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Abstract— Vibrational piezoelectric energy harvesters
(vPEH) are of great interest in several fields such as
autonomous sensors and wireless sensor networks, bird
tracking devices, or autonomous miniaturized robotic systems.
They capture energy from mechanical vibrations available in
the ambient environment and convert it into electrical one to
power those systems. Basically, a vPEH is composed of three
main parts: the transducer mechanical structure, an electronic
interface and the storage unit. In this paper, we focus on
the optimization of the mechanical structure of the harvester.
To this end, an optimization framework based on topology
optimization is proposed. It consists to combine the Solid
Isotropic Material with Penalization (SIMP) approach and
frequency tuning technique to further increase the efficiency
of the harvesters. The fundamental frequency of the design
is tuned by considering the mass of the attachment as an
optimization variable in addition to the classical density and
polarity variables. Two numerical examples, including a new
piezoelectric energy harvester configuration, are investigated
to demonstrate the effectiveness of the topology optimization
framework.

I. introduction

Motivated by environmental issues, energy harvesting
(EH) as a power supply alternative has been given much
attention in the last decades. Solar, thermal and kinetic
energies are the most abundant and accessible forms of
energies in the environment. Within kinetic energy sources,
vibrations are of particular interest as they are ubiquitous: in
cars, from walking person, from appliances with motors and
from animal movements. To harvest energy from vibrations,
vibrational piezoelectric energy harvester (vPEH) can be
used. Its principle is to convert the energy generated by
oscillating deformation of a piezoelectric transducer into
electricity thanks to piezoelectric direct effect [1]. This
allows for replacing the classical power supplies such as
batteries which have a short lifespan and considerable cost of
maintenance with renewable ones. In fact, vPEHs are highly
efficient at small-scale applications like microelectromechan-
ical systems [2], wireless sensor networks [3], bird tracking
devices [4] or autonomous robotic systems [5]. Meanwhile,
these applications generally raise restrictions and constraints
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that should be respected when designing efficient and ap-
propriate harvesters. Some examples are volume and weight
limitation. Hence, researchers proposed different optimiza-
tion techniques to design vPEH, specifically to maximize the
electrical output for the given mechanical input under these
constraints [6]. Considering only the mechanical structure
of the vPEH, these design strategies can be classified into
two major categories: form optimization (which includes
particular topology optimization) and frequency tuning.

Topology optimization is a mathematical approach based
on material distribution [7]. Basically, it allows to find
an optimal layout in a design domain while respecting a
certain specification and attaining desired performance of
the structure. This powerful design tool, in particular SIMP
(Solid Isotropic with Material Penalization) method [8], was
initially proposed to solve compliance problems dealing with
light-weight structures [9], but was later extended to multi-
physics problems including piezoelectricity. Rupp et al [10],
[11] applied for the first time topology optimization for
vPEH while electrical circuit coupling was also considered
in the modeling. Zheng et al [12] performed static topology
optimization for vPEH. Noh et al. [13] extended the work of
Zheng [12] to topology optimization of vPEH under dynamic
load. Following these works and inspired by [14] , Salas [15]
employed the innovative extension of SIMP called PEMAP-P
to optimize the polarization profile of the vPEH in addition
to its density layout. Most recently, we applied topology
optimization to design actuators [16]–[18] and vPEH under
external in-plane force considering different boundary condi-
tions [19], [20] and multi-directional vPEH [21]. In addition
to the theoretical aspects, experimental investigations were
carried out to demonstrate the vPEH efficiency. Motivated by
these achievements, we developed 2D topology optimization
MATLAB codes for piezoelectric energy harvesters [22].

On the other hand, the best efficiency of a vPEH can
be obtained when it is excited at its resonance frequency.
Frequency matching is therefore very crucial for every PEH
since only 2% deviation of resonance frequency from ex-
citation frequency will drop the electrical output power by
50% [23]. Moreover, the available excitation frequency in
real applications is generally between 10 to 30 Hz [1], which
is below the normal resonance frequency of the vPEHs. The
classical and conventional method to match the resonance
frequency with the low excitation frequency is to attach a
lumped mass at the tip of the cantilever PEH [24]. Several
researchers considered the modification of eigenfrequencies
[25] and eigenmodes [26] in vPEH by topology optimization
to improve the electromechanical coupling coefficient. Al-



though these complementary approaches optimize the layout
of the vPEH, there is no work that considers the lumped
mass inside the topology optimization.

In this work, we suggest combining topology optimization
and frequency tuning to raise further the efficiency of vPEH.
The idea consists to consider the planar excitation in the
topology optimization while defining a constraint for the
fundamental frequency which is related to the out-of-plane
bending deformation. To tackle the challenges of eigenfre-
quency within topology optimization approach, we define
the vPEH attachment’s mass as a new optimization variable
in addition to the density and the polarity. Aiming for low
weight piezoelectric energy harvester, a new configuration is
proposed to minimize the fundamental resonance frequency
and the mass of the attachment simultaneously. Based on the
bi-morph structure this configuration is able to harvest energy
from multi-directions. The performance of the optimization
algorithm in terms of matching the resonance frequency to
the desired one is assessed by simulation. The obtained re-
sults in MATLAB and COMSOL Multiphysics demonstrated
that the algorithm successfully restricted the fundamental
frequency close to the desired one while respecting mass
and volume constraints of the vPEH.

II. Piezoelectric energy harvester
A. Vibrational piezoelectric harvester

Generally, piezoelectric materials can convert mechanical
to electrical energy without any additional structure which
makes them highly favorable in applications where vibrations
are abundant. However, the amount of harvested energy
by the vPEH remains low. Overcoming this limitation by
employing topology optimization and frequency tuning ap-
proaches is challenging but would increase further the vPEH
efficiency. This will be made possible by considering the
physics of the piezoelectric material within the optimization
problem. It is worth noticing that only the mechanical
structure of the vPEH is optimized here. The piezoelectric
material itself, the fabrication process and the electronic
circuit of the vPEH could be also optimized as it is suggested
in the literature, but all of these aspects are out of the scope of
this study. To apply the topology optimization it is necessary
to provide the finite element model of the system which will
be discussed next.

B. Finite element modeling of piezoelectric material
A bi-morph piezoelectric plate model is the most efficient

form of vPEH in the meso scale [27] which is chosen to
be optimized. As illustrated in Fig. 1, it consists of two
piezoelectric layers sandwiched between three electrodes: on
top, middle and bottom electrode.

The polarization axis for the piezoelectric materials is
parallel to the z direction of the coordinate system while
the direction will be determined later by optimization. From
mathematical point of view, all the necessary steps to derive
the finite element model of the bi-morph plate including
(i) piezoelectric material modeling, (ii) discretization, (iii)
derivation of elemental stiffness matrices (iv) and assembly

Fig. 1. Bi-morph piezoelectric plate.

of the global matrices are already established and readers
can refer to our previous works for more details [21].

The global finite element equilibrium equation for a multi-
layer piezoelectric plate can be expressed as follows:[
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where𝑈 and 𝜙 are the vectors of the mechanical displacement
and electric potential respectively. 𝐹 and 𝑄 are the applied
external mechanical force and electrical charge. 𝑀 , 𝐾𝑢𝑢, 𝐾𝑢𝜙 ,
𝐾𝜙𝜙 are the global mass matrix, mechanical stiffness matrix,
piezoelectric coupling matrix and piezoelectric permittivity
matrix respectively. The global matrices are formed by as-
sembling the elemental matrices [22]. The global equilibrium
equation (1) can be normalized to avoid the numerical
instabilities and can be re-written based on the normalization
which is provided in Ref. [22] as[
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in which, ( ˜ ) stands for the normalized quantities. 𝐵 is a
Boolean matrix to apply the equipotential condition on the
electrodes with dimension 𝑁𝑒×𝑁𝑃 where 𝑁𝑒 is the number of
nodes and 𝑁𝑃 is the number of potential electrodes where in
our case 𝑁𝑃 = 2. Ω̃ is the normalized excitation frequency, V𝑝

is the generated voltage by the vPEH and 𝛾 is the normalized
factor that keeps the solution of the system equal before and
after applying the normalization.

In general, the target is to excite a vPEH at its resonance
frequency to harvest the maximum possible amount of energy.
Therefore, in addition to what has been mentioned in our
previous works [21], [22], the resonance frequency will be
calculated through the finite element approach. The resonance
frequency is the natural frequency of the system at short circuit
condition. At open circuit condition, the natural frequencies of
the system are the anti-resonance frequency [28]. Therefore the
fundamental resonance frequency at 𝑉𝑝 = 0 can be calculated,

[
�̃�𝑢𝑢 − �̃��̃�2

𝑠

]
Ψ𝑠 = 0 (3)

in which �̃�𝑠 is the natural frequency at short circuit condition
and Ψ𝑠 is the related eigenvector. Now, based on the built FEM
of the piezoelectric plate and the provided resonance equation,
topology optimization algorithm can be applied to maximize



the harvested energy of the bi-morph vPEH by optimizing the
topology and modifying the resonance frequency.

III. Topology optimization of vPEH
In addition to the topology optimization framework pro-

posed in [21], there are aspects that are new in this study
including new vPEH configuration and tuning the resonance
frequency. To apply the topology optimization for the desired
vPEH system, the optimization problem should be defined
primarily. In this regard, we have to define the objective
function, constraints and optimization variables. These will
be discussed in the upcoming subsections.

A. Objective function
For the definition of objective function, the weighted sum

of the stored mechanical and electrical energy of the vPEH is
considered:

𝐽 = 𝑤 𝑗Π
𝑆 − (1−𝑤 𝑗 )Π𝐸 (4)

where 𝑤 𝑗 is the weighing factor and the energies that can be
expressed as:

Π𝑆 = ( 1
2
)�̃�𝑇𝐾𝑢𝑢�̃� , Π𝐸 = ( 1

2
)𝑉𝑇

𝑝𝐾𝜙𝜙𝑉𝑝

𝐾𝑢𝑢 =
[
�̃�𝑢𝑢 − �̃� �̃�2]

𝑏𝑐
, 𝐾𝜙𝜙 = 𝛾𝐵𝑇 �̃�𝜙𝜙𝐵 (5)

where ([ ]𝑏𝑐) shows the application of mechanical boundary
conditions. This defined objective function aims for increasing
the efficiency of the vPEH by maximization of electrical
energy while minimizing the stored mechanical energy (de-
formation) to assure the static stability of the system.

B. Tuning the resonance frequency
To tune the resonance frequency a constraint should be

defined on the fundamental natural frequency of the system.
Concretely, a lumped mass is associated to the tip of the
vPEH and considered as a new optimization variable for the
topology optimization of the vPEH. This helps tuning the
natural frequency of the structure in the scale of the excitation
in real applications and also to produce inertia force which
induces strain in the vPEH. The lumped mass modifies the
mass matrix of the system as follows,

�̃� =

𝑁𝐸∑︁
𝑖=1
�̃�𝑖 + 𝑦[�̃�𝑚𝑎𝑠𝑠] (0 ≤ 𝑦 ≤ 1) (6)

in which �̃�𝑖 is the elemental mass, 𝑖 is the element number
and 𝑦 is the optimization variable that stands for the ratio of
maximum possible mass of the attachment. By definition of
𝑦 here, we give more freedom to the optimization in terms of
convergence to a perfect solid void material in the final layout.
The reason is that the variable 𝑦 can increase or decrease the
total mass of the vPEH without changing its stiffness. This
optimization variable helps optimization solver to converge to
a fully black and white final layout and to avoid the greyness
problem which is a common problem in topology optimization
with frequency tuning [29].

C. Optimization variables
To specify other optimization variables, we can refer to the

material interpolation scheme for the SIMP (Solid Isotropic
Material with Penalization) approach and its extension for
piezoelectric materials known as Piezoelectric Material with
Penalization and Polarization” (PEMAP-P) which can be
expressed as follows [13], [14]:

�̃�𝑢𝑢 (𝑥𝑖) =
[
𝑥𝑚𝑖𝑛 − 𝑥𝑝𝑢𝑢𝑚𝑖𝑛

1− 𝑥𝑝𝑢𝑢
𝑚𝑖𝑛

(1− 𝑥𝑝𝑢𝑢
𝑖

) + 𝑥𝑝𝑢𝑢
𝑖

]
�̃�𝑢𝑢 ,

�̃�𝑢𝜙 (𝑥, 𝑃) = 𝑥𝑝𝑢𝜙 (2𝑃−1) 𝑝𝑃 �̃�𝑢𝜙 ,

�̃�𝑢𝜙 (𝑥) = 𝑥𝑝𝜙𝜙 �̃�𝜙𝜙 ,

�̃�(𝑥) = 𝑥�̃� (7)

where, �̃�𝑢𝑢, �̃�𝑢𝜙 and �̃�𝑢𝜙 are the corresponding elemental
piezoelectric matrices from equation (2). 𝑝𝑢𝑢, 𝑝𝑢𝜙 and
𝑝𝜙𝜙 are the stiffness, coupling and permittivity penalization
coefficients. Coupling Matrix �̃�𝑢𝜙 (𝑥, 𝑃) is a function of density
(𝑥) and polarization (𝑃) which is penalized by factor 𝑝𝑃 . The
material interpolation scheme in equation (7) will attribute
two optimization variables including the density (𝑥) and
polarization (𝑃) to each element in the design domain. In
addition, one optimization variable (𝑦) is defined in equation
(6) that is attributed to the lumped mass.

The first interpolation function defined in equation (7) for
the stiffness matrix 𝐾𝑢𝑢 is defined to avoid the localized modes
at the low density regions [30]. The reason is that, based on
the SIMP material interpolation scheme, low density regions
are highly flexible (soft) that produce very low and artificial
eigenmodes. To remedy, the interpolation function for the
stiffness matrix which is proposed by Huang et al. [29] is
utilized that suppresses the localized modes.

D. Problem formulation for vPEH design
After establishing finite element mode, objective function,

constraints and optimization variables, it is possible to define
the global optimization formulation as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑉 (𝑥) =
𝑁𝐸∑
𝑖=1
𝑥𝑖𝑣𝑖 ≤ 𝑉

𝜔1 < 𝜛,
0 ≤ 𝑥𝑖 ≤ 1, 0 ≤ 𝑃𝑖 ≤ 1, 0 ≤ 𝑦 ≤ 1

(8)

where 𝑥𝑖 , 𝑃𝑖 and 𝑦 are the optimization variables. 𝜛 is the
desired resonance frequency and 𝐽 is the weighted sum of
the energies as it has been defined in equation (4). 𝑉 is the
target volume which is a fraction of the overall volume of
the design domain while 𝑣𝑖 is the volume of each element
and 𝑁𝐸 is the total number of elements. This constraint on
the volume is equivalent to the constraint on the mass of the
piezoelectric layers. By having the inequality constraint on the
resonance frequency, the optimization is more relaxed than
having equality constrained. On the other hand, the resonance
frequency will finally match the excitation frequency as the
structure tends to be more rigid during optimization iterations.



To solve the optimization problem in (8), we will use the
gradient based solvers like Method of Moving Asymptotes
(MMA) developed by Svanberg et al. [31], [32]. In this regard,
we need the gradient of the objective function and constraint
with respect to optimization variables which will be discussed
next.

E. Sensitivity analysis
The procedure to derive the gradient of objective function

and constraints with respect to optimization variables is known
as sensitivity analysis. The sensitivity analysis of objective
function is already developed and established in previous
works by authors [21]. As such, without giving the details,
the sensitivity of objective function with respect to the
optimization variables are

𝜕Π𝑆

𝜕𝑥𝑖
= ( 1

2
�̃�𝑇𝑖 +_𝑇1,𝑖)
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𝜕𝑥𝑖
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in which �̃�𝑖 and 𝜙𝑖 are the elemental displacement and
potentials and ` and _ are the elemental adjoint vectors which
are calculated by the following global coupled system[
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(11)

where Λ and Υ, are the global adjoint vectors. Now, the
sensitivities with respect to polarization (𝑃) is calculated as
well [20], [21]
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�̃�𝑖 (12)

Here, in addition to density and polarization, the attachment
variable (𝑦) is also an optimization variable. Therefore, the
sensitivity of energies with respect to this optimization variable
should be calculated as well,

𝜕Π𝑆

𝜕𝑦
= ( 1

2
�̃�𝑇𝑖 +_𝑇1,𝑖)
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𝑦

𝑢𝑖 (13)

To apply the constraint on the natural frequency, its gradient
with respect to the optimization variables should be calculated.

To do so, the fundamental natural frequency of the system can
be defined through the Rayleigh quotient [29],

�̃�2
𝑠 =

Ψ𝑇
𝑠 �̃�𝑢𝑢Ψ𝑠

Ψ𝑇
𝑠 �̃�Ψ𝑠

(14)

The interpretation of first natural frequency by Rayleigh
quotient will result in to more efficient sensitivity analysis. By
following the procedure presented in [29], the sensitivities of
the natural frequency’s constraints with respect to optimization
variables are
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𝑠
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]
(15)

Based on the sensitivity equations (10) and (12), the
derivative of all piezoelectric matrices with respect to the
design variables are required. The derivative of the stiffness
matrix with respect to density can be calculated with the help
of the material interpolation scheme in Equ. 7 as:

𝜕𝑘𝑢𝑢
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𝑖
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𝜕𝑥𝑖
= 𝑝𝜙𝜙 (Y0 − Y𝑚𝑖𝑛)𝑥

𝑝𝜙𝜙−1
𝑖
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= �̃�𝑖 ,

𝜕�̃�

𝜕𝑦
= �̃�𝑚𝑎𝑠𝑠 (16)

After performing the sensitivity analysis, the topology
optimization can be implemented based on the same algorithm
which is provided in [21], [22]. The results of the optimization
will be discussed next.

IV. Numerical examples
The optimization framework developed in Sec. III integrates

frequency tuning within the topology optimization method by
considering the mass of attachment as a new optimization
variable. Its implementation under MATLAB follows the same
steps as described in [22]. To evaluate this algorithm, two
numerical examples are considered while the efficiency of one
of the examples is already proved over full plate in our previous
study [21].

A. vPEH configurations
Figure 2 illustrates two configurations with different bound-

ary conditions and mass attachment for multi-directional
vPEH. The configuration in panel (a) of this figure is similar
to the one presented in our previous work [21]. However, since
there is a need to tune the resonance frequency and reduce the
mass of the vPEH simultaneously, an alternative configuration



Fig. 2. Proposed configuration for multidirectional bi-morph piezoelectric
energy harvesters.

is proposed in panel (b) of this figure. The main goal of
this configuration is to reach the desired natural frequency
with the lowest possible attached mass. The geometry and
other specifications related to the optimization are mentioned
in Tab. I. The penalization factors are chosen based on the
strategy mentioned in [22]. The other proposition of this paper
is that we considered the planar 2D forces as excitation forces
of the system in TO which optimizes the structure and polarity
direction of vPEH for planar excitation. On the other hand,
by constraining the fundamental frequency which is related to
out-of-plane bending equal to the desired excitation frequency,
the harvested energy due to out-of-plane excitation will be
maximized as well.

TABLE I
Parameters

Parameter Value Parameter Value
PZTP Thickness 0.1(𝑚𝑚) 𝑝𝑢𝑢 3

PZTP Length 40 (𝑚𝑚) 𝑝𝑢𝜙 6
PZTP Width 40 (𝑚𝑚) 𝑝𝜙𝜙 6

FEM nbr of Elements 100× 100× 2 𝑝𝑃 1
Clamping Fraction 0.2 Excitation Frequency 15 Hz

Vol. Fraction 0.4 Max. Mass 1.5gr
Vibration Acc. 1g 𝑤 𝑗 0.1

B. Case study of bird tracking
To solve the optimization problem, the nature of the vPEH

excitation in terms of frequency and acceleration should be
specified according to the application. Here, we consider the
case of bird tracking devices that need to be supplied by
renewable energies in particular vPEH. By referring to [4],
the Root Mean Square (RMS) of the body acceleration of
small size birds is around 1 g in which g is the gravitational
acceleration. In the same study, the reported wing beat
frequency of most birds is 15 Hz. With these two important
specifications, we determined the input excitation for the vPEH
and the optimization as they are reported in Tab. I.

C. Optimization results
The optimization algorithm is applied to the configurations

given in Fig. 2 and the resulting layouts can be seen in Fig. 3.
In Fig. 3.a, the optimized layout and polarity are similar to our
previous work [21] while Fig. 3.b shows the optimized layout
and polarity of the proposed configuration. For simplicity, the
designs in panels (a) and (b) will be called respectively design
(1) and (2) in the rest of the paper.

Fig. 3. Optimal layout and polarity.

Figure 4 illustrates the evolution of the numerical data
during the optimization process. Several important points can
be deduced from these curves. One point is that mechanical
and electrical energies are more in design (2) in comparison
to design (1). It means that for the same amount of input force,
design (2) will produce electrical energy 5 times higher than
design (1) while it has 5 times more mechanical energy as well.
It can be concluded that for the same amount of excitation,
design (2) may have more stress and strain than design (1).
Moreover, both designs (1) and (2) satisfied the frequency
constraint with 14.94 Hz and 14.84 Hz respectively. However,
design (2) needs only 0.48x1.5 gr of mass while design (1)
needs 0.90x1.5 gr of mass to have the fundamental resonance
frequency close to 15 Hz. Thus, design (2) successfully
satisfied its predetermined goal of having less amount of
total weight compared to design (1). As you can see panel
(d) of fig. (4), the mass of attachment start from a minimum
value and increases gradually whenever the optimization needs
to reduce the fundamental frequency of the design. Other
important aspects such as how much stress will be produced?
how much homogenized will be the harvested energy from
different directions of excitation? will be answered in the FEM
simulation by COMSOL Multiphysics.

D. COMSOL simulation

After transferring the optimal layouts under COMSOL, a
FEM analysis is performed. As reported in Fig. 5, the natural
frequencies in simulation are close (14.205 Hz and 14.54 Hz
respectively) but slightly lower than the ones calculated by
MATLAB. The reason may come from the cuboid elements
used in MATLAB to discretize the design domain. Although a
good resolution is chosen, only one element per piezoelectric
layer is used. In this case, the modeled plate in MATLAB is
stiffer than the modeled plate in the COMSOL Multiphysics
in which more elements per thickness are used. Moreover,
the eigenmodes can be seen in Fig. 5.a and Fig. 5.b. As
expected, the first resonance frequency belongs to the out-
of-plane bending deformation.

It is worthwhile to mention here that, to follow the optimized
polarity profile as they are illustrated in Fig. 3, the method of
electrode separation is utilized as it is explained in [21]. The
electrode separation lines are identified in Fig. 5. It should
be noted that the electrode separation line is not completely
following the polarization profile due to existence of islands in
optimized polarity. Readers are referred to works of Donoso et
al. [33], [34] to have constraint on the electrode connectivity.



Fig. 4. MATLAB numerical results of topology optimization with constraint
on the resonance frequency.

Fig. 5. a) and b) fundamental resonance frequency and mode shapes. c) and
d) Von Mises stress.

The responses of the vPEHs to a multi-directional force are
illustrated in Fig. 6. This force is equivalent to the inertial
force on the tip mass induced by the base excitation. Similar
to the results reported in Fig. 4, the electrical and mechanical
energies of design (2) are higher than design (1). This means,
although design (2) is providing more electrical energy, the
stored mechanical energy is also higher than design (1) which
is equivalent to more stress/strain in design (2). To assess this,
the Von Mises stress in the designs due to an out-of-plane force
that triggers the eigenmode of the design is reported in Fig. 5.c
and Fig. 5.d . It is obvious that in some areas of the design
(2) there are red areas which have the highest von mises stress

Fig. 6. COMSOL Multiphysics FEM results to investigate the performance
of designs under application of 3D force. Direction of each point towards the
center shows the direction of the force and the distance shows the magnitude
of variable.

while with the same color spectrum, design (1) is experiencing
a lower amount of stress. Thus, it is important to know when
the fracture will happen especially when brittle PZTs are used.
Park et al. [35] investigated this question by studying the
tensile strength of PZT thin films. This study reported different
ultimate tensile strengths based on the thickness of the film. For
example, for 100 `m the ultimate tensile strength is reported
to be 238 Mpa. The ultimate stress that we are experiencing in
design (2) is equal to 13 MPa which is far below the 238 Mpa
reported by [35]. Therefore, there will be no fracture in the
piezoelectric material due to the applied excitation.

It is important to note that the geometrical dimensions of the
considered vPEH in this paper can be modified to be useful
for different applications. In this case, the generality of the
proposed approach will remain correct.

V. conclusions and perspectives
In this paper, we propose an optimization framework that

combines topology optimization and frequency technique to
increase the efficiency of the vPEH. To do so, the fundamental
frequency of the design is tuned by considering the mass of
the attachment as an optimization variable in addition to the
classical density and polarity variables. A new configuration
for the vPEH is proposed to lower the mass of the attachment
as much as possible during the optimization while tuning
the resonance frequency. The obtained results in MATLAB
and COMSOL Multiphysics demonstrated that the algorithm
successfully restricted the fundamental frequency close to
the desired one. The efficiencies of the optimized designs
are assessed in terms of satisfying the resonance frequency
and the mass and volume constraints of the vPEH. Future
works would concern the fabrication and the experimental
characterization of the proposed configuration. It would also
concern the extension of the proposed framework to design
three dimensional vPEHs.
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