 



 

resonant frequency were compared in part 3.3. Moreover, we provide a Monte Carlo simulation on 
the uncertainty of geometrical parameters.  

2. Theoretical Considerations 

2.1 Electromechanical Equation of the bimorph 
 
Assuming that our bimorph cantilever is conservative and elastic, the electro-mechanical problem 

is a lumped transformation, which consists of transforming external work into an oscillating structure 
converting kinetic energy to potential energy. The multi-layer is composed of piezoelectric and non-
piezoelectric layers that should satisfy Hamilton’s principle: 
 𝛿 ∫ 𝑳𝑑𝑡

𝑡2

𝑡1
+ 𝛿 ∫ 𝓦𝑑𝑡

𝑡2

𝑡1
= 0, (1) 

Where 𝜹𝓦 is the virtual work of external forces applied to the surface of the body and 𝑳 – the 
Lagrangian of the system. The virtual work of the force (per unit area), 𝑭, under an infinitesimal 
displacement, 𝛿𝑢𝑘, and a charge, 𝜎, under infinitesimal variation of potential, 𝛿𝜑, (in the piezoelectric 
layers) are given by the surface integration: 

𝜹𝓦 = ∫ 𝐹𝑘𝛿𝑢𝑘 − 𝜎𝛿𝜑𝑑𝐴
𝐴

. (2) 

While the Lagrange can be written as: 

𝑳 = ∫
1

2
𝜌0𝑢�̇�𝑢�̇� − 𝑯𝒆(𝑆𝑘𝑙 , 𝐸𝑘)𝑑𝑉

𝑉
, (3) 

Where we recognize the kinetic energy, 𝓣, function of the initial mass density,  𝜌0, and square of 
the speed of particles, 𝑢�̇�, and 𝑯𝒆 = 𝑼 − 𝑬𝑫 - the electrical enthalpy per unit volume for the 
piezoelectric layers. The energy reduces to 𝑯𝒆 ≡ 𝑼 in the metal part. In our model, the approximated 
linear theory of piezoelectricity was employed along with hypothesis of no free charges and body 
forces. The derivation for our case study is described in Supplementary Material A & B. 

 
The geometry of the serial bimorph is depicted in Figure 1. The piezoelectric bimorph is composed 

of two symmetrical LiNbO3 piezoelectric layers and thickness, hp, and a central core made of 
stainless-steel layer with thickness 2hm. The origin of the bimorph is the neutral plane (z = 0), of the 
total thickness 2h = 2hp+2hm, width, b, and length, L. The beam is supposed to be clamped in x = 0 
and free in x = L which are the mechanical nodes of our system. Moreover, the serial bimorph is 
composed of two piezoelectric layers with opposite polarization directions. The three electrical nodes 
of the circuit are constrained as follows: we arbitrarily set the potential to zero in the core metal 
(𝜑ℎ𝑚 = 𝜑−ℎ𝑚 = 0) and we impose antisymmetric potential on the top and bottom electrode 𝜑ℎ =
−𝜑−ℎ by applying symmetry considerations. The potential is assumed to be constant along the beam 
due to the metal layers adjacent to the major surfaces of the piezoelectric layers. From the static 
equilibrium, the virtual work of infinitesimal displacements applied on the beam takes the simple 
form: 
 𝛿𝚽 = 𝐹𝑧

𝐿𝛿𝑤𝐿 + 𝑀𝑦
𝐿𝛿𝑤𝐿

′ − 2𝑄ℎ 𝛿(𝜑ℎ), (4) 

Where 𝐹𝑧
𝐿 , 𝑀𝑦

𝐿 are the force and the momentum exerted at the tip of the beam, respectively, −𝑄ℎ  

- the charge on the top surface electrodes, whereas, the three degrees of freedom are 𝑤𝐿, 𝑤𝐿
′  - the 

transverse displacements and its rotation in x = L, and 2𝜑ℎ - the potential between the top and bottom 



 

surface. One can note that there are opposed force and momentum in x = 0, but they do not contribute 

to the work, due to the clamped conditions (𝑤0= 0 and 𝑤′0 = 0). 

 

In Supplementary Material C & D, we have derived the expression of the kinetic energy and electrical 

enthalpy terms of Equation 3 using Bernoulli’s approximation. The results lead to a differential 

equation of the three degrees of freedom, 𝑤𝐿, 𝑤𝐿
′  and 2𝜑ℎ. An approximated solution of this linear 

differential equation is proposed using Galerkin’s Finite Element Method. We have defined 2 

mechanical nodes (in x = 0 and x = L) and 4 symmetrical electrical nodes (in z = -h, z = -hm, z = +hm 

and z = h). The beam bending and its rotation, 𝑤 and 𝑤′, are approximated by trial cubic splines in x, 

whereas, the potential, 𝜑ℎ, is supposed to be linear along the thickness, z, of the piezoelectric layers. 

The discretization of the equation as a function of the generalized-force vector components exerted 

on the beam (−𝑄ℎ, 𝐶𝑦
𝐿, 𝐹𝑧

𝐿) and the variables (2𝜑ℎ , 𝑤𝐿 , 𝑤′𝐿) leads to a 3x 3 dynamic equation: 

 

([

𝐾11 0 𝐾13

0 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

] − 𝜔2 [
0 0 0
0 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

]) {

𝜑ℎ

𝑤𝐿

𝑤′𝐿

} = {

−2𝑄ℎ

𝐹𝑧
𝐿

𝑀𝑦
𝐿

} (5) 

 
Where 𝜔 is the excitation frequency, and the 𝑲 and 𝑴 are the stiffness and mass matrices, 

respectively (defined in Supplementary Material). The system of the Equation 5 gives the voltage- 
or charge-driven frequency response by setting 𝑀𝑦

𝐿 = 0 and 𝐹𝑦
𝐿= 0. In the case of vibration-driven 

harvester, one has to add the vertical component of the driving acceleration, Γ𝑧. Setting 𝐹𝑧
𝐿 = 

𝑀22Γz and neglecting the Coriolis force if the frame does not rotate, one can solve the problem 
for a vibrational harvester.  

 
2.2 Equivalent circuit modelling 

 
Figure 1: 2D+1 model of LiNbO3 bimorph in series configuration. The mechanical beam is defined 
at the two nodes: clamped in x = 0 and free in x = L. The electrical potential is defined by four 
symmetrical nodes with the central ones set at zero potential.  



 

 

One very important aspect of this work is to give an equivalent electrical circuit of the variables 
defined in Equation 5. Details of the calculations are given in Supplementary Material E. We start by 
defining three currents expressed in harmonic regime as: 

 
 

 𝐼ℎ = 2𝑗𝜔𝑄ℎ, 

𝐼𝑝 = 𝑗𝜔𝐾13𝑤′𝐿, and 

𝐼𝑤 = 𝑗𝜔𝛼𝑤𝐿, 

(6) 
 

 
With α = 𝐾13/L. Replacement of the current (defined by the Equation 6) in the Equation 3 gives 

three coupled equations as a function of 𝐼ℎ, 𝐼𝑝 and 𝐼𝑤: 
 

𝜑ℎ =
𝐼ℎ + 𝐼𝑝

𝑗𝜔𝐶0
 

𝐸𝐹 =
(1 − 𝜔2𝐿1𝐶1)

𝑗𝜔𝐶1
𝐼𝑤 +

(1 − 𝜔2𝐿𝑐𝐶𝑐)

𝑗𝜔𝐶𝑐
𝐼𝑝 

𝐸𝑇 = 𝜑ℎ +
(1 − 𝜔2𝐿𝑐𝐶𝑐)

𝑗𝜔𝐶𝑐
𝐼𝑤 +

(1 − 𝜔2𝐿2𝐶2)

𝑗𝜔𝐶2
𝐼𝑝 

 

(7) 

With 𝐶0 = −𝐾11, 𝐿1 =  
𝑀22

𝛼2 , 𝐶1 =
𝛼2

𝐾22
, 𝐿𝑐 =  

𝑀23

𝛼𝐾13
, 𝐶𝑐 =  

𝛼𝐾13

𝐾23
, 𝐿2 =  

𝑀33

𝐾13
2 , 𝐶2 =

𝐾13
2

𝐾33
, 𝐸𝐹 = 𝐹𝑧

𝐿/𝛼, 

where 𝛼 = 𝐾13/𝐿 , and 𝐸𝑇 = −𝑀𝑦
𝐿/𝐾13. The first equation is related to the first loop of potential, 𝜑ℎ, and 

it represents the output voltage of the piezoelectric bimorph in terms of the two currents (𝐼ℎ, 𝐼𝑝). In the second 

equation, we have to transform 𝐹𝑧
𝐿 into a voltage (EF = 

𝐾13

L
𝐹𝑧

𝐿). This represents the external loop, where the L1C1 

term appears along with the LcCc which represents a cross-coupling component to the 𝐼𝑝 current and it is 

computed in a separate loop as the voltage EQ on the “Q” node. Using the same reasoning, one can obtain the 

expressions for the third equation, where we define another voltage source as ET. Here, the current 𝐼w is also 

cross-coupled through the voltage EN on the node “N” in a secondary loop with current 𝐼w. Eventually, in the 

equivalent circuit some resistors as r1, r2 and metal are added, which are purely dissipative terms to take into 

account the losses of the contacts and the material. Rl is the load of the harvester needed to evaluate the power 

harvested. Finally, these equations were implemented in terms of the equivalent circuit parameters as depicted 

in Figure 2. 



 

 
Figure 2: Equivalent circuit implemented for simulation in computer-aided electronics software.  

 

3 Validation of the model  

3.1 Fabrication and characterization of LiNbO3/SS/LiNbO3 bimorph 

The bimorph was fabricated by means of wafer-on-wafer technology, using poled 128°-LiNbO3 
single wafers bonded in opposite polarity on both faces of a stainless steel (SS) shim of hm = 60 µm 
(serial configuration). The surfaces of LiNbO3 wafers and stainless steel were coated with 100 nm of 
gold (Au) by sputtering and compressed to bond at room temperature with EVG bonder. The two 
piezoelectric layers were subsequently polished down until the required thickness (hp = 55 ± 5 µm). 
Finally, the multi-layer wafer was mechanically diced in order to obtain rectangular cantilevers with 
the width parallel to the X-axis of LiNbO3. Electrodes of Cr/Au (50 nm / 150 nm) were sputtered 
through a stencil mask. The final dimensions of the cantilever were L = 70 mm, b = 10 mm and h = 
170 µm. Above-measured thicknesses may present an uncertainty of up to 10% along the beam. Table 
1 summarizes physical parameters of LiNbO3/SS/LiNbO3 bimorph structure, used in the following 
calculations/simulations. The effective dielectric constant, 
𝜀33

𝑇 ′  and piezoelectric coefficient, d’31, of LiNbO3 corresponding to the (YXlt)/128°/90° LiNbO3 
rotated tensor values are given in the Table 1 [29]. Full details about LiNbO3 properties are discussed 
in Ref [30, 31]. In this work we systematically used the nomenclature of effective piezoelectric 
coefficient d’31 even though the proper definition for (YXlt)/128°/90° LiNbO3 would be effective d’23. 

 

Table 1. Physical parameters of the bimorph LiNbO3/SS/LiNbO3 structure in the series 
configuration. 

Parameter Value Units 

d’31 27 pC.N-1 

𝜀33
𝑇 ′ 50.5 - 

Fz 0.05 Gpeak 

hi 50 µm 

hp 55 µm 

L 70 mm 



 

𝜌𝑖 7850 kg.m-3 

𝜌𝑝 4650 kg.m-3 

Q 90 - 

𝑠𝑖,11 5.72e-12 Pa-1 

𝑠𝑝,11 6.91e-12 Pa-1 

b 10 mm 

 
The characterization setup is presented in Figure 3. The cantilever was clamped with two isolated 

aluminum plates on the shaker. The plates were wired for measurements. For the electromechanical 
characterization, we used a spectrum analyzer (KEYSIGHT E5061B), in order to estimate the 
capacitance, electromechanical coupling and quality factor of the piezoelectric harvester. The 
clamped capacitance of the specimen, measured out of resonance at 1 kHz, was C0 = 1.35 nF, while 
the quality factor in resonance (~35.4 Hz) was Q = 93 and the electromechanical coupling k2 = 5.2 %. 
These results are comparable to our previous works on unimorph LiNbO3/silicon cantilevers [11]. It is 
important to note that the electromechanical coupling factor of LiNbO3/SS/LiNbO3 structure was 
higher by a factor of two than that of unimorph LiNbO3/Si structure (k2 = 2.8 %). This denotes the 
high quality of the bimorph on stainless steel. The damping of the structure was added by introducing 
a resistor in the electrical circuit and the experimentally measured quality factor Q was ~ 90 at the 
resonance.  

For the vibrational harvesting measurements, the device was connected to a full-bridge rectification 
circuit using four diodes (FJH1100), to convert the alternative electric potential of the harvester in 
DC signal, and a smoothing capacitor (Cr = 1 μF). The excitation signal was generated by a National 
Instrument acquisition card (NI USB-6341) in the form of sinusoidal excitation to drive a power 
amplifier (LDS PA100E) and an electrodynamic LDS shaker. A laser probe (KEYENCE LB-12) was 
focused on the tip of the cantilever to measure the displacement during the tests with an oscilloscope 
(LECROY LT344). As for measurements without rectifiers, the measurements were done using an 
oscilloscope (Rohde & Schwartz RTB2004) with a 10 MΩ probe. 

 

 



 

 

3.2 Transient and time domain simulations  

The implementation of the equivalent circuit was carried out by using SPICE with the software Micro-
Cap 12, where both time domain and transient simulations were investigated. We can simulate the 
piezoelectric device with such equivalent circuit starting directly from the geometrical and material 
parameters, which are translated from the theoretical model to the final expression in the circuit. 
Considering the physical parameters of the harvester, listed in Table 1, we have calculated the 
parameters of the model given in the Supplementary Material. Table 2 gives the numerical values for 
the discrete components in the equivalent circuit of Figure 2. 
 
Table 2. Numerical parameters of the equivalent electrical circuit. 

Parameter Value Units 

C0 8.70e-9 F 

C1 25.03e-3 F 

C2 140.53e-12 F 

Cc 2.17e-6 F 

L1 337.79e-6 µm 

L2 4.60e3 mm 

Lc 1.095 kg.m-3 

r1 643.47e-6 Ohm 

r2 31.79e3 Ohm 

metal 1 (arbitrary) Ohm 

 
 
One of the advantages of our approach is to implement the equations of our model in transient 

analysis. Dealing with a single node provides lighter calculations to solve but still accurate results, 
hence we can obtain information regarding the main potential, φh, displacement, w, and rotation ,w’, 
of the piezoelectric bimorph. Moreover, using such equivalent circuit unites both finite element 
modelling approach and lumped model simulations, giving the possibility of connecting any 
electronic circuitry to the modelled energy harvester. Hence, the simulations carried out implied both 
a simple connection to a resistive load, Rl, and solved in time domain (no non-linear element), in order 
to analyze the peak voltage and expected instantaneous power output of the harvester. In the second 
part, a rectifying diode bridge with a storage-filtering capacitor is introduced in the output and solved 
in transient analysis. The latter is especially important because we can precisely assess the rectified 
power output that can be used directly to power up an IoT node, or design a suitable electronic 
configuration for power management purposes. 
In Figure 4a a comparison of the output variables in the frequency domain is presented, when the 
piezoelectric bender is excited with a peak base acceleration of 0.05 g (g = 9.81 m.s-2). The resonance 
frequency for the bending mode is at 36.535 Hz, a voltage output of 10.23 V is reached for 20 MΩ 
load, with a peak displacement of 803 µm and a maximal rotation of 0.0146 rad. In Figure 4b we 
present the transient analysis of the bimorph excited at resonance frequency. The voltage output of 
the resistive load reaches the maximum value after 3 s, and the same is for rotation and displacement. 
In Figure 4c and 4d, we implement a frequency domain and transient simulation with a diode bridge 

Figure 3: Experimental setup used for vibrational harvester characterization and FEA validation. 



 

rectification circuit, consists of four diodes and followed by a smoothing capacitor. The resonance 
frequency is the same as previously, but the electronic interface introduces an additional damping on 
the piezoelectric structure observed by an increase of the width of the resonant peak and reduces the 
measured output voltage. The peak voltage drops to 5.86 V, the displacement – to 535 µm, and the 
rotation changes to 0.097 rad. The voltage requires 30 s to completely charge the capacitor and store 
the electric energy provided by the piezoelectric harvester. 

 

 

 

 
Figure 4:  Frequency domain simulations and transient analysis of displacement, W3, rotation, W31, 
and output voltage,  , for LiNbO3 bimorph harvesters with a-b) resistive load and c-d)  bridge 
rectifier and 1 µF storage capacitor. The transient analysis for the diode bridge is presented on a 
10X longer scale. 



 

3.3 Cross-check of the model  

In Figure 5a, the peak voltage responses experimentally measured with the resistive load or the 
rectified voltage circuit are reported.  The peak voltages are at 10.156 V and 6.819 V, respectively. 
We have obtained a good agreement between the peak voltage predicted earlier in the RMS 
simulations (Figure 3a), while observing a small discrepancy in terms of resonance frequency 
(35.7 Hz measured experimentally and 36.535 Hz predicted theoretically). For the rectified voltage 
peak the magnitude of the signal is in good agreement with the predictions of finite element analysis, 
even though the curve profile tend to bend on the left compared to the RMS counterpart. This effect 
may be due to the damping effect provided by the diode bridge used to measure the voltage, which is 
introducing non-linearity on the system[32,33], or introduced by capacitive or inductive terms [34]. In 
Figure 5b the rectified power output is presented. The test was carried out at resonance frequency 
while the rectified voltage was measured through the electronic variable resistive load. The maximum 
power measured was 3.67 µW for a load of 8 MΩ, resulting in a normalized power density of 209.7 
µW.cm-2.g-2. The simulations are in good agreement with the results, even though they seem to 
underestimate the power output of the harvester. In this case the clamping force applied directly on 
the piezoelectric harvester can introduce some uncertainties, having an impact on the quality factor 
and the electromechanical coupling of the structure. On the other hand, the high resistive matching 
load is partially due to the fact that the clamped capacitance is only 1.35 nF for a relatively low 
resonance frequency of 35.4 Hz. Nevertheless, the value of the clamped capacitance can be further 
improved by using thinner piezoelectric layers, or connecting them in parallel rather than in the series.  
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Figure 5: Comparison of experimental results (symbols) and simulations (lines) for bimorph 
LiNbO3/SS/LiNbO3 structure in the series configuration: a) voltage peak (open) and rectified 
voltage as a function of the frequency; b) rectified power and voltage, measured at resonance 
frequency, as a function of Rload. 
 

For the model validation, we have compared the simulations previously done with our model and 
the experimental results as well as with COMSOL Multiphysics. Simulations were carried out 
considering the voltage peak value with the resistive load case of study; thus, no diode was connected 
to the piezoelectric harvester. In Figure 6, both COMSOL Multiphysics and equivalent circuit model 
were determined from beam dimensions of Table 1. The voltage peak and resonant frequency present 
similar values and a good agreement with the experimental results on the voltage peak values (± 



 

0.16%) and the resonant frequency (± 2 %). Next, we have performed a sensitivity analysis with 
Monte Carlo simulations varying by 10 % (corresponding to the experimental precision in 
piezoelectric layer thickness) the value of the piezoelectric layer thickness, hp, in the equivalent 
circuit. The voltage and the frequency response as a function of the value of hp present Gaussian-type 
distribution center around the initial guess (Figure 6). This analysis shows that the discrepancy with 
the experimental values originates from uncertainty on the physical dimensions of the harvester such 
as the thickness, hp. An optimization could improve the determination of the real parameters of the 
model of Table 1. Meanwhile, the main uncertainty remains the symmetry of the harvester that is not 
included in our equivalent circuit model.   

 

 
Figure 6: Monte Carlo simulations for a) peak voltage output and b) bending resonance frequency. 

 

4 Conclusion 

We have implemented an extended equivalent circuit modelling to predict and analyze the behavior 
of vibrational energy harvesters, based on bimorph cantilevers. The original theoretical framework 
based on finite element analysis can be applied not only to LiNbO3 harvesters but in general to any 
other piezoelectric material. The presented model can be easily converted into an equivalent circuit 
and be used to perform transient and frequency domain simulations. This approach represents a fast 
implementation and accurate results for the first resonant mode. Furthermore, perfectly matching 
theoretical predictions for higher order modes can be obtained by increasing the number of nodes in 
the finite element model. Moreover, such formalism is versatile, and it can be applied to any kind of 
electromechanical problem, and especially for sensors and actuator systems. 

LiNbO3 represents an alternative to lead-based materials for harvesting and sensing applications, 
but until now only structures with a single piezoelectric layer were investigated. It was demonstrated 
that LiNbO3 based harvesters can be a competitive solution with state-of-art energy harvesters as 
already demonstrated by unimorph LiNbO3/Si[11] and LiNbO3/brass structures[35], showing comparable 

performances to that of PZT. In this work we have investigated the possibility of using LiNbO3 in 
bimorph configuration on stainless steel. The employed microfabrication technique is an upgrade 
compared to the technology used to obtain similar devices on silicon, in terms of cost and integration 
difficulty. Lower resonance frequencies (f0 = 35.7 Hz) were attained for bimorph cantilever based on 
LiNbO3 although the normalized power density (209.7 µW.cm-2.g-2) was lower than that of unimorph 
LiNbO3/brass canilever operating at  66 Hz[35]. At the same time the coupling of the structure (k2 = 



 

5.2 %) has increased by a factor of two in comparison to our previous results on unimorph LiNbO3/Si 
structure. The simulations, done by using our model, are in good agreement with the experimental 
results. Further structural optimization will be done to attain higher power density and the lifetime 
and robustness of the LiNbO3/metal harvesters is under study.  
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