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Abstract—Replication in distributed key-value stores makes
scheduling more challenging, as it introduces processing set
restrictions, which limits the number of machines that can
process a given task. We focus on the online minimization of
the maximum response time in such systems, that is, we aim
at bounding the latency of each task. When processing sets
have no structure, Anand et al. (Algorithmica, 2017) derive a
strong lower bound on the competitiveness of the problem: no
online scheduling algorithm can have a competitive ratio smaller
than Ω(m), where m is the number of machines. In practice,
data replication schemes are regular, and structured processing
sets may make the problem easier to solve. We derive new
lower bounds for various common structures, including inclusive,
nested or interval structures. In particular, we consider fixed
sized intervals of machines, which mimic the standard replication
strategy of key-value stores. We prove that EFT (Earliest Finish
Time) scheduling is (3−2/k)-competitive when optimizing max-
flow on disjoint intervals of size k. However, we show that
the competitive ratio of EFT is at least m − k + 1 when
these intervals overlap, even when unit tasks are considered. We
compare these two replication strategies in simulations and assess
their efficiency when popularity biases are introduced, i.e., when
some machines are accessed more frequently than others because
they hold popular data. Even though overlapping intervals suffer
from a bad worst-case in theory, they enable clusters to reach a
maximum load that is up to 50% higher than with disjoint sets.

Index Terms—Flow Time, Lower Bound, Restricted Assign-
ment, Processing Set Restrictions, Replication, Key-Value Stores.

I. INTRODUCTION

Since more than a decade, a variety of applications in-
creasingly relies on key-value stores to record user data [1],
monitoring information in scientific projects [2], activity logs,
metadata, statistics, etc. Such systems deal with a heavy
load and while they succeed to process most requests with
reasonable performance, they are prone to high delays for a
few tasks (also known as the tail latency problem [3], [4]),
which motivates the design of efficient processing strategies.

The large amount of stored data most commonly requires
the replication of the key-value tuples on distributed resources.
This mechanism ensures high availability in the case of a
large number of requests. For instance, Dynamo [5] replicates
data on nodes organized as a ring in a clockwise fashion.
This approach inspired other implementations such as Cas-
sandra [6], Riak KV and Project Voldemort [7]. However, this
eligibility constraint of each task to specific machines prevents
achieving optimal performance in current systems. Moreover,
loads between machines tend to be heterogeneous [8], [9] due

to varying popularities between the keys, which constitutes
an additional challenge. Finally, requests vary in size and the
moment they are performed cannot be predicted precisely,
leading to a difficult problem.

In this paper, we focus on the scheduling problems that
appear in key-value stores and other distributed systems using
data replication. We consider requests for data in the key-
value store as tasks to be processed on a server (or machine
in the scheduling terminology). In key-value stores, the most
common objective is to minimize the response time, which
is the time between the submission of a request (the release
of a task) and the moment a server answers this request
(completion time of the task). In the scheduling literature,
this is called the flow time. Given the dynamic nature of the
problem, we focus on simple practical algorithms with com-
petitive guarantees: we say that an online algorithm (without
knowledge of future tasks) is ρ-competitive if it provides a
solution that is always at most ρ times worst than an optimal
offline solution. Using Graham’s notation [10], we consider
the problem P |online−ri|Fmax: minimize the maximum flow
time (Fmax) on identical machines (P ), with tasks released
over time (ri) without prior knowledge of tasks before their
release times (online). For this problem, FIFO (First In First
Out) is known to be a good solution: it is (3 − 2/m)-
competitive on m parallel machines [11], [12].

A major difficulty that we need to take into account is that
data are not replicated everywhere in key-value stores: only
a subset of servers holds the data for a specific request. In
the scheduling literature, processing set restrictions are used
to model the fact that only a subset Mi of machines may
process some task Ti. This constraint makes the problem a lot
more difficult: Anand et al. [13] prove a lower bound of Ω(m)
on the competitive ratio of any online algorithm.

However, processing set restrictions often exhibit particular
structures such as the clockwise ring used by Dynamo. In
this case, data are replicated on direct neighbors forming an
interval of consecutive machines, and it is unknown if this
enables better results. In particular, we show that EFT, which
is equivalent to FIFO for the problem P |online−ri|Fmax

(Section IV), is a good strategy in some cases, but suffers
from inefficient worst case performance with such realistic
processing set restrictions (Section V). Moreover, we establish
the challenge of this problem, even with specific processing
set restrictions, by proving lower bounds on the competitive



ratio of any simple algorithm. Section VI provides the last
contribution by assessing the interaction of the popularity bias,
or load imbalance, with the replication scheme in key-value
stores. The rest of this paper starts by covering related works
(Section II) and presenting the model (Section III).

II. RELATED WORK

Max-flow minimization. Bender et al. were the first to
propose the max-flow objective Fmax = maxi(Ci − ri) [11],
[14], in which Ci and ri denote the completion and release
times of the i-th task, respectively. They show that the well-
known FIFO strategy is a (3−2/m)-competitive algorithm for
minimizing max-flow on m parallel machines (note that this
ratio is tight [15]), and they give a lower bound of 3/2 on the
online problem’s competitiveness. The offline minimization of
max-flow is strongly NP-hard since it is a generalization of
the parallel makespan problem; Mastrolilli gives an FPTAS
(Fully Polynomial-Time Approximation Scheme) in unrelated
setting that runs in time O(nm(n2/ε)m) [12], where n is the
number of tasks. When preemption is allowed, the problem
becomes solvable on unrelated machines, as Fmax is a special
case of Lmax, in which a task’s deadline is set to the value
of its release time (i.e., di = ri) [16]–[18]. FIFO has also
been shown to be (3 − 2/m)-competitive for the preemptive
problem [12]. Ambühl et al. refine the lower bound for both
the preemptive and non-preemptive versions, proving that no
online algorithm can achieve a ratio better than 2−1/m [19].
They provide an optimal algorithm for the preemptive case
(i.e., matching the lower bound) and a lower bound of 2 for
the non-preemptive problem when m = 2, implying that FIFO
is also optimal on two parallel machines. In related setting,
Bansal et al. derive lower bounds of Ω(m) and Ω(logm)
on the competitive ratio of SLOW-FIT and GREEDY [20].
They develop a new online algorithm, DOUBLE-FIT, that is
13.5-competitive by combining these two strategies. They also
present a PTAS in unrelated environment, running in time
nO(m/ε) [21], and an offline O(log n)-approximation [22].

Processing set restrictions. Various surveys have been con-
ducted on scheduling problems involving processing set re-
strictions. The majority of such problems concern makespan
minimization in a wide range of situations, including preemp-
tion, structured sets, release times, and so on [23]–[26]. To
the best of our knowledge, the only result on online max-flow
minimization under (unstructured) processing set restrictions
is due to Anand et al., who derive a lower bound of Ω(m) on
the competitive ratio of any online algorithm [13].

Table I summarizes existing results on online max-flow
minimization. In this table, P , P |Mi, Q and R respectively
denote parallel machines, parallel machines with processing
set restrictions, related machines, and unrelated machines.
Note that we have P → Q → R and P → P |Mi → R,
where A→ B means that A is a special case of B.

III. MODEL

Even though our problem originates from key-value stores,
we formally formulate it using classical scheduling terms. In

particular, we want to schedule a set T of n tasks T1, . . . , Tn

on a set M of m homogeneous machines M1, . . . ,Mm (or n
requests on m servers/processors). Each task Ti has a release
time ri ≥ 0 and a processing time pi > 0. Any machine
cannot process several tasks simultaneously and preemption
is not allowed. Tasks arrive in the system over time and no
information (release or processing time) on task Ti is available
to the scheduler before time ri, which is noted online−ri.
Without loss of generality, we assume tasks are numbered such
that i < j =⇒ ri ≤ rj .

Processing set restrictions (or eligibility constraints) prevent
tasks to be processed on any machine. Formally, a task Ti can
only be processed by a subset of machines Mi ⊆ M and we
say that Mi is the processing set of Ti. Let us consider the
following special structures for these processing sets:

Mi(interval). Interval processing sets are such that for all
Ti, Mi = {Mj s.t. ai ≤ j ≤ bi} or Mi = {Mj s.t. j ≤
ai or bi ≤ j}, for some ai ≤ bi.
Mi(nested). Nested processing sets are such that for all
Ti, Tj (with i ̸= j), either Mi ⊆ Mj , Mj ⊆ Mi or
Mi ∩Mj = ∅.
Mi(inclusive). Inclusive processing sets are such that for all
Ti, Tj (with i ̸= j), either Mi ⊆Mj or Mj ⊆Mi.
Mi(disjoint). Disjoint processing sets are such that for all
Ti, Tj (with i ̸= j), either Mi =Mj or Mi ∩Mj = ∅.
The nested, inclusive and disjoint processing set restrictions
can be seen as special cases of the interval processing set re-
striction because it is always possible to reorder the machines
in each subset Mi so that one obtains contiguous intervals of
machines. Furthermore, the inclusive and disjoint processing
set restrictions are special cases of the nested processing set
restriction.

In key-value stores, requests indicate which file to retrieve
based on a key that can be used multiple times. This implies
that multiple tasks may share the same processing time and
processing set.

We can now define the desired output and objective func-
tion. For any scheduling algorithm S, we note ρSi the time
at which Ti is scheduled by S, µS

i the index of the machine
on which Ti is scheduled by S, and σS

i the starting time of
Ti under S. In other words, S gives a schedule ΠS such that
ΠS(i) = (µS

i , σ
S
i ) for all task Ti. We want to minimize the

maximum flow time FS
max = maxFS

i , where FS
i = CS

i − ri
(CS

i denotes the completion time of Ti in ΠS : CS
i = σS

i +pi).
The superscript S is omitted when the considered algorithm
is obvious from context.

We say that an online algorithm D has the Immediate
Dispatch property if all tasks are scheduled as soon as they
arrive in the system, i.e., for all Ti, we have ri ≤ ρDi < ri+ε,
where 0 < ε ≪ 1, and we call D an immediate dispatch
algorithm. This property is of particular importance in systems
that need to scale and cannot handle large waiting queues; the
scheduling phase should be as fast as possible. It is often the
case in online distributed systems such as load balancers or
replicated key-value stores.



Table I: Existing results on max-flow optimization.

Env. Preemption Algorithm Type Approx./Competitive Ratio Ref.

P Non-preemptive FIFO Online 3− 2/m [11]
any Online ≥ 2− 1/m [19]

Preemptive FIFO Online 3− 2/m [12]
Ambühl et al. Online 2− 1/m [19]
any Online ≥ 2− 1/m [19]

P |Mi Non-preemptive any Online ≥ Ω(m) [13]

Q Non-preemptive DOUBLE-FIT Online 13.5 [20]
SLOW-FIT Online ≥ Ω(m) [20]
GREEDY Online ≥ Ω(logm) [20]

R Non-preemptive Bansal et al. Offline O(logn) [22]
Bansal Offline, PTAS 1 + ε in nO(m/ε) [21]
Mastrolilli Offline, FPTAS 1 + ε in O(nm(n2/ε)m) [12]

Preemptive Legrand et al. Offline Optimal [18]

IV. EQUIVALENCE OF FIFO AND EFT STRATEGIES

FIFO scheduling has been extensively studied in previous
work. It consists of a single queue of tasks, located on a
central scheduler, that are pulled whenever some machine is
available (see Algorithm 1). It is known to be (3 − 2/m)-
competitive when minimizing maximum flow time on parallel
machines [11], [12], [14], which makes it optimal on a single
machine. In the present paper, we move our focus to the
EFT scheduler (see Algorithm 2), which pushes each released
task on the machine that finishes the earliest. We show here
that both schedulers are equivalent on any instance of the
scheduling problem P |online−ri|Fmax. However, EFT has
two main advantages over FIFO, which motivates our choice:

1) FIFO relies on a centralized queue, whereas EFT allo-
cates tasks to machines as soon as they arrive (it is an
immediate dispatch algorithm). Hence, it does not require
a centralized scheduler with a potentially large queue of
jobs, which is impractical in most existing online systems
with critical scalability needs.

2) EFT can easily be extended to scenarios with processing
set restrictions, whereas transforming FIFO to allow such
constraints would be cumbersome.

For each machine Mj ∈M and for any 1 ≤ i ≤ n, let Hj,i

denote the subset of tasks T1, . . . , Ti being assigned to Mj in
a schedule Π:

Hj,i = {Ti′ ∈ T s.t. 1 ≤ i′ ≤ i and µi′ = j}.

Then we define Cj,i as the time at which Mj completes its
assigned tasks among the first i tasks in Π, i.e.,

Cj,i = max
Ti′∈Hj,i

{Ci′} ,

where Ci′ = σi′ +pi′ is the completion time of Ti′ in Π, with
the convention Cj,0 = 0. Finally, we define Ui as the set of
machines that may start the i-th task at the earliest possible
time tmin,i = max

(
ri,minMj∈M {Cj,i−1}

)
, i.e., Ui is the set

of machines that are in a tie for Ti:

Ui = {Mj ∈M s.t. Cj,i−1 ≤ tmin,i} . (1)

Note that EFT needs to know the set Ui for each released task
Ti, which implies that one must know the processing time of
arriving tasks with precision, in order to compute the comple-
tion times of machines at each step (we are in a clairvoyant
setting). In this way, EFT can be readily modified to account
for processing set restrictions by changing Equation (1) to

U ′
i =

{
Mj ∈Mi s.t. Cj,i−1 ≤ t′min,i

}
, (2)

where t′min,i = max
(
ri,minMj∈Mi {Cj,i−1}

)
.

For both EFT and FIFO strategies, a tie-break policy
decides which machine will process Ti. We consider that ties
are broken according to the same policy BREAKTIE in FIFO
and EFT (in FIFO, ties are broken when at least 2 machines
are idle at the same time; we assume the selected machine
runs first).

Algorithm 1 FIFO
Require: Global FIFO queue Q
Input: Incoming tasks Ti

Output: Allocated machines µi, starting times σi

1: when a new task Ti is released do
2: enqueue(i ,Q)

In parallel, do:
1: when some machines U are idle at time t do
2: i← dequeue(Q)
3: if i ̸= NIL then
4: u← BREAKTIE(U)
5: µi ← u
6: σi ← t

Now we show that EFT is equivalent to FIFO for the prob-
lem P |online−ri|Fmax. We give the proof in the companion
research report [27].

Proposition 1. For any instance I of the problem
P |online−ri|Fmax, we have FIFO(I) = EFT(I), i.e.,
ΠFIFO(i) = ΠEFT(i) for all Ti ∈ T in the instance I.



Algorithm 2 EFT
Input: Incoming tasks Ti

Output: Allocated machines µi, starting times σi

1: when a new task Ti is released do
2: Get Ui according to completion times of

machines M (Equation (1))
3: u← BREAKTIE(Ui)
4: µi ← u
5: σi ← max (ri, Cu,i−1)
6: Update the completion time of Mu

The equivalence between EFT and FIFO implies that all
existing results for FIFO also apply to EFT in the context of
max-flow minimization on parallel machines without process-
ing set restrictions.

V. BOUNDS UNDER PROCESSING SET RESTRICTIONS

Obviously, the problem P |ri,Mi|Fmax is NP-hard in the
offline context, that is, when all details on tasks are avail-
able beforehand. However, when considering tasks with unit
processing times, Brucker et al. show that the problem
P |ri, pi = 1,Mi|

∑
wiTi is solvable in polynomial time [23].

Thus, P |ri, pi = 1,Mi|Lmax is also polynomial, and by
setting the deadline di = ri for all tasks, it follows that
P |ri, pi = 1,Mi|Fmax is polynomial.

Anand et al. show that P |online−ri, pi = 1,Mi|Fmax has
a lower bound of Ω(m) on the competitive ratio of any online
algorithm [13] (even the ones that do not have the Immediate
Dispatch property). However, their proof is only valid for the
general constraint Mi, and it is unknown if special structures
of the processing sets make the problem easier.

We provide here lower bounds on the competitive ratios of
scheduling algorithms when considering that the processing
sets follow a particular structure. Table II gives a summary of
the results presented here.

We first study the inclusive structure of processing sets. We
show in Theorem 1 that restricting to this structure reduces
the lower bound on the competitive ratios to ⌊log2(m) + 1⌋
for immediate dispatch algorithms. This is also true for the
nested and interval structures, as they generalize the inclusive
structure.

Theorem 1. The competitive ratio of any immediate dis-
patch algorithm is at least ⌊log2(m) + 1⌋ for the problem
P |online−ri, pi = p,Mi(inclusive)|Fmax.

Proof: Let us assume that we work on a number of
machines m that is a power of 2, i.e., m = 2⌊log2(m

′)⌋,
where m′ is the actual number of machines. Let D be an
arbitrary online immediate dispatch algorithm. We build the
following adversary. For each ℓ such that 1 ≤ ℓ ≤ log2(m),
let T (ℓ) denote the set of m

2ℓ
tasks with pi = p > log2(m) and

ri = ℓ − 1 for all Ti ∈ T (ℓ). A final task is released at time
ri = log2(m).

Then we define M(1) = {M1, . . . ,Mm} and for all ℓ > 1,
M(ℓ) denotes the subset of machines of M(ℓ−1) of size m

2ℓ−1

with at least (ℓ−1) m
2ℓ−1 allocated tasks in total after step ℓ−1

(we prove below that such a set exists). Finally, for each ℓ and
for all Ti ∈ T (ℓ), we set Mi =M(ℓ).

Let us prove by induction that the construction of M(ℓ) is
valid, i.e., that such a subset exists for all ℓ > 0. Note that
as D is an immediate dispatch algorithm, all tasks of T (ℓ) are
irremediably scheduled at time ℓ − 1 on some machines of
M(ℓ). For the construction of M(2), we start from M(1) =
{M1, . . . ,Mm} where m

2 tasks have been allocated on the first
step. We select for M(2) the subset of machines where these
tasks have been allocated, possibly with additional machines
to reach the proper size m

2 .
We now assume that M(ℓ) has been constructed and prove

that we can build M(ℓ+1). By induction, M(ℓ) has been
allocated (ℓ− 1) m

2ℓ−1 tasks up to step ℓ− 1, and m
2ℓ

new tasks
on step ℓ. This makes a total of (2ℓ−1)m

2ℓ
tasks. We select for

M(ℓ+1) the m
2ℓ

machines that are the most loaded in M(ℓ).
We consider two cases:

(i) Each of the selected machines has at least ℓ tasks. Then
in total, we have at least ℓm

2ℓ
tasks, as requested.

(ii) There exists a selected machine with at most ℓ− 1 tasks.
This means that all non-selected machines have at most
ℓ − 1 tasks (otherwise, we would have selected one of
them instead), for a total work (on the m

2ℓ
non-selected

machines) of at most (ℓ − 1)m
2ℓ

tasks. Thus, on selected
machines, the number of tasks is at least

(2ℓ− 1)
m

2ℓ
− (ℓ− 1)

m

2ℓ
= ℓ

m

2ℓ
.

At step log2(m), M(log2(m)) is reduced to two machines,
with at least 2(log2(m)−1) allocated tasks, where a single task
is scheduled at time log2(m)−1. This leaves one machine with
at least log2(m) tasks, where we finally allocate the last task
at time log2(m), leading to a maximum flow of (log2(m) +
1)p− log2(m). Note that

log2(m) + 1 = log2(2
⌊log2(m

′)⌋) + 1

= ⌊log2(m′)⌋+ 1 = ⌊log2(m′) + 1⌋ .

The optimal strategy consists in scheduling each set T (ℓ) on
the machines of M(ℓ) \M(ℓ+1), for a max-flow of p. Thus,
as p→∞, we have a competitive ratio of ⌊log2(m′) + 1⌋.

The previous result may be adapted for processing sets that
do not present any particular structure, but have all the same
size k. The proof is an adaptation of the previous one and is
available in the companion research report [27].

Theorem 2. The competitive ratio of any immediate dis-
patch algorithm is at least ⌊logk(m)⌋ for the problem
P |online−ri, pi = p,Mi, |Mi| = k|Fmax.

When considering online algorithms that do not have the
Immediate Dispatch property (and thus may allocate tasks only
when machines are available for computation), we can still
prove a similar lower bound on the competitive ratio, as long
as the processing sets are nested. The proof is an adaptation
of Anand et al. [13], which did not consider any structure.



Table II: Competitive ratio guarantees for the problem P |online−ri,Mi|Fmax with various processing set restrictions and
depending on the type of algorithm.

Processing Set Structure Algorithm Type Competitive Ratio Ref.

inclusive Immediate Dispatch ≥ ⌊log2(m) + 1⌋ Th. 1
|Mi| = k Immediate Dispatch ≥ ⌊logk(m)⌋ Th. 2
nested Online ≥ 1

3
⌊log2(m) + 2⌋ Th. 3

disjoint, |Mi| = k EFT 3− 2/k Cor. 1
interval, |Mi| = k Online ≥ 2 Th. 5

EFT ≥ m− k + 1 Th. 6, 7, 8

Theorem 3. The competitive ratio of any online algorithm is
at least 1

3 ⌊log2(m) + 2⌋ for the problem P |online−ri, pi =
1,Mi(nested)|Fmax.

Proof: Let us assume that we work on a number of
machines m that is a power of 2, i.e., m = 2⌊log2(m

′)⌋, where
m′ is the actual number of machines. Let N be an arbitrary
online scheduling algorithm. Machines are numbered from 1
to m, and let F be a number such that F ≥ log2(m) + 2. We
construct the following instance. At time t0 = 0, we consider
the interval of machines of size s0 and starting from u0 (that is,
{Mu0

,Mu0+1, . . . ,Mu0+s0−1}), denoted by I(u0, s0), where
u0 = 1 and s0 = m. We submit s0 unit tasks at time t0, with
the processing set restrictionMi = I(u0, s0). Let G1,0 denote
this set of tasks. For each machine Mj ∈ I(u0, s0), we release
one unit task at each time t0, t0+1, . . . , t0+F−1 and feasible
only on the machine Mj . Let G2,0 denote this set. Note that at
time t0+F −1, algorithm N should have completed the tasks
of G1,0, otherwise the maximum flow time would be greater
than log2(m) + 2.

Now, for all k > 0, we set tk = tk−1 + F and sk =
1
2sk−1. We choose uk such that uk−1 ≤ uk ≤ uk−1 + sk−1−
sk = uk−1 + sk (in other words, I(uk, sk) is a subinterval
of I(uk−1, sk−1)), and such that |G0,k| is maximized, where
G0,k ⊂ G2,k−1 is the set of tasks that are submitted before tk
but not completed at this time, and that can be executed on
one machine only in the interval I(uk, sk). Then we submit
task sets G1,k and G2,k as previously: G1,k is made of sk tasks
with processing set I(uk, sk) released at time tk, and G2,k
contains F tasks for each machine Mj ∈ I(uk, sk) submitted
at times tk, tk +1, . . . , tk +F − 1 and that must be processed
on Mj .

We prove the following statements by induction: for all k ≥
0, (i) sk = m/2k and (ii) there are at least ksk uncompleted
tasks on I(uk, sk) at time tk before sending G1,k and G2,k,
i.e., |G0,k| ≥ ksk.

For the base case (k = 0), we have s0 = m/20 = m, and
G0,k = ∅, so there is no completed task on I(1,m) at time 0
before sending G1,0 and G2,0.

Now assume that sk = m/2k is true at a certain step k.
At step k + 1, we have sk+1 = 1

2sk by definition, so sk+1 =
1
2 (m/2k) = m/2k+1, which proves the statement (i).

Suppose that there are at least ksk uncompleted tasks on
I(uk, sk) at time tk, i.e., |G0,k| ≥ ksk. Then we send G1,k

and G2,k, which means that there are at least

ksk + sk + Fsk − Fsk = (k + 1)sk

uncompleted tasks on I(uk, sk) at time tk+1 = tk + F .
Now we choose the subinterval I(uk+1, sk+1) ⊂ I(uk, sk)

maximizing |G0,k+1| at time tk+1. Let us divide I(uk, sk) into
2 disjoint subintervals of size 1

2sk and by contradiction, as-
sume that no such subinterval contains (k+1) 12sk uncompleted
tasks, i.e., there are at most (k + 1) 12sk − 1 uncompleted
tasks on each of these subintervals. Thus, there are at most
2 ((k + 1) 12sk − 1) = (k + 1)sk − 2 uncompleted tasks on
I(uk, sk), which contradicts the fact that I(uk, sk) holds at
least (k+1)sk uncompleted tasks. Then, the chosen subinterval
I(uk+1, sk+1) contains at least (k + 1) 12sk = (k + 1)sk+1

uncompleted tasks at time tk+1 before sending G1,k+1 and
G2,k+1 (that is, |G0,k+1| ≥ (k + 1)sk+1), which proves the
statement (ii).

We stop when we reach the step k such that sk = 1. This
means that m/2k = 1, i.e., k = log2(m). Therefore, there
remains at least ksk = log2(m) uncompleted tasks on an
interval of size 1 at time tk, plus 1 task of G1,k and 1 task of
G2,k, which gives a maximum flow time of at least log2(m)+2.
Thus, on all m′ machines, we have a maximum flow of

log2(m) + 2 = log2(2
⌊log2(m

′)⌋) + 2

= ⌊log2(m′)⌋+ 2 = ⌊log2(m′) + 2⌋ .

The optimal strategy consists, at each step 0 ≤ k < log2(m),
in executing all tasks of G1,k on the subinterval I(uk, sk) \
I(uk+1, sk+1), for a max-flow of 3: tasks of G1,k are scheduled
first (with flow 2), followed by tasks of G2,k, which have a
flow at most 3.

The case of disjoint processing sets is particular: we may
apply a competitive algorithm independently on each set,
which leads to an algorithm with adapted competitive ratio
(see detailed proof in the companion research report [27]).

Theorem 4. From any f(m)-competitive algorithm for the
problem P |online−ri|Fmax, we can design an adapted al-
gorithm with a competitive ratio of maxi {f(|Mi|)} for the
disjoint case (P |online−ri,Mi(disjoint)|Fmax).

Proof: Let I be an arbitrary instance of the problem
P |online−ri,Mi(disjoint)|Fmax, and let N be an f(m)-
competitive algorithm for P |online−ri|Fmax. By definition of
the disjoint processing set restriction, we have Mi ∩Mj = ∅



or Mi =Mj for all tasks Ti, Tj (with i ̸= j) of the instance
I. Let M denote the set of all subsets Mi.

Then, for all Mu ∈ M, we construct the set of tasks
Tu = {Ti ∈ T s.t. Mi = Mu}. As Mu ∩Mv = ∅ for all
Mu,Mv ∈M such that u ̸= v, we clearly have Tu∩Tv = ∅.
Moreover, ⋃

Mu∈M
Tu = T.

Hence, for allMu ∈M, Tu andMu can clearly constitute
an instance Iu of the problem P |online−ri|Fmax. We design
an online algorithm N ′ for the original problem by applying
N in parallel to each instance Iu.

By definition of the competitive ratio of N , we have
FN
max(Iu) ≤ f(|Mu|)FOPT

max (Iu), where OPT is an optimal
offline strategy. As Iu is a subproblem of I, we also have

FOPT
max (Iu) ≤ FOPT ′

max (I)

for all Iu, where OPT ′ is an optimal offline strategy built
by applying OPT in parallel on each instance Iu. Then,
FN
max(Iu) ≤ f(|Mu|)FOPT ′

max (I), and

FN ′

max(I) = max
u

{
FN
max(Iu)

}
≤ max

u
{f(|Mu|)}FOPT ′

max (I).

This result has an important corollary for EFT on disjoint
processing sets.

Corollary 1. EFT is (3 − 2/max |Mi|)-competitive for the
disjoint case and (3 − 2/k)-competitive when |Mi| = k for
all Mi.

We now move to the study of processing sets that are
intervals of fixed size, which we outlined in the introduction
as being representative of the replication scheme used in
key-value stores. We show that the competitive ratio of any
algorithm (even without the Immediate Dispatch property) is
not smaller than 2.

Theorem 5. The competitive ratio of any online algorithm is
at least 2 for the fixed-size interval problem P |online−ri, pi =
p,Mi(interval), |Mi| = k|Fmax.

The proof, detailed in the report [27], consists in a simple
adversary argument: we first submit a task with processing
set {M2,M3}. When the scheduler has started this task on
some machine Mu, we submit two tasks whose processing set
is an interval of size 2 containing Mu: either {M1,M2} or
{M3,M4}.

The lower bound on the competitive ratio can be largely
increased when considering immediate dispatch algorithms,
and in particular EFT, as defined in Algorithm 2 in Section IV.
Note that among immediate dispatch algorithms, EFT is a
very reasonable candidate: when a new task is submitted,
it is allocated to the machine that will finish it the earliest.
Without processing set restrictions, this is known to produce
a very good load balancing, as well as good performance for
the max-flow [11] (we detail this proof in the report [27]).

It turns out that this is not the case when adding processing
interval restrictions. We prove in Theorems 6, 7 and 8 that the
competitive ratio of EFT is larger than m−k+1 in a variety
of settings.

To exhibit this result, we need to focus on a specific
tie-break function. We start by studying the MIN tie-break
function: in the set Ui of candidate machines that may finish
task Ti at the earliest, we choose the machine with smallest
index. The obtained algorithm is called EFT-MIN and its
competitive ratio is bounded in Theorem 6.

Theorem 6. The competitive ratio of EFT-MIN is at least
m−k+1 for the fixed-size interval problem P |online−ri, pi =
1,Mi(interval), |Mi| = k|Fmax, where 1 < k < m.

We give here a summary of the long and technical proof of
this result, available in the companion research report [27].

For ease of reading, we say that a given task Ti is of type
λ if its processing interval restriction starts on machine Mλ,
i.e., Mi = {Mλ, . . . ,Mλ+k−1}. Let us build the following
adversary instance (we illustrate an EFT-MIN schedule of this
instance in Figure 1). At each time t, m tasks are submitted:

(i) for 1 ≤ i ≤ m−k, task Ti is of type m−k− i+2 (blue
task in Figure 1);

(ii) for m − k < i ≤ m, task Ti is of type 1 (red task in
Figure 1).

This adversary relies on the key observation that EFT-
MIN favors the machine with smallest index when several
machines are available at the same time. On the proposed
instance, EFT-MIN will rarely use machines with high indices,
whereas machine m is able to process the first task only in
each round. The proof consists in showing that machines with
smaller indices will be overloaded, and their delay propagates
up to the desired flow time, while an optimal schedule would
allocate each task on the very last machine of its processing
set, reaching a flow of 1.

A key notion in this proof is the concept of profile w,
defined as follows: wt(j) = max (0, Cj,mt − t) is the work
allocated on machine Mj and waiting to be processed, just
before the adversary releases the m next tasks at time t. We
show that EFT-MIN converges to a stable schedule profile wτ

such that for all j,

wτ (j) = min(m− j,m− k).

The proof is divided in two steps, summarized below:
Step 1. We prove that while we have not reached or exceeded
the stable profile wτ , the total delay is strictly increasing with
time (i.e., we are getting closer to wτ ).
Step 2. We prove that, at each round, either we have not yet
reached the stable profile, or some machine has a delay larger
than m− k.
These two intermediate results allow us to conclude that some
machine eventually reaches a max-flow of m − k + 1: from
Step 2, we know that at each round, either we have already
exceeded the stable profile wτ , or we have not yet reached
it. In this case, Step 1 tells us that we will get closer to the
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Figure 1: An EFT-MIN schedule of the adversary from time t = 0 to t = 3, for m = 6 and k = 3. Colored tasks are released
in-order at each time t.

stable profile until we reach or exceed it. In both cases, we
conclude that some machine has a max-flow of m− k + 1.

The previous bound on the competitive ratio of EFT-MIN
can be extended to the case where EFT uses a random tie-
break function RAND, and we call this algorithm EFT-RAND.
The only condition for Theorem 7 to hold is that among a set
of candidate machines, the random tie-break function chooses
each machine with positive probability, i.e., no machine is
systematically discarded when it is a possible candidate. The
proof is availabe in the report [27].

Theorem 7. The competitive ratio of EFT-RAND is at least
m− k + 1 (almost surely) for the fixed-size interval problem
P |online−ri, pi = 1,Mi(interval), |Mi| = k|Fmax, where
1 < k < m. In other words, there exists an instance for which
we have

P
(
Fmax ≥ (m− k + 1)FOPT

max

)
= 1.

Finally, this result holds for any tie-break function provided
that tasks are not anymore of unitary duration (see proof in
the research report [27]).

Theorem 8. The competitive ratio of EFT (with any tie-break
policy) is at least m−k+1 for the fixed-size interval problem
P |online−ri,Mi(interval), |Mi| = k|Fmax.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the relative impact of struc-
tured processing set restrictions on the performance of simple
scheduling heuristics. We focus on both interval processing
sets, because they are used in actual systems [5]–[7], and
disjoint processing sets, because it is the restrictions for which
we have the best, and only, approximation ratio (Theorem 4).
Moreover, the performance of actual systems are affected
by the popularity of requests, which is not uniform, i.e.,
certain tasks restricted to the same processing set appear
more frequently than others. We begin by explaining our
model of popularity before developing the process we used
to evaluate the theoretical maximum load permitted by data
item replication. Finally, we perform simulations to provide an
experimental perspective to the bounds derived in the previous
section. All the related code, data and analysis are available
online1.

1https://doi.org/10.6084/m9.figshare.19123139.v1

A. Model of Popularity

Let us consider a cluster of m machines, where tasks have
a unit processing time and are released according to a Poisson
process with parameter λ (in other words, λ tasks are released
in average at each time unit). λ/m measures the average load
on the whole cluster; thus, when λ = m, the cluster is loaded
at 100%.

For now, suppose that each task can be processed by only
one specific machine, i.e., we have |Mi| = 1 for all task Ti.
This corresponds to what happens in key-value stores when
data items are not replicated: each task Ti carries a key, which
is uniquely associated to a data item in the system, and this
data item is held by only one machine of the cluster. Therefore,
Ti has no choice but to be sent and processed on this specific
machine.

In practice, some data items are requested more frequently
than others during the service lifetime; depending on the
data partitioning and popularity bias on requested keys, some
machines will potentially have to process more tasks than
others, leading to a biased distribution on machine popularity.
Let Ej be the event in which a task must be processed by
machine Mj (because it requests a key held by Mj), which
occurs with probability P (Ej). Thus, λP (Ej) is the average
number of tasks sent on Mj at each time unit, and measures the
load of Mj . Note that because of the non-uniform popularity
bias P (Ej), the load of a given machine can be greater than
100% (even if the average cluster load is below 100%). In
this case, the machine completely saturates as there is no
replication.

Let us consider that the machine popularity follows a Zipf
distribution, which has been advocated to model popularity
distributions [28]. We have P (Ej) = 1

jsHm,s
, where s ≥ 0

is the shape parameter of the distribution and Hm,s is the
m-th generalized harmonic number of order s. We use s
to control the popularity bias: the larger s, the more the
popularity heterogeneity increases. In the following, we focus
on three specific situations. When s = 0, the distribution
degenerates to the uniform distribution, i.e., no machine is
more popular than another (we call this case the Uniform
case). When s > 0, the Zipf distribution has the particularity
to generate a monotonically decreasing load on machines
M1, . . . ,Mm. This corresponds to a worst case, as the first

https://doi.org/10.6084/m9.figshare.19123139.v1


machines concentrate most of the workload (Worst-case).
Finally, we randomly permute P (Ej) to match with more
realistic settings (Shuffled case). As realistic bias strongly
depends on the dataset and system usage, each permutation is
chosen uniformly as we assume no prior knowledge. Figure 2
shows an example of load distribution for each case.

B. Analysis of Theoretical Maximum Load

We want to find the theoretical maximum cluster load (that
is, finding the maximum value of λ such that the load on each
machine is below 100%) one can achieve when data items are
replicated across the cluster. Up to now, as we did not consider
replication yet, we supposed that each task could only be
processed by a single machine (the one holding its requested
key). In this case, we clearly have λ ≤ 1/maxj P (Ej).

Let us give more choices to each task by adding more
machines to the processing sets Mi. This can be seen as
replicating data items. Our goal is to study how extending
Mi under a popularity bias affects performance metrics such
as the maximum flow time or the maximum cluster load, and
how structures in processing sets impact them.

For each task Ti, we build a new set M′
i from Mi by

defining a replication strategy; in other words, starting from a
set with a single machine Mi = {Mu}, we replicate the keys
held by Mu on all machines of M′

i. We focus on strategies
that consist in adding k − 1 machines (with 1 ≤ k ≤ m) to
the set, such that M′

i constitutes an interval of size k, i.e.,
M′

i = Ik(u). We describe two manners to build Ik(u) from
Mu. Figure 3 illustrates these constructions.

Overlapping intervals. There are m distinct overlapping
replication intervals of size k, arranged as a ring:

Ik(u) = {Mj s.t. j = (j′ − 1) mod m+ 1

for all u ≤ j′ ≤ u+ k − 1}.

This constitutes the basic replication strategy of key-value
stores: machines are arranged as a ring, and data items held
by a given machine are replicated on the successors of this
machine [5], [6]. We have seen in Theorems 6, 7 and 8 that
EFT does not always provide a good competitive ratio when
minimizing maximum flow time with this structure.
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Figure 2: Example of load distribution on a cluster of m = 6
machines, with λ = m, for each case.
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Figure 3: Example of replication strategies in overlapping
and disjoint settings, with k = 3. For example, suppose
that a task Ti is feasible on M3 only (Mi = {M3}).
Then, in overlapping setting (resp. disjoint setting), the new
processing set restriction of Ti isM′

i = {M3,M4,M5} (resp.
M′

i = {M1,M2,M3}).

Disjoint intervals. We divide the cluster into
⌈
m
k

⌉
disjoint

replication intervals of size k:

Ik(u) = {Mj s.t. u′ + 1 ≤ j ≤ min(m,u′ + k)},

where u′ = k
⌊
u−1
k

⌋
. This corresponds to the situation seen

in Theorem 4 and related corollaries. EFT guarantees a good
competitive ratio when minimizing maximum flow time with
this structure.

After replication, all tasks that could only run on a given
machine Mj can now be processed by any machine of Ik(j).
To quantify the gain on maximum cluster load permitted by a
given replication strategy, we solve the following optimization
problem modeled as a Linear Program:

maximize λ (3a)

subject to ∀j,
∑
i

aij = λP (Ej), (3b)

∀i,
∑
j

aij ≤ 1, (3c)

∀i, j s.t. Mi /∈ Ik(j), aij = 0, (3d)
∀i, j, aij ≥ 0, (3e)
λ ≥ 0. (3f)

aij denotes the average amount of work (in tasks per time
unit) that is eventually processed by machine Mi and that
corresponds to tasks originally restricted to machine Mj . We
consider the following constraints:

• The total work corresponding to tasks originally restricted
on Mj is exactly equal to the initial work of Mj (Equa-
tion (3b)).

• The average work eventually processed on Mi does not
exceed 1 (Equation (3c)).

• We can transfer work from Mj to Mi if and only if
Mi belongs to the interval of size k generated from Mj

according to the considered replication strategy, i.e., all
tasks that could originally run exclusively on Mj can now
also run on Mi (Equation (3d)).
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Figure 4: Maximized load for both overlapping and disjoint strategies, for each 0 ≤ s ≤ 5 (by steps of 0.25) and 1 ≤ k ≤ m,
in the Shuffled case. In Figure (a), we show the median value obtained from 100 different permutations of weights P (Ej).
In Figure (b), we show the ratio between the median max-loads of both replication strategies.

C. Experimental Evaluation of Theoretical Maximum Load

In the following experiments, we set the cluster size m to 15,
which is a common setup when conducting experiments with
scheduling in real key-value store systems [29], [30]. Figure 4a
shows the result of our Linear Program (Equations (3)) as a
function of bias s and interval size k, for both previously
described replication strategies, in the Shuffled case (median
over 100 different permutations).

At first glance, it seems that the disjoint strategy is less
efficient than the overlapping strategy to cope with high cluster
load when non-uniform popularity biases are introduced. For
example, for s = 1 and k = 5, Figure 4a indicates that the
cluster can theoretically tolerate a maximum load of 100%
when intervals overlap, whereas the disjoint strategy allows
reaching a maximum load of 70%.

The overlapping strategy superiority is clearly confirmed
by Figure 4b, which shows the gain on the maximum load
permitted by overlapping replication intervals over the disjoint
strategy. The overlapping strategy allows the cluster to handle
loads that are up to 50% higher than the disjoint strategy (e.g.,
for s = 1.25 and k = 6), and we can observe a gain up to 35%
for common situations in key-value stores, when 0 < s ≤ 1.5
(moderate popularity bias) and k = 3 (standard replication
factor in most implementations). Note that the popularity bias
has obviously no effect when data are fully replicated (k =
m), and that replication strategies exhibit no difference on the
tolerable load when no bias is introduced (s = 0).

D. Simulations with Popularity Bias

Now we simulate EFT scheduling on m = 15 machines
with a popularity bias, on 10 000 generated unit tasks, which
is sufficient to reach a steady state. Figure 5 illustrates the
impact of both replication strategies on maximum flow time in
the EFT-MIN scheduler and its counterpart EFT-MAX (which
selects the candidate machine with highest index). We consider
the three cases of popularity bias (in Worst-case and Shuffled

case, we set s = 1). We repeat the experiment 10 times, and
we take the median among max-flow values. We set k = 3 to
match with a realistic key-value store system.

In the Uniform case, no difference is visible between
EFT-MIN and EFT-MAX; however, overlapping replication
intervals give better results than the disjoint strategy (e.g.,
for an average cluster load of 90%, EFT exhibits a max-
flow of 5 when intervals overlap, whereas it gives a max-
flow of 10 with disjoint intervals). When randomly dispatched
popularity biases are introduced (Shuffled case), we see the
relative gain of the overlapping strategy increasing. This is
even more obvious when we consider the Worst-case. We also
see EFT-MAX becoming more efficient than EFT-MIN for the
overlapping strategy, which is consistent with the situation in
Theorem 6: when breaking a tie, EFT-MIN will select the
most popular machine, whereas EFT-MAX does the opposite
(as we are in a worst-case, popularity biases are sorted in
decreasing order), leading to a smaller max-flow. However, the
gain permitted by the scheduling heuristic is rather marginal
compared to the gain allowed by a carefully chosen replication
structure.

The replication strategy where intervals overlap, commonly
used in key-value stores, exhibits better results than the disjoint
strategy when popularity biases are introduced, even if the
max-flow of EFT in disjoint setting is bounded (Theorem 4).
However, there is no efficient worst-case guarantee for the
overlapping strategy, as seen in Theorem 6. The question of
whether there exists a replication strategy giving both good
practical results and theoretical guarantees on EFT scheduling
remains open.

VII. CONCLUSION

The high throughput and scalability needs of key-value
stores require immediate dispatch algorithms in which requests
are allocated to servers as soon as they arrive (such as EFT).
In the absence of processing set restrictions, EFT benefits
from favorable competitive guarantee for the maximum flow
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time. However, storage constraints usually prevent replicat-
ing all data on all servers; this is modeled by introducing
restrictions on the task processing sets. We provide bounds on
the competitive ratio for several structured processing sets.
In particular, we show that the competitive ratio of EFT
goes from (3 − 2/m) to m − k + 1 for interval processing
sets, which are the most commonly used in key-value stores.
However, despite the poor theoretical guarantee for EFT, we
show experimentally that interval processing sets allow a load
up to 50% larger than disjoint processing sets.

Future directions include devising a structured processing
set, or replication strategy, that would provide efficient per-
formance on average and in the worst case. Moreover, the
current bound on the competitive ratio of EFT with interval
processing sets could be extended to other immediate dispatch
algorithms.
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