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Abstract 

Architectured materials are often used for their high strength-to-weight ratio. For this matter, 
they are designed with high porosity which makes them sensitive to buckling under 
compressive loading. This buckling is usually predicted by numerical computations but very 
few experiments are available to confront these numerical results. Experimentally, the onset of 
instabilities is usually determined by following the global force applied onto the sample. 
However, this detection might be hindered by the presence of various defects which may 
locally trigger the instabilities. A very simple technique is proposed herein to detect instabilities
in periodic architectured materials using standard imaging techniques. It is shown to be 
applicable at a local scale, thereby allowing for a local instability detection. 
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1. Introduction 

Architectured materials are composite materials in which the macroscopic properties emerge 
from the local organisation of constitutive materials in space at the mesoscopic scale. When 
optimised to improve the stiffness-to-weight ratio, buckling at the mesoscopic scale becomes a 
possible mode of deformation of these materials [1]. While many studies are focused on the 
numerical prediction of this buckling [2, 3, 4], there are fewer experimental studies available to 
validate these numerical results [1, 5]. The comparison criterion between numerical and 
experimental results is the onset of instability [6] traditionally identified using the global 
loading force maximum. However, this detection might be hindered, experimentally, by various
defects in real systems which may locally trigger the instabilities [1]. 

The use of full-field kinematic measurements — e.g. Digital Image Correlation (DIC) — for 
architectured materials is not new. Different techniques have been developed to consider the 
fact that a large portion of the observed area is void and hence doesn’t contain kinematic 
information. For DIC, one may circumvent the problem by adding a stiffness-free matter [7], 
use multiscale approaches [8, 9], choose relevant element types (like beam in the case of lattice 
materials [10]), use high resolution cameras and a mesh based on the mesoarchitecture [11], etc.
However all these techniques while providing many information, require non-negligible 
expertise and do not detect buckling, thus implying further data-processing. This contribution 
focuses on a simpler way to exploit images to detect buckling. 



2. Materials and methods 

2.1. Material 

The specimen is a parallelepiped rectangle of hexagonal honeycomb, containing 11 × 11 8-mm-
diameter holes, with 2-mm menisci. The complete specimen is 111 × 105 mm2. The out-of-
plane thickness (24 mm) prevents global out-of-plane buckling. 

The constitutive material is a low stiffness silicon rubber (Smooth-SilTM 950 by Smooth-On, 
initial tangent Young modulus of 1.9 MPa), displaying high elongation at break (320%) and 
very low viscosity. The specimen is cast in a 3d-printed mold. This technique enables an 
accurate geometry of the specimen, offers a wider range of material properties and ensures an 
extremely low porosity of the constitutive material. 

2.2. Biaxial loading and imaging 

Bicompaction tests are performed with a machine following the principle proposed by [12] 
offering the advantage of continuous boundary conditions by use of flat platens contrary to [13]
which rely on slotted platens. It also allows different strain ratios, i.e. both uniaxial and 
equibiaxial loadings. 

The setup (Fig. 1) is instrumented with 8 load sensors to assess the force applied by each 
platens. The measured normal and tangential loadings are globally denoted as T(s, n), with s 
spanning the {1…8} range, and n denoting the image index. In order to describe the loading 
through a unique scalar, the results are displayed as a function of a global loading parameter 
g(n) defined such that T (s, n) ≃ g(n) × f (s). This decomposition is obtained as the leading term
of the singular value decomposition (SVD) of T(s,n) [14]. 

Displacement-controlled equibiaxial compression tests are done at a constant velocity and thus 
constant macroscopic strain rate (typically below 0.1 %/s). The images P(x,y,n) are obtained 
with a Digital Single Lens Reflex camera (70D, Canon) equipped with a 60-mm fixed focal 
lens (Canon), and are 3648 × 5472 pixels in size. x and y denote the position in the image’s 
plane. 



Figure 1: Experimental setup: testing machine (the wires holding the machine horizontally are in dark red) (left) 
and field of view of the camera (right). 

3. Proposed image processing 

A region of interest (ROI) P̂ ( x , y ,n ) covering the whole sample is defined out of the images
P ( x , y , n )  and windowed. Its boundaries are updated using the measured platens 
displacements, thus compensating for uniform strains. The Fourier transform ~P (ξ ,η ,n ) of
P̂ ( x , y , n ) reads 

~P (ξ , η , n )=∫ P̂ ( x , y , n ) exp  (−2 iπ ( x ξ+ y η ) ) dxdy  (1)

~
P   is computed using a fast Fourier transform (FFT). As P̂ is real-valued, ‖

~P (ξ ,η , n )‖ is 
symmetric with respect to the ξ and η axes, so that only one quarter of the spectrum is displayed
in the following. 

Figure 2: Magnitude of the Fourier spectra of the ROI in the undeformed state ‖~P (ξ ,η , n=1 )‖ (left) and after 

bifurcation ‖~P (ξ ,η , n=6 1 )‖ (right), see the global loading parameter g(n) (center). 



As presented in Fig. 2 (left), ‖~P (ξ ,η , n=1 )‖ displays a well defined structure corresponding to 
the symmetry of the material in its initial configuration. Indeed, since the initial undeformed 
geometry of the sample is composed of hexagonal tiling of circular holes, the hexagonal 
symmetry can be observed on the plot of the Fourier spectra magnitude. For instance, the two 
peaks A and C are separated by a 60° angle with respect to the origin. A global loading force 
maximum is observed at a time corresponding to image n=57, indicating the onset of the 
structural instability (Fig. 2, center). As can be seen from Fig. 2 (right), the magnitude of 
Fourier spectra obtained for the bifurcated structure shortly after that global loading force 
maximum (image n=61) displays additional, somehow blurry, peaks (see for instance the peak 
located around (17,3)). Indeed, generic bifurcation breaks symmetry [15] and this symmetry 
breaking would result in a different arrangement of the peaks in the Fourier transform. 

It is therefore proposed to track the instabilities of the structure by defining the indicator IAB(n) 
such that 

I AB (n )=

∫
AB

❑

‖~P (ξ , η ,n )‖d ξ d η

‖~P ( A , n )‖+‖~P ( B , n )‖
 (2) 

IAB(n) refers to the rectangular spectral domain AB, delimited by the user-defined peaks A and B 
(see Fig. 2). This spectral region has to be initially free of any peak and is thus denoted as an 
empty spectral region (ESR). The indicator (2) thus depends on both the chosen ROI and ESR, 
and any other ESR, corresponding to any other bifurcated state, could be chosen in Fig 2a. 

4. Results

The proposed analysis is first exemplified using a ROI which extends over the full sample for 
validation purpose. The detected buckling is then said global. The analysis is then performed 
using ROIs which cover only part of the sample, thus experimentally defining local buckling.

4.1. At the global scale 

The indicator IAB defined by Eq. 2 is computed for the ESR delimited by the two peaks A and B 
indicated on Fig. 2 (left), and for a ROI covering the full sample. It measures the visibility of a 
peak appearing in the ESR.

This indicator is displayed together with the global loading parameter as a function of the image
index in Fig. 3. 



Figure 3: Global bifurcation indicator for the AB zone IAB(n) and the global loading parameter g(n) as a function of 
the image index n. 

4.2. At local scale 

The initial ROI is divided into 3 × 3 equal, non-overlapping sub-regions. The same 
computations have been performed independently considering the individual sub-regions as 
ROIs and keeping the same AB domain as ESR. The resulting indicators are denoted as local in 
the following. 

Figure 4: Localization of the nine sub regions (left) and local bifurcation indicator for AB zone iAB(n) as a function 
of the corresponding global bifurcation indicator IAB(n) (right). 

Fig. 4 displays the local indicator iAB(n) computed on the 9 sub-regions as a function of the 
global indicator IAB(n). Each line corresponds to a particular sub-region, and they share the same
color in Fig.4. 

5. Discussion 

The IAB indicator remains almost constant throughout the specimen loading and suddenly 
increases when approaching the instability, as it is detected from the global loading maximum. 
The excellent agreement between the two indicators validates the proposed image-based 



indicator for the detection of the onset of instabilities in periodic architectured materials. It 
should further be highlighted that the detection of the instability via the global loading 
parameter g(n) corresponds to the maximum rate of IAB with respect to the applied strain 
(around IAB ≃ 1). 

Fig. 4 further clearly shows that buckling does not appear in a uniform manner across the 
sample. The local bifurcation indicator clearly increases from IAB ≃ 0.6, well before the global 
instability is detected. This demonstrates the need for such a local bifurcation indicator: it 
allows to resolve, both in time and space, the transition to the bifurcated state. It further allows 
to discriminate buckling initiation (as detected by the local indicator) from the global 
(catastrophic) buckling of the structure. 

6. Conclusion 

The proposed technique, based on an image processing indicator, has been validated with 
respect to classical global loading maximum criterion. This image processing technique making
only use of FFT, it is simply coded and computationally efficient [16]. As a consequence, it 
could be used to provide feedback to the machine. It can also provide additional information on 
a possible non-uniform or premature buckling in the specimen that would not necessarily lead 
to a drastic change in the global loading indicator. Used as such or combined with a global 
loading measurement, our proposed technique is a new tool to better understand the local-to-
global buckling transition in architectured materials. 
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