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Abstract

Scheduling independent tasks on a parallel platform is a widely-studied problem, in particular when the

goal is to minimize the total execution time, or makespan (P ||Cmax problem in Graham’s notations). Also,

many applications do not consist of sequential tasks, but rather parallel tasks, either rigid, with a fixed

degree of parallelism, or moldable, with a variable degree of parallelism (i.e., for which we can decide at the

execution on how many processors they are executed). Furthermore, since the energy consumption of data

centers is a growing concern, both from an environmental and economical point of view, minimizing the

energy consumption of a schedule is a main challenge to be addressed. One can then decide, for each task,

on how many processors it is executed, and at which speed the processors are operated, with the goal to

minimize the total energy consumption. We further focus on co-schedules, where tasks are partitioned into

shelves, and we prove that the problem of minimizing the energy consumption remains NP-complete when

static energy is consumed during the whole duration of the application. We are however able to provide

an optimal algorithm for the schedule within one shelf, i.e., for a set of tasks that start at the same time.

Several approximation results are derived, both with discrete and continuous speed models, and extensive

simulations are performed to show the performance of the proposed algorithms.

1. Introduction

We consider the problem of scheduling independent tasks. Even though this problem has already been

widely studied, in particular when aiming to minimize the total execution time (or makespan) for sequential

tasks, there remain avenues for improvement for variants of the problem. Using the Graham notations [15],

the typical problem that is studied is P ||Cmax, i.e., the goal is to minimize the makespan when scheduling

independent sequential tasks on a set of identical processors. The decision version of this problem in its
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simplest form is already NP-complete (it is indeed identical to 2-Partition [14] when considering two proces-

sors). However, several well-known heuristics lead to very good approximation algorithms, as the classical

Longest Processing Time (LPT) heuristic, or even some PTAS or FPTAS algorithms [17].

The problem becomes more complicated when dealing with parallel tasks. Now, each task i is a parallel

task that executes concurrently on pi processors. The greedy list scheduling algorithm that gives priority to

longest jobs is then known to be a 2-approximation when tasks are rigid (pi is given and fixed) [13].

In order to ease the scheduling, it can be useful to group tasks by shelves (or batches, packs, levels, etc.),

and then the shelves are scheduled one after the other. All the tasks in a same shelf start their execution at

the same time, and the next shelf starts only when all tasks of the previous shelf are done. This is typically

referred to as shelf-scheduling or co-scheduling. Of course, one may then waste time, due to idle resources

if tasks do not all take the same time. However, such schedules are easy to implement and they also may

have some theoretical guarantees. Indeed, the list scheduling that gives priority to longest jobs is known to

be a 3-approximation when imposing the use of shelves [32] (recall that it is a 2-approximation without this

restriction).

Such co-schedules are also very useful for moldable tasks, i.e., tasks whose degree of parallelism pi can be

chosen at execution. For such parallel moldable tasks, an easy way to proceed is to execute tasks sequentially,

each task using the whole platform. However, it may be more efficient to group tasks by shelves, since the

execution profile of a task may lead to less efficiency when using many processors. While the general problem

is NP-hard, Aupy et al. [3] propose an optimal polynomial-time algorithm to decide the processor assignment

that minimizes the makespan when there are at most two tasks in a shelf.

While most scheduling problems are focusing on makespan minimization, another core problem is the

energy consumption. In order to optimize this energy consumption, modern processors can run at different

speeds, and their power consumption is then the sum of a static part (the cost for a processor to be turned

on) and a dynamic part, which is a strictly convex function of the processor speed. Indeed, the execution

of a given amount of work costs more power if a processor runs at a higher speed [18]. More precisely, a

processor running at speed s dissipates a power of s3 Watts [19, 27, 10, 4, 11], hence it consumes an energy

of s3 × d Joules when operated during d units of time. Faster speeds allow for a faster execution, but they

also lead to a much higher (supra-linear) power consumption. A more general model states that the power

can be in sα, where 2 ≤ α ≤ 3 [5]. While minimizing the makespan helps reducing the energy consumption,

which increases with execution time, to the best of our knowledge, no study has been aiming at minimizing

the energy consumption for shelf schedules.

For the static energy consumption, it depends on the time during which processors are powered. We

consider two models: in the independent model, each processor is independently powered and can be turned

off when not computing, hence the static power is paid only while processors are running. However, in the
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simultaneous model, the platform is turned on as long as one processor is running, hence the static power

must also be paid for idle processors.

Our main contributions are the following:

• We formalize the problem of scheduling independent moldable tasks to minimize energy consumption

(MinE-Mold problem) with various model variants.

• We prove that the problem can be solved in polynomial time when processors are independently

powered, while the problem becomes NP-complete with simultaneously powered processors.

• We establish multiple approximation ratios for both classical list scheduling algorithms, and shelf-based

schedules, both with a realistic model where speeds can be chosen in a discrete set, and with the general

model where speeds can take any positive real value (continuous speeds).

• We provide an optimal dynamic programming algorithm to minimize the energy consumption of a

single shelf, both with the discrete and with the continuous model. The goal is to decide on how many

processors to execute each task of the shelf, and at which speed to operate the task.

• We perform an empirical study and we show that, for most instances, a single speed can be used for

all tasks without increasing the energy consumption. Also, as expected, shelf-based solutions consume

more energy, but they are easier to implement and solutions are derived with a much lower complexity.

A comparison with solutions using continuous speeds highlights that further energy savings could be

achieved by carefully choosing the processor’s speeds.

We first discuss related work in Section 2. Next, we detail the model (platform, tasks, energy consump-

tion) and schedules, and we introduce the target optimization problems in Section 3. The complexity of the

problems is established in Section 4. Approximation ratios for MinE-Mold are derived in Section 5 with

discrete speeds and in Section 6 with continuous speeds. Optimal algorithms for a single shelf are provided

in Section 7. Finally, a comprehensive empirical study is proposed in Section 8. We conclude and give hints

for future research directions in Section 9.

2. Related work

Although the problem of minimizing the energy consumption of parallel platforms has been extensively

studied, few works propose guaranteed scheduling algorithms for moldable tasks. We first cover approxima-

tion algorithms for the problem of minimizing the makespan because our approach relies on such results,

even though we rather focus on minimizing the energy consumption. We then discuss heuristics proposed for

real-time systems, which consider a model slightly different than ours. Finally, we present some examples of

moldable task applications.

Makespan minimization. For the rigid case where the number of processors required by each task

is fixed, classical list scheduling algorithms, denoted by ListBased, are widely used in the literature for
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makespan minimization. Tasks are ordered in a priority list and are then scheduled by order of priority, as

presented by Garey and Graham [13]: any time a processor is idle, the list is scanned in order and the first

task that can be executed is started. Another way to say it, the principle of the algorithm is as follows:

when resources are released, we see if a task can be started right now. If it is the case, we start it. If several

tasks can be started, we take the one with the highest priority, given by an ordering of the tasks in a list.

ListBased is a 2-approximation for the makespan. More precisely, it is a 2×max(Wp , tmax)-approximation,

where W
p is the average work and tmax is the execution time of the longest task.

Coffman et al. [12] made a landmark paper proving the approximation ratio of several shelf-based algo-

rithms when considering rigid tasks only. They introduce the problem as a two-dimensional packing problem

and focus on asymptotic performance bounds for the makespan. They show that the performance bounds

of classic bin-packing heuristics Next-Fit Decreasing and First-Fit Decreasing are 3 and 2.7, respectively.

In [22], Krishnamurti et al. study a problem where processors are partitioned, and each task is submitted

to one such partition with the objective to minimize the execution time. The number of partitions is bounded,

which limits the maximum number of simultaneous tasks.

In [32], Turek et al. study the multi-shelves problem, still for makespan minimization. They first propose

an allocation strategy for rigid tasks, and then use this strategy on several “allocation candidates” for

the moldable case. This first strategy involves co-schedules, ShelfBased [32, LTF], where rigid tasks are

partitioned into shelves, and all the tasks in a same shelf begin their execution at the same time (this is

equivalent to Next-Fit Decreasing). Tasks are sorted in order of decreasing execution times. Then, tasks are

inserted iteratively in the current shelf until the next task cannot be inserted. At this point, a new shelf is

created and the process continues. A possible extension consists in allowing backfilling of previous shelves.

ShelfBased is a 3-approximation for the makespan. More precisely, it is a
(

2W
p + tmax

)
-approximation.

To deal with moldable tasks, the authors also present an overall design [32, GF] that works as follows. First,

a task and a number of processors are selected, and we assume that all tasks will complete before this one.

Then, the number of processor is chosen for all other tasks so that their work is minimized. Finally, this

instance is solved as if tasks were rigid (with a fixed number of processors. All pairs of initial task and

number of processors are tried. Turek et al. also designed a 2.7-approximation for the multi-shelves problem,

with a fixed number of shelves [31]. However, this algorithm is exponential in the number of shelves.

Aupy et al. go beyond the problem of minimizing the makespan, by tackling the problem of optimizing

the power consumption, the makespan and the reliability [2]. However, they consider dependent non-parallel

tasks, which is a setting completely different from ours, since we focus on parallel tasks. They show that

most problems are NP-hard and propose heuristics.

Real-time systems. Finally, several works have been proposed in the context of real-time systems with

moldable tasks, power constraints and deadlines. The closest to the problem that we target considers level-
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based scheduling (similar to shelves) with rigid or moldable tasks [21]. They propose heuristics that extend

bin-packing ones such as First-Fit Decreasing, Best-Fit Decreasing, etc. Most other works related to real-

time systems propose heuristics [33, 34, 23]. In this paper, we do not consider deadlines and we investigate

algorithms with guarantees.

Moldable Tasks. Most distributed algorithms have a time complexity that depends on the number of

processors and therefore correspond to moldable tasks. This is the case for very classical algorithms such as

the Fast Fourier Transform or the product of matrices by Strassen’s method. For a more recent example,

one can for instance point out distributed algorithms for generating samples from a large tabular [28]. In

the context of biological applications, E. Saule et al. have shown how to use moldable tasks to tackle the

short sequence mapping problem [29]. Other applicative examples of moldable tasks on stream algorithms

are developed in [20].

Overall, we are not aware of any paper tackling directly the problem that we consider in this paper,

namely the problem of scheduling independent moldable tasks to minimize the energy consumption, under

different model variants (shelf-based solutions, discrete and continuous speeds, ...), and hence we were not

able to directly compare our proposed approach to any algorithm coming from related work.

3. Model

We first describe the platform model (Section 3.1), the task model (Section 3.2), the energy model (Sec-

tion 3.3), before formally defining general schedules, single-speed schedules and co-schedules in Section 3.4.

Finally, we introduce the target optimization problems in Section 3.5. Table 1 summarizes the main notations

used throughout the paper.

3.1. Platform

The target platform consists in p identical processors, whose frequency can be scaled using DVFS (Dy-

namic Voltage and Frequency Scaling).

These processors have a static power Pstat and a set S = {s1, s2, . . . , sk} of possible speeds (or frequen-

cies). For convenience, we let smin = s1 and smax = sk be the minimum and maximum speeds. Indeed,

current processors have a set of predefined speeds (or frequencies), which correspond to different voltages

that the processor can be subjected to [25] (discrete model).

For the sake of completeness, we also consider the continuous model, where processors may be operated

at any speed (S = R∗+). While this model is unrealistic (even though the number of available frequencies

tends to be large in modern processors), it is theoretically appealing [6]. Also, a study of the problem without

a constrained set of speeds allows for a better understanding of how to choose the available speeds during

the design of a processor.
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Notation Quantity
p Number of processors

Pstat Static Power
S Set of available speeds on the processors
Ti Task number i

wi,j Total work for the execution of task i on j processors
ti,j,s Execution time of task i on j processors at speed s
ti,j Execution time of task i on j processors at speed s = 1

ai,j,s Area of task i on j processors at speed s
λ A schedule

pi(λ) Number of processors allocated to task i in schedule λ
si(λ) Speed of the processors allocated to task i in schedule λ

tmax(λ) Execution time of the longest task in schedule λ
Cmax(λ) Makespan of schedule λ
W (λ) Sum of the work of all tasks in schedule λ

Tdyn(λ) Sum of the execution times of all tasks in schedule λ
Adyn(λ) Sum of the areas of all tasks in schedule λ
Astat(λ) Sum of the times during which processors are powered in schedule λ

Table 1: List of notations.

In our model, we don’t consider the possibility of switching frequencies during the execution of a given

task as it would never provide better solutions. The reason for that is that, due to the convexity of the

function describing the energy consumption, taking the average speed of a task as its constant speed always

incurs a lower energy consumption for the same execution time. Two different tasks, however, can be executed

at different frequencies even if they are scheduled on a same processor.

3.2. Tasks

We consider n moldable tasks {T1, T2, . . . , Tn} with respective execution profiles (wi,j)i∈J1,nK,j∈J1,pK, where

wi,j is the total work required to execute Ti on j processors. The work is the total number of elementary

operations to be executed by the processors. If executed at a speed of one, the time per processor is then

ti,j = wi,j
j .

We assume that:

• ∀i, (ti,j)j is non-increasing in j (the more processors there are, the less time it will take per processor);

• ∀i, (wi,j)j is non-decreasing in j (when using more processors, there is more overhead due to the

parallelization, which is a common assumption [9, 8]).

The algorithms presented in this paper do not require these two usual assumptions, however having

them simply allows us to get better time complexities. For example, in the case where some allocations of

processors are not possible for some tasks, the corresponding processing time would be infinite and both

assumptions could not hold.

Furthermore, for task Ti (1 ≤ i ≤ n),

6



• pi is the number of allocated processors;

• si is the speed of the processors during their execution;

• ti,pi,si = ti,pi
si

= wi,pi
si×pi is the execution time;

• ai,pi,si = ti,pi,si × pi = wi,pi
si

is the area of the rectangle representing this task.

3.3. Energy consumption

The energy consumption consists first of a static part, which corresponds to the power consumed when

processors are turned on. The static power is denoted Pstat, and the corresponding static energy consumption

on each processor is tstat × Pstat, where tstat is the duration during which the processor is powered.

There is also a dynamic energy consumption, directly related to the speed s at which the processor

operates, and the time tdyn spent computing (which may be equal to or smaller than the time tstat). Using

a general model, the dynamic energy consumption is tdyn × sα [5], where α > 1 (in general, 2 ≤ α ≤ 3).

Hence, for task Ti, the dynamic energy consumption on each processor is ti,pi,si × sαi (since tdyn = ti,pi,si),

and the total dynamic energy consumption for the task is ai,pi,si × sαi (the same energy is consumed by each

of the pi processors operating task Ti).

The case where tstat = tdyn is the independent model, where each processor is independently powered,

and hence turned off when it is not computing. We also consider the simultaneous model, where the whole

platform remains powered as long as at least one processor is executing (tstat = Cmax).

3.4. Schedules

Given a computational platform and a set of moldable tasks as described above, a schedule λ is a function

that maps each task Ti to a tuple (Mi, si, δi), where Mi is the set of processors assigned to Ti (hence the

number of processors assigned to the task is pi = |Mi|), si is the speed of these processors to execute Ti, and

δi ≥ 0 is the starting time of Ti. Moreover, λ must verify the following conditions:

• There exists i such that δi = 0 (there is a task starting at time 0);

• If tasks Ti and Ti′ (1 ≤ i, i′ ≤ n and i 6= i′) are such that Mi ∩Mi′ 6= 0, then [δi, δi + ti,pi,si ]∩ [δi′ , δi′ +

ti′,pi′ ,si′ ] = ∅ (a processor cannot be used for two different tasks at the same time).

We also have the following aggregated quantities depending on a schedule λ:

• Cmax(λ) = maxi{δi + ti,pi,si} is the makespan (or total execution time);

• W (λ) =
∑n
i=1 wi,pi is the cumulative work;

• Tdyn(λ) =
∑n
i=1 ti,pi,si is the cumulative execution time of all tasks;

7



• Adyn(λ) =
∑n
i=1 ai,pi,si is the cumulative execution time on all processors;

• Astat(λ) is the cumulative time on all processors during which they are powered. It is either Adyn(λ)

in the independent model, or it is p× Cmax(λ) in the simultaneous model.

We can then express the total energy consumption of a schedule λ as:

E(λ) =
n∑
i=1

ai,pi,si × sαi +Astat(λ)× Pstat.

If there is no ambiguity on λ, we write Cmax for Cmax(λ); and similarly for related quantities (W , Tdyn,

Adyn, etc.).

Finally, we pay a particular attention to two classes of particular schedules:

• Single-speed schedules are schedules such that all the speeds are equal for all tasks, i.e., for 1 ≤ i ≤ n,

si = s ∈ S.

• Co-schedules are organized as shelves, as motivated in Section 1. A co-schedule consists of a partition

of the tasks into shelves and such that:

– If two tasks are in the same shelf, then they start their execution at the same time;

– If two tasks are not in the same shelf, then one finishes its execution before the other one starts.

3.5. Optimization problems

The general problem is MinE-Mold: Given n moldable tasks, their execution profiles (wi,j), p processors

and their speeds S, the goal is to find a schedule that minimizes the total energy consumption. We focus

mainly on the case with a set of discrete speeds (discrete model) and simultaneously-powered processors (si-

multaneous model). Variants with continuous speeds and/or independently-powered processors are referred

to by adding Cont or Indep to the problem name (hence, MinE-Mold-Cont-Indep is the problem with

both variants, while MinE-Mold-Indep is the problem with discrete speeds and independently-powered

processors).

We also consider the variant of the problem with rigid tasks, i.e., when the speed si and the number

of processors per task pi are fixed (MinE-Rig problem), again by default with discrete speeds and the

simultaneous model.

Moreover, we add SS to refer to the variant of any problem where the same speed must be selected for

each task (see single-speed schedules above).

Finally, since we are interested in co-schedules, we consider the more constrained problem with a single

shelf, i.e., all tasks must start at time 0 and be executed concurrently. The corresponding problem is MinE-

OneShelf: Given a set of n tasks and p processors, the goal is to minimize the energy consumption knowing
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Problem Processors per task Speeds Static area Astat Constraint
MinE-Mold-Indep Variable pi ∈ N Finite set S Astat = Adyn ∅
MinE-Mold Variable pi ∈ N Finite set S Astat = p× Cmax ∅
MinE-Rig Fixed pi ∈ N Finite set S Astat = p× Cmax ∅
MinE-Mold-Cont Variable pi ∈ N Interval Astat = p× Cmax ∅
MinE-Rig-Cont Fixed pi ∈ N Interval Astat = p× Cmax ∅

MinE-OneShelf Variable pi ∈ N Finite set S Astat = p× Cmax
n∑
i=1

pi ≤ p

Table 2: List of problems (multiple speeds).

that all tasks start at time 0 (δi = 0 for 1 ≤ i ≤ n). Solving this particular problem will help us derive

efficient co-schedules for the general MinE-Mold problem. More precisely, a solution to MinE-OneShelf

is an assignment ((pi)i∈J1,nK, (si)i∈J1,nK) such that:

• ∀i ∈ J1, nK, task Ti is executed on pi ≥ 1 processors at speed si ∈ S;

•
n∑
i=1

pi ≤ p (at most p processors are used, since all tasks execute concurrently).

All problems (with the multiple speed variant) are summarized in Table 2.

4. Problem complexity

We start with the study of the independent model, and we derive that MinE-Mold-Indep can be solved

in polynomial time (Section 4.1). However, with the more realistic simultaneous model, we prove that

MinE-Mold is NP-complete (Section 4.2).

4.1. Optimal algorithm for MinE-Mold-Indep

In the independent model, the platform has multiple nodes that are independently powered, which means

that each node can individually be turned down at any point of the execution, and not consume any more

energy. Therefore, the total energy consumption is the sum of the individual energy consumption of each

task. Hence, for each task, we need to decide on how many processors it should be executed, and at which

speed, in order to minimize its energy consumption. Recall that we solely focus on energy optimization, and

hence we do not have any constraint on the total time to completion.

Since the (wi,j)’s are non-decreasing in j, we have ai,1,si ≤ ai,pi,si for all 1 ≤ pi ≤ p. Therefore, ai,pi,si
is minimized if a single processor is used (independently of the speed that is chosen). Hence, we set pi = 1,

i.e., the task is executed on a single processor (its execution time may be long, but other processors will be

turned off and less energy will be consumed, since we have independently-powered processors).

We still need to decide at which speed to execute the task on its single processor. Indeed, there is a

tradeoff between executing the task fast to reduce the static energy consumption of the task (the area ai,1,si ,
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that decreases with si), and running at a slower speed to reduce the dynamic energy consumption, which

is in sαi and hence increases with si. The total energy consumption of the task is ai,1,si × (sαi + Pstat), and

ai,1,si = wi,1
si

. The goal is therefore to find si that minimizes sα−1
i + Pstat

si
.

The optimal value of si (denoted by sopti ) can then be easily found in O(|S|) if S is a set of discrete

speeds, by comparing the values for every possible speed si ∈ S. In the continuous case, we remark that the

function f : s 7→ sα−1
i + Pstat

si
is a convex function that reaches its minimum at sopti = α

√
Pstat
α−1 , and hence it

can be found in O(1).

We can therefore optimize the energy consumption of each task independently, and execute the tasks one

after the other. For each task, as shown above, we execute task i on a single processor at speed sopti . Again,

we focus solely on energy optimization, and the time to completion might be very large in this case (a single

processor is used). Of course, one can also schedule the tasks on different processors and achieve the same

energy consumption with a smaller total execution time since nodes are independently powered. Anyway,

the optimal solution to this problem can therefore be found in polynomial time.

In the rest of this paper, unless otherwise stated, we focus on simultaneously powered processors (i.e.,

Astat = p×Cmax). It then becomes crucial to use the whole platform and minimize the execution time, since

the platform remains powered during the whole execution.

4.2. NP-completeness of MinE-Mold

When moving to the simultaneous model, it becomes crucial to also minimize the total execution time,

since the static energy is consumed during the whole execution. We show that the MinE-Mold problem

actually is NP-complete, even when a single speed is available. For the continuous case (MinE-Mold-

Cont), the problem is also NP-hard, even though we do not know whether it is in NP or not because of the

speeds in R∗+.

Theorem 1. The decision problems associated to MinE-Mold and MinE-Mold-SS are NP-complete, and

the decision problems associated to MinE-Mold-Cont and MinE-Mold-Cont-SS are NP-hard.

Proof. We first prove that the decision problem associated to MinE-Mold is in NP: a certificate is a schedule,

i.e., the number of processors and the speed of each task, as well as the starting time of each task, and it is

easy to check in polynomial time whether the bound on energy consumption is achieved. However, in the

continuous case, the speeds and starting time of tasks might not be in Q, and hence we do not know whether

MinE-Mold-Cont is in NP or not.

To prove the NP-hardness, we do a reduction from the problem of 3-Partition [14]: Given 3n integers

{a1, . . . , a3n} whose sum is nB =
∑3n
i=1 ai and with B

4 < ai <
B
2 for 1 ≤ i ≤ 3n, does there exist a partition

of {1, . . . , 3n} into n subsets S1, . . . , Sn, such that
∑
i∈Sj ai = B for 1 ≤ j ≤ n?
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Let I1 be an instance of 3-Partition. We create an instance I2 of MinE-Mold (or MinE-Mold-Cont)

with n processors, and 3n tasks that cannot be parallelized, i.e., their execution time is not improved when

using more than one processor. Hence, task i (1 ≤ i ≤ 3n) is such that ti,j = ai for 1 ≤ j ≤ n. Furthermore,

we have Pstat = 2 and α = 3. In the discrete version of the problem, there is a single speed S = {1}. Finally,

we set the bound on total energy consumption for I2 to 3nB.

First, note that it is always better to execute each task on a single processor. Indeed, if a task is executed

on more than one processor, it takes the same time to execute but consumes additional energy. Second, in

the continuous case, if a single task is considered, it should be executed at speed sopti = α

√
Pstat
α−1 as shown in

Section 4.1 for the independent model, which corresponds to a speed of one since Pstat = 2 and α = 3. The

use of another speed leads to a higher energy consumption for this task. Hence, assuming that each task is

executed at speed 1 (both in the discrete and continuous cases), we obtain a dynamic energy consumption

of ai for task i, and a total dynamic energy consumption of nB. The static energy consumption depends

on the total execution time t, and it is Pstat × t × n. If there is no idle time, and hence no waste of static

energy, the time t × n also corresponds to the total time spent executing the tasks as in the independent

model, which is nB as for the dynamic energy consumption. We are now ready to prove the equivalence of

solutions.

If I1 has a solution, we execute tasks of a same subset Sj onto processor j, for 1 ≤ j ≤ n. Each processor

completes in time B, and the static energy consumption is 2nB, hence a total energy consumption of 3nB

(static energy plus dynamic energy). Therefore, I2 has a solution.

If I2 has a solution, we define Sj as the set of tasks executed on processor j. Since the energy consumption

is not greater than 3nB, each task must be executed at speed 1 on a single processor, otherwise the sum

of the energy consumption of each task (as in the independent model) would exceed 3nB, and lead to a

contradiction. Indeed, the energy consumption with the simultaneous model is at least as high as the one

with the independent model as it may account for extra static energy consumption due to some idle time of

processors. Given that each task is executed at speed 1, the total dynamic energy consumption is nB and

the static energy consumption cannot exceed 2nB. This means that the total execution time must be such

that t ≤ B, and the sum of the ai’s in each subset Sj cannot exceed B. Therefore, I1 has a solution, which

concludes the proof.

5. Approximation ratios with discrete speeds

To solve MinE-Mold, we extend a strategy [32, GF] that transforms a moldable instance into multiple

rigid ones by fixing the number of processors (and possibly the speed) of each task. Then, each rigid instance

is solved with a heuristic, for example the ones that we mentioned earlier, ListBased (the classical list-based

scheduling where no processor is left idle if a task can be started, which is a 2-approximation algorithm for
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the total execution time, or makespan) or ShelfBased (rigid tasks are partitioned into shelves, and all

the tasks in a same shelf begin their execution at the same time, which is a 3-approximation algorithm for

makespan).

We thus start by considering the rigid case (MinE-Rig problem) and derive approximation results for

energy consumption. Moreover, we first consider a simplified version of the problem where all tasks have

the same speed (Section 5.1), before moving to the general case (Section 5.2). By convention, λopt refers

to the optimal schedule that minimizes the energy consumption and λ• to the schedule at speed s• with

a guaranteed bound on the energy consumption. Moreover, for a rigid instance, λ∗ is the schedule with

minimum makespan and λA a schedule with a guaranteed bound on the makespan.

5.1. Processors with a single speed (si = s)

We first consider the case where the speed must be the same for all tasks, i.e., si = s for 1 ≤ i ≤ n. The

energy simplifies as:

E =
n∑
i=1

ai,pi,si × sα +Astat × Pstat,

with α > 1.

5.1.1. Rigid case

We start with the rigid case, which means that, for 1 ≤ i ≤ n, the number of processors pi for task i is

fixed. Hence, the workload for task i is also known (wi,pi). Moreover, for a given schedule λ, all the si’s are

equal to sλ. The tuple λ(i) is hence denoted as (Mi, sλ, δi).

Given any ρ > 0, we denote by ρλ the schedule associating to each task i the tuple (Mi, ρ× sλ, δiρ ), i.e.,

the speed is scaled by a factor ρ, and the starting times are adjusted accordingly, without any modification

in the processor allocation. One can easily check that ρλ is also a rigid single-speed schedule.

Two schedules λ1 and λ2 are equivalent, denoted λ1 ∼ λ2, if there exists ρ > 0 such that λ1 = ρλ2. The

relation ∼ is an equivalence relation. The equivalence class of λ is denoted [λ].

Recall that Cmax(λ) = Astat(λ)
p is the makespan: it is the total duration during which the whole system

is powered. For convenience, we define the following quantity:

K[λ] = sλ × Cmax(λ).

It is easy to see that this is a constant for the equivalence class of λ; indeed, given any ρ > 0, Cmax(ρλ) =
Cmax(λ)

ρ , and sρλ = ρ× sλ. This is used as makespan that is normalized to the speed.

The goal of this section is to prove the following theorem. The idea consists in considering algorithms with

a given approximation ratio on the makespan and show how these ratios extend to the energy minimization.

12



In particular, we consider the same allocation as the one returned by the approximation algorithm but with

a speed that minimizes the energy consumption.

Theorem 2. In the rigid single-speed context (MinE-Rig-SS) and assuming that there exists an algorithm A

that yields a c-approximation of the optimal makespan, we can compute in polynomial time a schedule con-

suming at most c times the optimal energy.

Proof. In the rigid case, we have
∑n
i=1 ai,pi,si =

∑n
i=1

wi,pi
si

. The cumulative work W =
∑n
i=1 wi,pi is

independent of the schedule λ. We can then write the energy consumption of λ as:

E(λ) = W

sλ
× sαλ +Astat(λ)× Pstat (1)

= W × sα−1
λ + p× Cmax(λ)× Pstat. (2)

Let λopt be a single-speed schedule minimizing the energy consumption. Let us denote by λA the schedule

returned by A. Let s• ∈ S be a speed for which minλ∈[λA]E(λ) is attained. We analyze the schedule λ•
defined by the same allocation as A, but with the speed s•. Its makespan is Cmax(λ) = sλA

s•
× Cmax(λA).

Note that if λ∗ is a single-speed schedule minimizing the makespan, then Cmax(λA) ≤ c × Cmax(λ∗)

because A yields a c-approximation of the optimal makespan. Therefore, K[λA] ≤ c × K[λ∗] (necessarily

sλA ≤ sλ∗ = smax). Moreover, for any single-speed schedule λ, K[λ∗] ≤ K[λ], otherwise by running λ at

speed smax, we would get a schedule with a lower makespan than λ∗, which would contradicts the fact that

λ∗ is optimal for the makespan..

min
λ∈[λA]

E(λ•) = W × sα−1
• + sλA

s•
p× Cmax(λA)× Pstat Equation (2)

= W × sα−1
• + p×

K[λA]

s•
× Pstat definition of K[λA]

≤W × sα−1
λopt + p×

K[λA]

sλopt
× Pstat optimality of s∗[λA]

≤W × sα−1
λopt + c× p×

K[λ∗]

sλopt
× Pstat K[λA] ≤ c×K[λ∗]

≤W × sα−1
λopt + c× p×

K[λopt]

sλopt
× Pstat K[λ∗] ≤ K[λopt]

≤W × sα−1
λopt + c× p× Cmax(λopt)× Pstat definition of K[λopt]

≤ c×Wsα−1
λopt + c× p× Cmax(λopt)× Pstat c ≥ 1

≤ c× E(λopt), Equation (2)

thus proving the theorem.
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5.1.2. Moldable case

The algorithm for MinE-Mold-SS (Algorithm 1) assumes first that a speed of one is used. First, we

select both a task Ti′ and the number of processors pi′ for this task. Let tmax be the longest execution

time among all tasks (assuming a speed of one). We assume that this time is achieved with this task (i.e.,

tmax = ti′,pi′ ). There are np such selections, and we explore them all. For each value of tmax (i.e., for

each pair (Ti′ , pi′)), we select the number of processors of each other task to be associated with the lowest

work such that ti,pi ≤ ti′,pi′ still holds. We then solve the rigid instance obtained by fixing the number of

processors for each task with ListBased-SS or ShelfBased-SS, and we select the speed that minimizes the

energy for the resulting schedule. The final schedule is the one with minimum energy over the np explored

possibilities.

Algorithm 1: Algorithm for MinE-Mold-SS
1 for (Ti′ , p′) ∈ {T1, . . . , Tn} × {1, . . . , p} do
2 tmax ← ti′,p′ ;
3 for Ti ∈ {T1, . . . , Tn} do
4 pi ← arg min1≤j≤p j × ti,j such that ti,pi ≤ tmax if it exists;
5 pi = 0 otherwise;
6 if all pi 6= 0 then
7 Apply a guaranteed algorithm A on the rigid instance {(T1, p1), . . . , (Tn, pn)} at speed of 1,

to get a schedule λ(Ti′ ,p
′)

• ;
8 Select the speed s• that minimizes the energy ;
9 return the schedule λ• with minimum energy among all the computed λ

(Ti′ ,p
′)

• ;

Intuitively, we analyze the approximation ratio of any moldable scheduling algorithm with the following

approach based on [32, GF]:

• For a given tmax, we bound the cumulative work to be executed assuming any task execution duration

is bounded by tmax.

• We then bound the maximum makespan achievable with a guaranteed algorithm for MinE-Rig-SS.

• Finally, we bound the maximum total energy consumption during this duration.

We can state the main result of this section.

Theorem 3. We assume that there exists a polynomial-time algorithm A for MinE-Rig-SS that returns

a schedule λA at a speed of one such that Cmax(λA) ≤ a × W (λA)
p + b × tmax(λA) (resp. Cmax(λA) ≤

max
(
a× W (λA)

p , b× tmax(λA)
)

). In the moldable single-speed context (MinE-Mold-SS), one can compute

in polynomial time a schedule λ• that consumes at most a+ b (resp. max(a, b)) times the optimal energy.

Proof. The proof is done for Cmax(λA) ≤ a× W (λA)
p + b× tmax(λA). The other case (maximum of the two

terms instead of sum) is similar.
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For any task i and any number pi of processors, we denote by λi,pi the schedule returned by A on the

following rigid instance: for all i′, pi′ is the integer in {1, . . . , p} minimizing wi′,pi′ under the constraint

ti′,pi′ ≤ ti,pi . There are at most np different such schedules and each one can be computed in polynomial

time. For each schedule, the selected speed is the one that minimizes the energy consumption. Let λ• be

a schedule of (λi,pi)i,pi (where each task is running at speed si,pi) with minimum energy consumption (i.e.,

the schedule for which E(λ•) = min
i,pi

E(λi,pi)).

Let λopt be a schedule minimizing the energy (for MinE-Mold-SS). Let iopt denote the longest task in

the optimal schedule λopt and piopt denote the number of processors for this longest task (i.e., tmax(λopt) =

tiopt,piopt ). By construction of the λi,pi , one has W (λg) ≤ W (λopt) where λg = λiopt,piopt . By definition,

tmax(λg) = tmax(λopt). Thus, at a speed of one, K[λg] = Cmax(λg) ≤ a × W (λg)
p + b × tmax(λg) ≤ a ×

W (λopt)
p + b × tmax(λopt) ≤ (a + b) × Cmax(λopt) = (a + b) × K[λopt]. Finally, remark that a and b are

necessarily constants satisfying a + b ≥ 1 because A would provide a schedule better than the optimal

otherwise.

We have:

E(λ•) ≤ E(λg) optimality of λ• over all (λi,pi)i,pi

≤ E(sλ
opt

sλg
λg) optimality of sg

≤W (λg)× sα−1
λopt + p×

K[λg]

sλopt
× Pstat Equation (2)

≤W (λopt)× sα−1
λopt + (a+ b)× p×

K[λopt]

sλopt
× Pstat approximation ratio of A

≤ (a+ b)×W (λopt)× sα−1
λopt + (a+ b)× p×

K[λopt]

sλopt
× Pstat a+ b ≥ 1

≤ (a+ b)× E(λopt) Equation (2),

which concludes the proof.

It has already been proved that ListBased-SS is an algorithm that outputs a schedule λ at a speed of

one such that Cmax(λ) ≤ max
(

2× W (λ)
p , 2× tmax(λ)

)
[13], so by applying Theorem 3 with a maximum and

a = 2 and b = 2, we show that ListBased-SS is a 2-approximation algorithm for the energy.

As for ShelfBased-SS, it is an algorithm that outputs a schedule λ such that Cmax(λ) ≤ 2 × W (λ)
p +

tmax(λ) [32, LTF], so by applying Theorem 3 with a sum and a = 2 and b = 1 [32, LTF], we show that

ShelfBased-SS is thus a 3-approximation algorithm for the energy.

5.2. Processors with different speeds for each task

When generalizing to multiple speeds, the approach is close to the one used for the single-speed problem

where all tasks are executed at the same speed (see Algorithm 1); the corresponding algorithm is detailed
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in Algorithm 2. Note that in the case where the speeds of the tasks are already determined, the dynamic

area Adyn is equivalent to the work from [31], which was denoted by W in Theorem 3.

Algorithm 2: Algorithm for MinE-Mold, with multiple speeds
1 for (Ti′ , p′, s′) ∈ {T1, . . . , Tn} × {1, . . . , p} × {s1, . . . , sk} do
2 tmax ← ti′,p′,s′ ;
3 for Ti ∈ {T1, . . . , Tn} do
4 pi, si ← arg min1≤j≤p,s∈S ai,j,s × sα + ai,j,s × Pstat such that ti,pi,si ≤ tmax if it exists;
5 pi, si ← 0, 0 otherwise.
6 if all pi, si 6= 0, 0 then
7 Apply a guaranteed algorithm A on the rigid instance {(T1, p1, s1), . . . , (Tn, pn, sn)} at speed

of 1, to get a schedule λ(Ti′ ,p
′,s′)

• ;
8 return the schedule λ• with minimum energy among all the computed λ

(Ti′ ,pi′ ,si′ )
• ;

Theorem 4. We assume that there exists a polynomial-time algorithm A for MinE-Rig-SS that returns a

schedule λA such that Cmax(λA) ≤ a×Adyn(λA)
p +b×tmax(λA) (resp. Cmax(λA) ≤ max

(
a× Adyn(λA)

p , b× tmax(λA)
)

)

with 1 ≤ a. In the general moldable context (MinE-Mold), one can compute in polynomial time a sched-

ule λ• that consumes at most a+ b (resp. max(a, b+ 1)) times the optimal energy.

Proof. We consider in this proof the max case for A. The proof is similar for the sum.

For any task i, any number pi of processors and any speed si, we consider the following rigid instance:

for all i′, we select (pi′ , si′) ∈ {1, . . . , p} × S that minimizes the energy consumption of task i, ai′,pi′ ,si′ ×

sαi′ + ai′,pi′ ,si′ × Pstat where ai′,pi′ ,si′ is the area of the rectangle representing task i, under the constraint

ti′,pi′ ,si′ ≤ ti,p′,s. The schedule returned by A for this problem is denoted λi,p′,si . There are at most np|S|

different such schedules and each one can be computed in polynomial time. Let λ• be a schedule among the

(λi,pi,si)i,pi,si minimizing the energy.

Let λopt be a schedule minimizing the energy (for MinE-Mold). Let iopt, piopt and siopt satisfy

tmax(λopt) = tiopt,piopt ,siopt . For a schedule λ, set Ei(λ) = ai,pi,sis
α
i + ai,pi,siPstat. By construction, one

has: ∑
i

Ei(λiopt,piopt ,siopt ) ≤
∑
i

Ei(λopt). (3)

To simplify the notation, we denote λiopt,piopt ,siopt by λg. Now,

E(λ•) ≤ E(λiopt,piopt ,siopt ) = E(λg)

≤
∑
i

ai,pi,si(λg)× sαi +Astat(λg)× Pstat definition of the energy

≤
∑
i

ai,pi,si(λg)× sαi + p× Cmax(λg)× Pstat definition of Astat
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≤
∑
i

ai,pi,si(λg)× sαi + p×max
(
a× Adyn(λg)

p
, b× tmax(λg)

)
× Pstat approximation ratio of A

Now, by distributivity, we have one of the two following possibilities:

E(λ•) ≤
∑
i

ai,pi,si(λg)× sαi + a×Adyn(λg)× Pstat left-hand side of the max

or

E(λ•) ≤
∑
i

ai,pi,si(λg)× sαi + b× p× tmax(λg)× Pstat right-hand side of the max

We start with the left-hand side of the max:

LHS ∆=
∑
i

ai,pi,si(λg)× sαi + a×Adyn(λg)× Pstat

≤ a× (
∑
i

ai,pi,si(λg)× sαi +Adyn(λg)× Pstat) 1 ≤ a

≤ a×
∑
i

(ai,pi,si(λg)× sαi + ai,pi,si(λg)× Pstat) definition of Adyn

≤ a×
∑
i

Ei(λg) definition of Ei

≤ a×
∑
i

Ei(λopt) Equation (3)

≤ a× E(λopt)
∑

Ei ≤ E

Now, the right-hand side of the max:

RHS ∆=
∑
i

ai,pi,si(λg)× sαi + b× p× tmax(λg)× Pstat

≤
∑
i

ai,pi,si(λg)× sαi + b× p× tmax(λopt)× Pstat tmax(λg) = tmax(λopt)

≤
∑
i

ai,pi,si(λg)× sαi + b×Astat(λopt)× Pstat p× tmax ≤ Astat for any given schedule

≤
∑
i

Ei(λg) + b×Astat(λopt)× Pstat ai,pi,si(λg)× sαi ≤ Ei(λg) from the definition of Ei

≤
∑
i

Ei(λg) + b× E(λopt) Astat × Pstat ≤ E for any given schedule

≤
∑
i

Ei(λopt) + b× E(λopt) Equation (3)

≤ E(λopt) + b× E(λopt)
∑

Ei ≤ E

≤ (b+ 1)× E(λopt)
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We finally reunite the two sides of the max:

E(λ•) ≤ max (a× E(λopt), (b+ 1)× E(λopt))

≤ max (a, b+ 1)× E(λopt),

which concludes the proof.

In this case, the bound is 3 for both ListBased and ShelfBased algorithms.

6. Approximation ratios with continuous speeds

We propose a theoretical variation of the problem, where instead of choosing the speed in a finite set

of speeds S, we can choose any speed in R∗+. We call this continuous problem MinE-Mold-Cont and

MinE-Rig-Cont, depending on the nature of the tasks. The motivation for this variation is that we can

get stronger approximation results through the introduction of continuous speeds. Through this, we hope to

get a better understanding of what makes a good processor speed, thus allowing us to better choose the set

of speeds S at the creation of a processor.

6.1. Rigid case

Similarly to the discrete case, we start by restricting to rigid tasks (MinE-Rig-Cont-SS problem).

Theorem 5. In the rigid single-speed context with continuous speeds (MinE-Rig-Cont-SS) and assuming

that there exists an algorithm A that yields a c-approximation of the optimal makespan, we can compute in

polynomial time a schedule consuming at most c1− 1
α times the optimal energy.

Proof. In the rigid case, we have
∑n
i=1 ai,pi,si =

∑n
i=1

wi,pi
si

. The cumulative work W =
∑n
i=1 wi,pi is

independent of the schedule λ. With a single speed, we can hence write the energy as:

E(λ) = W × sα−1
λ +Astat(λ)× Pstat (4)

= W × sα−1
λ + p× Cmax(λ)× Pstat. (5)

The problem can be split as two decisions to take:

• The choice of speed s;

• The actual scheduling, i.e., the choice of the time at which we start each task.

To show that these decisions can be taken one after the other, we start with a preliminary lemma

comparing the energy consumption of two schedules using the same speed.
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Lemma 1. Let λ1, λ2 be two single-speed schedules such that sλ1 = sλ2 . If E(λ1) ≤ E(λ2), then for any

ρ > 0, E(ρλ1) ≤ E(ρλ2).

Proof. Using Equation (2),

E(λ2)− E(λ1) = p× Pstat × (Cmax(λ2)− Cmax(λ1)).

Furthermore, Cmax(λ1) = ρ× Cmax(ρλ1) and Cmax(λ2) = ρ× Cmax(ρλ2). It follows that:

E(λ2)− E(λ1) = p× Pstat × ρ× (Cmax(ρλ2)− Cmax(ρλ1))

= ρ× (E(ρλ2)− E(ρλ1)),

hence proving the lemma.

Lemma 1 shows that the actual scheduling can be expressed as a two-steps minimization problem: find a

schedule λ0 minimizing the makespan for a given speed. Next, find among [λ0] (using the notations defined

in Section 5.1) a schedule (i.e., a speed) minimizing the energy consumption.

For a given schedule λ0, we can compute the optimal speed s as the one that minimizes

f(s) = W × sα−1 + p×
K[λ0]

s
× Pstat,

with K[λ] = sλ × Cmax(λ) as defined in Section 5.1. This optimal value of s is

sopt
[λ0]

∆= α

√
p×K[λ0]

(α− 1)×W × Pstat.

Then, we can write

min
λ∈[λ0]

E(λ) = C × α

√
Kα−1

[λ0] ×W,

where C = α
√

(p× Pstat)α−1 × ( α
√
α− 1 + α

√
(α− 1)α−1) is a constant independent of λ0.

Consequently, we have

E(λopt) = min
[λ0] ∼class

min
λ∈[λ0]

E(λ)

= min
[λ0] ∼class

C × α

√
Kα−1

[λ0] ×W

= C × α

√
Kα−1

[λ∗] ×W.

Now, let A be an algorithm that yields a c-approximation for the makespan. For a given speed, the
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quantity K[λA] is proportional to the makespan, so this algorithm outputs a schedule λA such that

K[λA] ≤ c×K[λ∗].

By running this schedule with speed

sopt
[λA] = α

√
p×K[λ0]

(α− 1)×W × Pstat,

we have a schedule such that

EλA = C × α

√
Kα−1

[λA] ×W

≤ C × α

√(
c×K[λ∗]

)α−1 ×W

≤ c
α−1
α × E(λopt).

This proves the theorem: an algorithm A, that yields a c-approximation for the makespan and that returns

a schedule λA will yield a cα−1
α -approximation for the energy.

6.2. Moldable case

The overall design of the algorithm for MinE-Mold-Cont-SS is similar to the one of the discrete case,

see Algorithm 3.

Algorithm 3: Algorithm for MinE-Mold-Cont-SS
1 for (Ti′ , p′) ∈ {T1, . . . , Tn} × {1, . . . , p} do
2 tmax ← ti′,p′ ;
3 for Ti ∈ {T1, . . . , Tn} do
4 pi ← arg min1≤j≤p j × ti,j such that ti,pi ≤ tmax if it exists;
5 pi = 0 otherwise;
6 if all pi 6= 0 then
7 Apply a guaranteed algorithm A on the rigid instance {(T1, p1), . . . , (Tn, pn)} at speed of 1,

to get a schedule λ(Ti′ ,p
′)

• ;
8 Select the speed s•

∆= α

√
p×K[λ•]

(α−1)×W × Pstat for this schedule ;

9 return the schedule λ• with minimum energy among all computed λ
(Ti′ ,p

′)
• ;

We can state the main result of this section.

Theorem 6. We assume that there exists a polynomial-time algorithm A for MinE-Rig-Cont-SS that

returns a schedule λA at a speed of one such that Cmax(λA) ≤ a× W (λA)
p + b× tmax(λA) (resp. Cmax(λA) ≤

max
(
a× W (λA)

p , b× tmax(λA)
)

). In the moldable single-speed context with continuous speeds (MinE-Mold-
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Cont-SS), one can compute in polynomial time a schedule λ• that consumes at most (a + b)1− 1
α (resp.

max(a, b)1− 1
α ) times the optimal energy, when running at speed s•

∆= α

√
p×K[λA]

(α−1)×W × Pstat.

Proof. We adapt the proof of Theorem 3 to continuous speeds for the case Cmax(λA) ≤ a × W (λA)
p + b ×

tmax(λA). The other case (maximum of the two terms instead of sum) is similar.

For any task i and any number pi of processors, we denote by λi,pi the schedule returned by A on the

following rigid instance: for all i′, pi′ is the integer in {1, . . . , p} minimizing wi′,pi′ under the constraint

ti′,pi′ ≤ ti,pi . There are at most np different such schedules and each one can be computed in polynomial

time. For each schedule, the selected speed is the one that minimizes the energy consumption. Let λ• be a

schedule of (λi,pi)i,pi (where each task is running at speed si,pi = α

√
K[λi,pi ]

(α−1)×W × Pstat) with minimum energy

consumption.

Let λopt be a schedule minimizing the energy (for MinE-Mold-Cont-SS). Let iopt and piopt denote the

task and the number of processors, such that tmax(λopt) = tiopt,piopt in the schedule λopt that minimizes

the energy consumption. By construction of the λi,pi , one has W (λg) ≤ W (λopt) where λg = λiopt,piopt .

As in the rigid context (proof of Theorem 5), we can express the energy for the respective schedules as

E(λg = C α

√
Kα−1

[λg ] ×W (λg) and E(λopt) = C α

√
Kα−1

[λopt] ×W (λopt) where C = α
√

(p× Pstat)α−1×( α
√
α− 1+

α
√

(α− 1)α−1).

Consequently E(λ•)
E(λopt) ≤

E(λg)
E(λopt) = α

√
Kα−1

[λg ]

Kα−1
[λopt]

. Now, we have

K[λg ] ≤ a×
W (λg)
p

+ b× tmax(λg)

≤ a× W (λopt)
p

+ b× tmax(λopt)

≤ (a+ b)×K[λopt]

From that, we finally get
E(λ•)
E(λopt) ≤

α
√

(a+ b)α−1,

which concludes the proof.

Recall that ListBased-SS is an algorithm with a maximum and a = 2 and b = 2 [13], hence it is a 21− 1
α -

approximation algorithm. ShelfBased-SS, an algorithm with a sum and a = 2 and b = 1 [32, LTF], is thus

a 31− 1
α -approximation algorithm. For α = 3, these approximation ratios become respectively 3

√
4 ≈ 1.59 and

3
√

9 ≈ 2.08.
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7. Optimizing for a single shelf

We propose to further optimize co-schedules by designing a polynomial-time algorithm for the MinE-

OneShelf problem, i.e., to optimize the execution of a single shelf, both with discrete and continuous

speeds. Formally, given a set of n tasks and p processors, the goal is to find an assignment ((pi), (si))1≤i≤n

that minimizes E =
∑n
i=1
(
pi × ti,dyn × sαi + pi × ti,stat × Pstat

)
, where

• ti,dyn = ti,pi,si = ti,pi
si

, and

• ti,stat = max1≤i≤n ti,dyn (simultaneous model).

7.1. Preliminaries

Since the static energy spent depends on the total length of the shelf (i.e., max1≤i≤n ti,pi,si), the algorithm

proceeds by fixing the shelf length to Cmax, and aims at finding the optimal number of processors and speed

for each task, such that the time bound Cmax is respected and the total energy consumption is minimized.

Hence, for a single processor, given an amount of work w to complete and a length of shelf of Cmax, we

consider the function OptS(w,Cmax) that returns the optimal speed such that w
s ≤ Cmax and the energy

consumption w× sα−1 +Cmax ×Pstat is minimized. Since the energy consumption is an increasing function

of s for s ≥ 0, the optimal speed is the smallest speed such that the shelf length is not exceeded. Therefore,

OptS(w,Cmax) = max(smin,
w

Cmax
) in the continuous case, and OptS(w,Cmax) = min

{
s ∈ S | s ≥ w

Cmax

}
in

the discrete case. In the case no such speed exists (this may happen with discrete speeds), the function

returns None. Note that this function can be computed in Θ(1) in the continuous case, and in Θ(log(|S|))

in the discrete case by doing a binary search within values of S.

7.2. Optimal algorithm for MinE-OneShelf (discrete speeds)

We first focus on the discrete case, i.e., S is the set of possible speeds. The idea is to try every possible

duration of the shelf: all possible durations are recorded in the set T , and then for a given duration Cmax ∈ T ,

we compute the solution for each set of tasks T1, . . . , Ti, i ∈ J1, nK and each number of processors q ∈ J1, pK.

Let ei,q be the minimum energy consumed by task Ti on q processors, while not exceeding time Cmax.

It is computed by using the function OptS(ti,q, Cmax), since ti,q is the amount of work on one processor if

task Ti is executed on q processors.

We then proceed with a dynamic programming algorithm, to compute Ei,q, the minimum energy con-

sumption for the first i tasks, when using a total of q processors. The goal is to compute En,p (using all

tasks and all processors). Ei,q is recursively defined for 1 ≤ i ≤ n and 1 ≤ q ≤ p as:

Ei,q = min
1≤k≤q−i+1

Ei−1,q−k + ei,k,
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with E0,q = 0. If there are no tasks left, the energy consumption is null; otherwise we try all possible

numbers of processors k for task i, while keeping at least one processor for each of the remaining tasks.

We then take the best possible solution amongst the different possible durations in the set T , and

Algorithm 4 provides the corresponding pseudo-code of this dynamic programming algorithm.

Algorithm 4: Optimal algorithm for MinE-OneShelf (discrete model)
1 T ← ∅ ;
2 for i← 1 to n do
3 for q ← 1 to p do
4 for s ∈ S do
5 T ← T ∪ { ti,qs } ;
6 res←∞ ;
7 for Cmax ∈ T do
8 for i← 1 to n do
9 for q ← 1 to p do

10 si,q ← OptS(ti,q, Cmax) ;
11 if si,q = None then
12 ei,q ←∞ ;
13 else
14 ei,q ← qti,qs

α−1
i,q + qCmaxPstat ;

15 for q ← 0 to p do
16 E0,q ← 0 ;
17 for i← 1 to n do
18 for q ← i to p do
19 for k ← 1 to q − i+ 1 do
20 if Ei−1,q−i + ei,k < Ei,q then
21 Ei,q ← Ei−1,q−k + ei,k ;
22 if En,p < res then
23 res← En,p
24 return res ;

Theorem 7. MinE-OneShelf can be solved optimally in polynomial time (discrete model).

Proof. Let us prove by induction over i ∈ J0, nK that for all q ∈ J1, pK, Ei,q is the minimum energy consumed

to process the i first tasks with q processors.

Base case. For all q ∈ J0, pK, the energy consumed to handle no task on q processors is 0, meaning that the

E0,q values for q ∈ J0, pK are correct.

Inductive step. Let i ∈ J0, n− 1K, and we assume that ∀q ∈ J1, pK, Ei,q is correct. The expression of Ei+1,q

is min1≤k≤q−iEi,q−k + ei+1,k. If task Ti+1 is given k processors, then the i first tasks will be handled by

q − k processors. As the task i+ 1 must be given a number of processors k ∈ J1, q − iK, the expression gives

the correct value for Ei+1,q.

It means that En,p is correct, and therefore that the algorithm is also correct.
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The number of total durations is at most np|S|, because we must choose a task, the number of processors

allocated for this task, and its speed. The complexity of the algorithm is thus O(n2p3|S|).

7.3. Optimal algorithm for MinE-OneShelf-Cont (continuous speeds)

We now discuss the case of continuous speeds, hence S = R∗+. Similarly to the discrete case, the idea

is to fix the shelf duration and to solve the problem knowing that the processors will be powered for the

duration Cmax. Because of continuous speeds, we cannot anymore explore all possible times Cmax, so we fix

the duration to Cmax = 1, and then prove that the optimal assignment is in fact the same for any Cmax,

and the minimum energy is a function of Cmax. We finally take the value of Cmax that minimizes the energy

consumption, see Algorithm 5 and Theorem 8 for the proof of optimality.

Algorithm 5: Optimal algorithm for MinE-OneShelf-Cont
1 for i← 1 to n do
2 for q ← 1 to p do
3 si,q ← OptS(ti,q, 1) ;
4 if si,q = None then
5 ei,q ←∞ ;
6 else
7 ei,q ← qti,qs

α−1
i,q + qPstat ;

8 for q ← 0 to p do
9 E0,q ← 0 ;

10 for i← 1 to n do
11 for q ← i to p do
12 for k ← 1 to q − i+ 1 do
13 if Ei−1,q−k + ei,k < Ei,q then
14 Ei,q ← Ei−1,q−k + ei,k ;
15 Cmax ← α−2

√
(α− 1)( En,p

pPstat
− 1);

16 return En,p−pPstat
Cα−1

max
+ pCmaxPstat ;

Lemma 2. Let Edyn(Cmax) be the minimum possible dynamic energy consumption, with the condition that

each task must end before Cmax. Then, for any Cmax ∈ R∗+, we have:

Edyn(Cmax) = Edyn(1)
Cα−1

max
.

Proof. Recall that the dynamic energy consumption of an assignment ((pi), (si))1≤i≤n is
n∑
i=1

pi × ti,pi × sα−1
i .

Let t ∈ R∗+. If ((pi), (si))1≤i≤n is an optimal assignment for the case Cmax = 1, with a total dynamic

energy consumption of Edyn(1), then we can consider the same assignment but with all speeds divided by t,

to ensure that all tasks meet the deadline Cmax = t: ((pi), ( sit ))1≤i≤n. The corresponding dynamic energy

consumption is then Edyn(1)
tα−1 , and hence the optimal solution Edyn(t) is such that Edyn(t) ≤ Edyn(1)

tα−1 .
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Problem Base ratio (A) Achieved bound Result
MinE-Mold-Indep opt opt Sec. 4.1
MinE-Rig-SS c c Th. 2 (Sec. 5.1.1)
MinE-Mold-SS aWp + btmax a+ b Th. 3 (Sec. 5.1.2)

max(aWp , btmax) max(a, b)
MinE-Mold aWp + btmax a+ b Th. 4 (Sec. 5.2)

max(aWp , btmax) max(a, b+ 1)
MinE-Rig-Cont-SS c c1−

1
α Th. 5 (Sec. 6.1)

MinE-Mold-Cont-SS aWp + btmax (a+ b)1− 1
α Th. 6 (Sec. 6.2)

max(aWp , btmax) max(a, b)1− 1
α

MinE-OneShelf Optimal Th. 7 (Sec. 7.2)
MinE-OneShelf-Cont Optimal Th. 8 (Sec. 7.3)

Table 3: Summary of theoretical results from Section 4to Section 7. The base ratio is the approximation ratio on the makespan
of the base algorithm A.

Conversely, if we have an assignment for the problem with Cmax = t, with a dynamic energy consumption

of Edyn(t), then we take the same assignment but with all speeds multiplied by t to obtain a valid solution

to the problem with Cmax = 1, hence leading to Edyn(t) ≥ Edyn(1)
tα−1 .

This concludes the proof of the lemma since Edyn(t) = Edyn(1)
tα−1 for any t ∈ R∗+.

Theorem 8. MinE-OneShelf-Cont can be solved optimally in polynomial time.

Proof. The proof for a fixed Cmax is the same as in the proof of Theorem 7, since we use the same dynamic

programming algorithm. Then, En,p = Edyn(1) + p × Pstat. From Lemma 2, the optimal energy for a

given Cmax is therefore E(Cmax) = Edyn(Cmax) +Estat(Cmax) = En,p−p×Pstat
Cα−1

max
+ p×Cmax ×Pstat, which is a

convex function of Cmax that reaches its minimum for Cmax = α−2
√

(α− 1)( En,p
p×Pstat − 1). The complexity of

the algorithm is O(np2).

The next section empirically assesses the theoretical results summarized in Table 3.

8. Empirical Study

We first describe the experimental setup in Section 8.1. Then, we explain how instances are generated

in Section 8.2. The different heuristics are compared and analyzed in Section 8.3, Also, we further study

the impact of Pstat in Section 8.4, and the impact of having a set discrete speeds instead of the continuous

model in Section 8.5.

8.1. Experimental setup

All the algorithms rely on the global mechanism presented in Algorithm 1 (Section 5.1.2 [32, GF]) with a

single speed (denoted with the suffix SS) and Algorithm 2 with multiple speeds (without any suffixes). The
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Algorithm 6: Algorithm ListBased for rigid tasks {(T1, p1, s1), . . . , (Tn, pn, sn)}
1 λ← Empty schedule;
2 for j ∈ {1, . . . p} do
3 Cj ← 0;
4 T ← {T1, . . . , Tn};
5 P ← ∅;
6 Ccurrent ← 0;
7 while T 6= ∅ do
8 if ∃Ti ∈ T s.t. pi ≤ |P| then
9 i← minTi∈T i s.t. pi ≤ |P|;

10 λ← λ ∪ {Ti starting at time Ccurrent on pi processors from P};
11 for k ∈ {1, pi} do
12 Let j ∈ P;
13 Cj ← Ccurrent + ti,pi,si ;
14 P ← P\{j};
15 T ← T \{Ti};
16 else
17 j ← arg minj∈{1,...,p}\P Cj ;
18 Ccurrent ← Cj ;
19 while Ccurrent = minj∈{1,...,p}\P Cj do
20 j ← minj∈{1,...,p}\P Cj ;
21 P ← P ∪ {j};
22 return the schedule λ;

Algorithm 7: Algorithm ShelfBased for rigid tasks {(T1, p1, s1), . . . , (Tn, pn, sn)}
1 Sort the tasks by non increasing execution time so that T1 has the longest execution time and Tn

the shortest;
2 λ← Empty schedule;
3 Ccurrent ← 0;
4 Cnext ← 0;
5 T ← {T1, . . . , Tn};
6 P ← ∅;
7 for Ti ∈ T by increasing i do
8 if pi > |P| then
9 Ccurrent ← Cnext;

10 Cnext ← Ccurrent + ti,pi,si ;
11 P ← {1, . . . , p};
12 λ← λ ∪ {Ti starting at time Ccurrent on pi processors from P};
13 for k ∈ {1, pi} do
14 P ← P\{j};
15 return the schedule λ;
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core idea is that first we transform a moldable instance into a rigid instance by fixing the number of processors

for each task. It is then combined with the strategies presented in Section 2: ListBased and ShelfBased.

The two algorithms ListBased and ShelfBased are detailed as Algorithms 6 and 7. Moreover, we also

implemented two optimization algorithms that can only be applied to an output of ShelfBased:

• OptiShelf, which optimizes each shelf once each task has been allocated to a shelf using the algorithm

from Section 7 (this may change the number of processors used for each task). This optimization keeps

the shelf structure, which can be an advantage for instances where this structure is a constraint the

final schedule is subject to;

• De-shelf, which takes a ShelfBased solution and starts each task as soon as possible by removing

the shelf constraint while keeping the allocations and the order in which the tasks are started.

For both of these optimizations, the energy consumption cannot be worse after the optimization than before.

It is technically possible to combine the two optimizations (running OptiShelf and then De-shelf). We

tried it for the sake of completeness, however this did not provide any interesting results as OptiShelf’s

optimization is heavily based on the shelf structure, while De-shelf removes this shelf structure. Overall,

this represents a total of eight heuristics (two list-based, two non-optimized shelf-based, and four optimized

versions of shelf-based).

To compare the different heuristics, we implemented them in C++17 compiled with gcc 9.3.0 with

optimization option -O3. We rely on Python 3.8.5 to generate the instances and to analyze the results. The

code of these experiments can be found on Figshare1.

8.2. Instance generation

The characteristics of the processors were extracted from a realistic platform [24, 7]:

Processor p Pstat α S

Intel Xscale 32 6
155 ≈ 3.9× 10−2 3 {0.15, 0.4, 0.6, 0.8, 1}

Transmeta Crusoe 32 44
57560 ≈ 7.6× 10−4 3 {0.45, 0.6, 0.8, 0.9, 1}

The number of tasks varies from 20 to 1000, with a step every 20 tasks. The workload was generated

with the two following task profiles (half from each type):

• Amdahl’s law [1, 30]: wi,pi = wi,1 × β + wi,1×(1−β)
pi

;

• Power law [26, 16, 30]: wi,pi = wi,1

pβ
i

.

In both cases, wi,1 and β are drawn from a uniform distribution U(0, 1).

1https://doi.org/10.6084/m9.figshare.14854395
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8.3. Results

In order to evaluate the performance of the various heuristics and show whether they return results close

to the optimal, we compare the results with a lower bound that consists in an optimal execution in the

MinE-Mold-Indep case (Section 4.1). In that case, the static energy is paid only while a task is executed,

and any solution to MinE-Mold will consume at least as much energy as this lower bound. For convenience,

the default version of a heuristic is the multiple-speed variant, and we refer to the single-speed variant with

the SS suffix.

Figures 1 and 2 present an overview of the results for all heuristics with n = 500 tasks, respectively on

the Intel Xscale platform and on the Transmeta Crusoe platform. We report both the ratio between the
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Figure 1: Output energy consumption and execution time to compute the solution for all eight heuristics with n = 500
mixed power and Amdahl’s tasks and on the Intel Xscale platform (p = 32 processors with Pstat = 6

155 , α = 3, S =
{0.15, 0.4, 0.6, 0.8, 1}). Each box aggregates 10 measurements.
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Figure 2: Output energy consumption and execution time to compute the solution for all eight heuristics with n = 500
mixed power and Amdahl’s tasks and on the Transmeta Crusoe (p = 32 processors with Pstat = 44

57560 , α = 3, S =
{0.45, 0.6, 0.8, 0.9, 1}). Each box aggregates 10 measurements.
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energy consumption of each heuristic with the lower bound (the lower the better), and also the execution

time of the C++ implementation of the heuristics. A first remark is that single-speed and multiple-speed

variants give very similar results. Indeed, in practice, we could confirm that the multiple-speed heuristics

give the same speed to most tasks.

Figures 3 and 4 present a similar overview with a larger amount of tasks: n = 5000 tasks per instance.

The difference in energy consumption between ListBased and De-shelf becomes smaller as n increases,

while the execution time of the algorithm ListBased becomes much larger due to a higher order of growth.

Figures 5 and 6 present the scaling with n of all heuristics respectively on the Intel Xscale platform and

the Transmeta Crusoe platform. With a large number of tasks, the ratio with the lower bound becomes very
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Figure 3: Output energy consumption and execution time to compute the solution for all eight heuristics with n = 5000
mixed power and Amdahl’s tasks and on the Intel Xscale platform (p = 32 processors with Pstat = 6

155 , α = 3, S =
{0.15, 0.4, 0.6, 0.8, 1}). Each box aggregates 10 measurements.
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Figure 4: Output energy consumption and execution time to compute the solution for all eight heuristics with n = 5000
mixed power and Amdahl’s tasks and on the Transmeta Crusoe (p = 32 processors with Pstat = 44

57560 , α = 3, S =
{0.45, 0.6, 0.8, 0.9, 1}). Each box aggregates 10 measurements.
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Figure 5: Output energy and execution time to compute the solution for all algorithms for instances with mixed power and
Amdahl’s tasks and and on the Intel Xscale platform (p = 32 processors with Pstat = 6

155 , α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).
The output energy is given with a x 7→ log10(x− 1)-scale.
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Figure 6: Output energy and execution time to compute the solution for all algorithms for instances with mixed power and Am-
dahl’s tasks and and on the Transmeta Crusoe platform (p = 32 processors with Pstat = 44

57560 , α = 3, S = {0.45, 0.6, 0.8, 0.9, 1}).
The output energy is given with a x 7→ log10(x− 1)-scale.
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close to 1 for all heuristics, at the price of an increasing execution time.

In terms of energy consumption, the best performing algorithms are ListBased and ListBased-SS (the

lowest lines on the left charts). Then De-shelf and De-shelf-SS have a performance that is close to the

ones of our best algorithms. Finally ShelfBased, ShelfBased-SS, OptiShelf and OptiShelf-SS have

the worst performance among our algorithms (the top lines on the left charts).

In terms of execution time of the algorithms, most of our algorithms give instantaneous results. The

exceptions are ListBased, that has a superlinear complexity with respect to the number of tasks, and both

OptiShelf and OptiShelf-SS, that have a linear complexity with respect to the number of tasks but with

a high constant factor.

As there are many algorithms and plots are overlapping, we then compare them in a more refined study,

presenting more precisely how each algorithm behaves, along with the advantages and drawbacks of these

algorithms.

Among the base algorithms (ListBased-SS, ListBased, ShelfBased-SS and ShelfBased), we focus

on two baseline algorithms:

• the base algorithm with the best output energy: ListBased;

• the base algorithm with the best execution time: ShelfBased-SS.

If we compare these two algorithms, ListBased and ShelfBased-SS, we can see that ListBased

provides schedules with a lower energy consumption than ShelfBased-SS, but at the cost of a much

larger execution time for the algorithm. When the number of tasks n increases, the difference in terms of

execution time increases, while the difference of energy consumption decreases. Note that ListBased could

be implemented in a faster way with a segment tree to compute which task can be started, making this

operation O(log p) instead of O(n). However, this complex data structure would probably not be included

in most implementations.

However, we can use the solution delivered by ShelfBased (with a single speed for all tasks), and pass

this solution through two possible optimizations: OptiShelf or De-shelf. By comparing the results of

the two approaches, we can see that both optimizations increase the quality of the solution, but OptiShelf

does it at the cost of a very large increase in the execution time. However, the overhead of De-shelf is

small, which leads to solutions of better quality at a small cost.

Finally, we compare ListBased (with multiple speeds) to the optimized ShelfBased-SS (with a single

speed) with De-shelf, which we found to be the best optimization for ShelfBased. As we can see on

Figures 5 and 6, for very small instances, ListBased still performs better than ShelfBased with De-shelf.

However, when n grows larger, ShelfBased with De-shelf quickly performs as well as ListBased, but

with a lower time complexity.

Overall, by comparing the results we get with the processors Intel Xscale and Transmeta Crusoe, we
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Figure 7: Output energy consumption to compute the solution for a variety of algorithms for instances with mixed power and
Amdahl’s tasks and p = 32 processors (on the left: with Intel Xscale α = 3, and S = {0.15, 0.4, 0.6, 0.8, 1}; on the right: with
Transmeta Crusoe α = 3, and S = {0.45, 0.6, 0.8, 0.9, 1}). The vertical plain line corresponds to the actual Pstat of the studied
processor.

see that, for all of the algorithms we provide, the schedules given for the Transmeta Crusoe are closer to

the lower bound. First, this can be explained by the fact that the Transmeta Crusoe is a processor with

a very low relative static power (around 7.6 × 10−4) while the relative static power of the Intel Xscale is

higher (around 3.9× 10−2). It means that there is less need to optimize the makespan, thus simplifying the

problem. We explore the impact of Pstat in Section 8.4. Another explanation can be related to the difference

of available speeds between the processors. We explore the impact of available speeds in the Section 8.5

through an empirical study of the continuous case.

8.4. Impact of Pstat

Figure 7 compares all the proposed algorithms when varying Pstat. We can observe that for small values

of Pstat, even the algorithms that were not so efficient before provide good results. That is because, in

this case, the idle time of the processors does not have a high cost in terms of energy consumption. Thus,

having a small total amount of work W is more important than having a small makespan Cmax. Since all the

algorithms try at some point to minimize W in the same way, they end up by all providing similar results.

However, when Pstat increases, the importance of minimizing the makespan Cmax increases. The different

algorithms provide different performance in terms of makespan, which explains the difference in performance:

ListBased and optimized ShelfBased algorithms provide much better solutions than simple ShelfBased

algorithms.
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8.5. Comparison with the continuous relaxation

Finally, we conduct experiments with the relaxed continuous version of the problem, MinE-Mold-Cont,

where the speed of the processors can be any positive number. The previous lower bound does not apply for

this relaxed problem because there is no constraint on the minimum speed. The ratio between the energy

consumption achieved by the algorithm and the lower bound can thus be lower than 1. Note that we focus

here on single speed variants of the algorithms, where a single continuous speed will hence be chosen.

Figure 8 compares all of the discrete speed algorithms we propose to the algorithm ListBased-Cont we

use for the relaxed problem. This algorithm gives a solution with continuous speeds that consumes 15% less

energy than the best result we can get with the speeds available for the Intel Xscale. It means that with a

better choice of speeds when designing the processor, we can expect a 15% decrease in energy consumption

with our algorithms. For the Transmeta Crusoe processor, the energy gap is even bigger: with a better

choice of speeds, we can hope to gain more than 80% of energy.

Figure 9 compares the discrete-speed algorithm with the best results (ListBased-SS) to the result we

can get with continuous speeds, for different values of Pstat. Intuitively, all approaches are close to 1 when

they rely on speeds that are close to the discrete speeds of the studied processor. When we get further away

from these cases, we see that allowing continuous speeds would allow for a much better performance. It

means that the design of the static power Pstat and the set of available speeds S must be done concordantly.

This design can be helped by theoretical results, such as the ones we provide in this paper, along with

simulations such as the ones we provide in this section.

When comparing the Intel Xscale, on the left, to the Transmeta Crusoe, on the right, we see that the
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Figure 8: Output energy consumption and execution time to compute the solution for four heuristics with n = 500 mixed power
and Amdahl’s tasks and p = 32 processors (on the left: with Intel Xscale Pstat = 6

155 , α = 3, and S = {0.15, 0.4, 0.6, 0.8, 1}
in the discrete cases; on the right: with Transmeta Crusoe Pstat = 44

57560 , α = 3, and S = {0.45, 0.6, 0.8, 0.9, 1} in the discrete
cases). Each box aggregates 10 measurements.
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Figure 9: Output energy consumption to compute the solution with discrete and continuous speeds for instances with mixed
power and Amdahl’s tasks and p = 32 processors (on the left: with Intel Xscale α = 3, and S = {0.15, 0.4, 0.6, 0.8, 1} in the
discrete cases; on the right: with Transmeta Crusoe α = 3, and S = {0.45, 0.6, 0.8, 0.9, 1} in the discrete cases). The vertical
plain line corresponds to the actual Pstat of the studied processor.

available speeds for the Intel Xscale correspond well to the effective Pstat (the plain line). It is not the case

for the Transmeta Crusoe: lower processor speeds would improve the energy consumption.

9. Conclusion

With the growing concern regarding the energy consumption of current parallel platforms, it is crucial to

bound the worst-case performance. This paper is the first to propose such bounds on the energy consumption

when scheduling moldable tasks. We highlight the relation between the energy and the completion time

(determined by the DVFS mechanism) and rely on the numerous approximation algorithms that have already

been proposed to minimize the completion time. This leads to a general mechanism to bound the energy

consumption of such existing approximation algorithms for the completion time. In particular, we show that

a shelf-based approach is a 3-approximation (resp. 2.08-approximation) algorithm for the energy consumption

with discrete speeds (resp. continuous speeds).

We also focus on the optimization of a single shelf by providing a polynomial-time algorithm that can be

used to improve existing solutions. Empirical results reveal that such an approach, when combined with a

fast optimization post-operation, is beneficial in practice because of its low cost.

To complete this study, we could consider variations of the power model. In particular, we assume that

changing frequencies with the DVFS mechanism does not incur any energy cost or delay, which may not be

accurate in practice. We additionally assume that the set of available speeds is a constant, while we could

consider it a function of the number of processors in use (e.g., when all the processors are used, the highest

frequencies might not be usable). Also, we plan to experiment on more recent processors whose range of
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frequencies suggest that it behaves closer to the continuous model. This involves doing some measurements

to obtain detailed data on the power consumption of such processors and processing these measures, while

only information on frequencies is publicly available. Finally, the whole model revolves on the premise that

the tasks are computationally bound. The algorithms presented could be adapted to perform on mixes of

computationally bound and memory bound applications.

Overall, this paper aims at providing the theoretical foundations to the problem. Since current task

systems do not yet have moldable task profiles that can be used, we have focused on classical models that

have already been largely considered in the literature. As soon as moldable task profiles are available, it

would be very interesting to conduct experiments on real HPC systems.
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