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Abstract 11 

An interval parameters sensitivity analysis is developed to quantify the impact of simulation 12 

model parameters on the model outputs. This sensitivity analysis contains two main steps the 13 

interval uncertainty propagation and the interval sensitivity index. The interval perturbation 14 

method is introduced to estimate the extreme bounds of model outputs according to the interval 15 

input parameters, which significantly reduces the computation cost of extensive Monte Carlo 16 

simulations. Since the output of the interval model are interval quantities, the traditional 17 

probabilistic sensitivity method and its sensitivity index is inappropriate as we only have the 18 

bounds of samples without inner data points. Hence, this work proposes an interval similarity 19 

operator based on the relative interval position operator, which is applicable to measure the 20 

variation of interval outputs. This interval sensitivity operator mainly quantifies the discrepancy 21 

between intervals based on six typical cases of the interval relative position. Finally, an 22 

academic case and a satellite structure case are analyzed to verify the feasibility and efficiency 23 

of the proposed method. 24 

Keywords: Sensitivity analysis; interval uncertainty; interval sensitivity operator; interval 25 

relative position operator; interval perturbation method.  26 

1 Introduction 27 

A practical engineering model has to cope with various uncertainties existing in systems and 28 

structures. Uncertainties generally arise from the observed scattering of environmental 29 

conditions, lack of knowledge, inhomogeneity of materials, and measurement uncertainty. 30 

Those uncertainties are typically divided into two distinct forms, i.e., aleatory uncertainty and 31 

epistemic uncertainty (Kitahara et al. 2022). Meanwhile, non-deterministic analysis (Wang et 32 

al. 2011) has gained wide interest, and elaborate literature is available in this field. Uncertainty 33 

analysis can be generally classified into two categories of probabilistic and non-probabilistic 34 
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techniques (Ql et al. 2021; Singh and Bhushan 2020). The interval model is one of the most 1 

representative non-probabilistic approaches, which quantifies the uncertainties by the bounds 2 

of datapoints. In this work, we mainly focus on the sensitivity analysis with interval 3 

uncertainties. 4 

Sensitivity analysis (SA) has rapidly developed to quantify the impact of model parameters 5 

on outputs due to the growing complexity of mathematical models. One classical definition of 6 

sensitivity is “the study of how the uncertainty in the output of a model (numerical or otherwise) 7 

can be apportioned to different sources of uncertainty in the model inputs” (Andrea 2002), 8 

which is typically distinct from the uncertainty analysis. The importance of parameters is 9 

compared through ranked sensitivity indexes corresponding to each input parameter. The 10 

growth of uncertainty analysis has greatly promoted the development of sensitivity analysis. 11 

The importance of sensitivity analysis is widely acknowledged. One object of sensitivity 12 

analysis is to identify the contributions of model inputs to the variation of the outputs, which is 13 

used as evidence for significant parameter selection before model calibration. For example, 14 

sensitivity analysis is generally distinguished between local methods (Ha 2018) and global 15 

methods (Sobol 2001). In the context of local methods, the changes in outputs are analyzed 16 

while one input parameter is changed, with the rest kept at reference values. Jacomel et al. 17 

(2021) presented a priori error estimates for local reliability-based sensitivity analysis. Achyut 18 

et al. (2022) proposed local sensitivity analysis by using an efficient approach called modified 19 

forward finite difference. Global sensitivity (Cheng et al. 2019) analysis captures the interaction 20 

effects among parameters when exploring the responses of the model by varying all inputs at 21 

the same time. Examples of global methods include the first-order sensitivity index of Sobol’s 22 

method (Liu et al. 2019; Sobol 1993), the extended Fourier amplitude sensitivity test (Saltelli 23 

et al. 1999), the Morris screening method (Shin et al. 2013), the Multi-output support vector 24 

regression (M-SVR) (Cheng et al. 2019), and the distribution-based global sensitivity analysis 25 

(Lukáš 2022). When structures with large-scale parameters, it leads to the expensive 26 

computational cost issue due to quantifying the effects of inputs on the output response globally. 27 

A hybrid metamodel using the orthogonal constraints of radial basis function and sparse 28 

polynomial chaos expansions for the global sensitivity analysis of time-consuming models was 29 

developed (Wu et al. 2020).  30 

Sensitivity analysis has been implemented in various areas, such as model Verification and 31 

Validation (V&V) (Eamon and Rais-Rohani 2008; Ehre et al. 2020; Papaioannou and Straub 32 

2021; Suzana et al. 2022), structural optimization design (Eamon and Rais-Rohani 2008; Liu 33 

et al. 2019), structural reliability analysis (Ehre et al. 2020; Papaioannou and Straub 2021), 34 

mechanical property analysis of laminated plates (Longfei et al. 2012), and robust design in 35 

aerospace engineering (Dasari et al. 2020). However, most variance-based or moment-36 

independent sensitivity analyses (Zhang et al. 2015; Zhou et al. 2014) involve evaluating partial 37 
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derivatives of probabilistic model outputs at the nominal values of the input parameters, which 1 

should combine the sampling-based probabilistic methods and mathematical models to quantify 2 

uncertainties. In the case of a complex model with massive numbers of input variables, the 3 

sensitivity analysis from the probabilistic view is highly time-consuming. 4 

In the context of non-probabilistic uncertainty quantification, the input parameters and output 5 

responses are both non-probabilistic. Traditional variance-based sensitivity analysis is 6 

inapplicable to the interval model due to the lack of probabilistic information on inputs and 7 

outputs. Recently, a prediction on the static response of structures with uncertain-but-bounded 8 

parameters based on the adjoint sensitivity analysis was developed, where the sensitivity 9 

analysis is implemented without considering the interval characteristics of uncertain parameters 10 

(Luo et al. 2020). It is necessary to consider interval uncertainties when sensitivity and 11 

uncertainty analysis is performed. Up to now, however, most sensitivity analysis methods and 12 

sensitivity coefficients are mainly established for probabilistic parameter selection, such as the 13 

Sobol sensitivity index (Sobol 1993), the total-effect index (Homma and Saltelli 1996), the 14 

Morris sensitivity index (Morris 1991)，and FAST sensitivity index (Mcrae et al. 1982). 15 

Sensitivity analysis is developed to provide information for the reliability-based design. Xiao 16 

and Huang et al. (2011) proposed a reliability sensitivity analysis method for the model with 17 

both epistemic and aleatory uncertainties using P-boxed. Bi et al. (2019) developed a stochastic 18 

sensitivity analysis with a novel sensitivity index based on the Bhattacharyya distance. Those 19 

research efforts have been made on sensitivity analysis when both hybrid epistemic and aleatory 20 

uncertainties. However, with the limitation of samples, the stochastic characteristics of 21 

parameters cannot be precisely determined. Besides, those mentioned probabilistic sensitivity 22 

coefficients for the stochastic models or models with hybrid uncertainties are not applicable to 23 

the model with purely non-probabilistic uncertainties. Hence, it is necessary to extend the 24 

sensitivity analysis to a wider application with only interval uncertainties. A novel sensitive 25 

coefficient based on the geometric interval quantification method is presented to quantify the 26 

parameter sensitivity in this paper.  27 

The interval sensitivity analysis process relies on the accurate propagation of uncertainties 28 

in the form of intervals. However, the interval arithmetic operations are difficult to implement 29 

directly in uncertainty propagation. Interval analysis is introduced to estimate the interval 30 

outputs according to the interval inputs, which is named interval uncertainty propagation. 31 

Interval analysis is the basis of interval sensitivity, which predicts the interval output for 32 

estimating the sensitivity indices. Monte-Carlo simulation (Callens et al. 2022) is one of the 33 

typical uncertainty propagation methods which has been introduced into Sobol’s sensitivity 34 

analysis. Interval analysis typically requires a global optimization procedure with Monte Carlo 35 

simulation to determine the interval bounds on the output side of a computational model. 36 

However, in the context of complex models in practice, massive Monte Carlo simulation brings 37 
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excessive computation, sharply increasing the computation cost of sensitivity analysis. Some 1 

efficient interval propagation methods, such as advanced interval analysis (Fujita and Takewaki 2 

2011), multivariate interval quantification approach based on the concept of the convex hull 3 

(Faes et al. 2019; Faes et al. 2017), Infor-gap uncertainty quantification models (Ben-Haim 4 

2004), and some interval surrogate models (Fang et al. 2015; Khodaparast et al. 2011) are 5 

rapidly developed to reduce the computation cost. The interval perturbation methodology (Li 6 

et al. 2018; Wang and Qiu 2014), a representative interval propagation method, has some 7 

advantages over the Monte Carlo simulation, including lower computation cost because of 8 

calculating only by the information of a single point that allows the consideration of the 9 

complexity of structure. Therefore, this work introduces the interval perturbation propagation 10 

method to effectively estimate the output interval according to interval inputs.  11 

A parameter sensitivity analysis method with a novel interval-based sensitivity metric is 12 

developed by introducing the interval propagation methodology in this work. The interval 13 

similarity operator (ISO) is employed as a sensitivity metric to measure the discrepancy 14 

between two interval model outputs corresponding to initial and changed interval parameters, 15 

respectively. This metric is developed for interval uncertainty quantification as it is computed 16 

only based on the extreme bounds of the interval without their inner data points. The interval 17 

perturbation method is adopted to estimate the bounds of model outputs to improve the 18 

computation effectiveness. The feasibility and accuracy of the proposed method is verified by 19 

two typical academic cases. 20 

This work is organized as follows. Section 2 presents an overview of sensitivity analysis with 21 

interval uncertainties. Section 3 presents how to calculate the proposed interval-based 22 

sensitivity index. Section 4 illustrates the comprehensive framework of sensitivity analysis with 23 

interval uncertainties. Section 5 gives two study cases, i.e., an academic case and a more 24 

complex satellite case, to investigate the proposed method.  25 

2 Background of sensitivity analysis for interval parameters 26 

A finite element model or other complex black box models can be expressed as 𝑭ሺ∙ሻ as 27 

follows 28 

𝒇 = 𝑭ሺ𝜽ሻ                                (1) 29 

where 𝒇 is the model output. 𝑭  represents a propagation function of the model system. 𝜽 is 30 

the model parameters, where 𝜽 = ሼ𝜃𝑖ሽ, 𝑖 = 1,2,3, … , 𝑛 , and 𝑛  is the number of model 31 

parameters. 32 

The sensitivity index S=ሼ𝑆𝑖ሽ of model parameter 𝜽 is simply expressed as: 33 

𝐒 =
∆𝒇

∆𝜽
=

𝑭ሺ𝜽+∆𝜽ሻ−𝑭ሺ𝜽ሻ

∆𝜽
                          (2)           34 

where ∆𝜽 = ሼ∆𝜃𝑖ሽ  represents the variation of parameter 𝜽 . ∆𝒇 = ൛∆𝑓𝑗ൟ  represents the 35 

variation of 𝒇，where j=1, 2, …, m, m represents the dimensions of model output features.  36 



5 

 

In the context of a model with interval parameters 𝜽𝑰, Eq. (1) can be given as  1 

𝒇𝑰 = 𝑭൫𝜽𝑰൯                               (3) 2 

where 𝜽𝑰 = ൛𝜃𝑖
𝐼ൟ represents the interval parameters of model 𝑭, and 𝒇𝑰 = ൛𝑓𝑗

𝐼ൟ are interval 3 

uncertainties. Then, the sensitivity index for interval parameters is accordingly converted as: 4 

𝐒𝐼𝑛𝑡 =
𝝏𝒇𝑰

𝜕∆𝜽𝐼 =
𝐹൫𝜽𝑪+∆𝜽𝑰൯−𝐹൫𝜽𝑪+∆𝜽෡𝑰൯

∆𝜽𝐼−∆𝜽෡𝑰                        (4) 5 

where ∆𝜽෡𝑰 = ൛∆𝜃෠𝑖
𝐼ൟ means the changed interval radius. It can be seen that ∆𝜽𝐼and ∆𝜽෡𝑰 is 6 

independent of the interval midpoints 𝜽𝑪. We mainly focus on identifying the contributions of 7 

the slight change in model interval inputs to the variation of uncertainty degree of the outputs 8 

in this work. 9 

For an interval variable 𝜽𝑰, it can be determined by the extreme bounds 𝜽 and 𝜽 or by the 10 

inter center 𝜽𝐶 and the interval radius ∆𝜽, as follows: 11 

𝜽𝑰 = ሾ𝜽𝑐 − ∆𝜽, 𝜽𝑐 + ∆𝜽ሿ                           12 

= ൣ𝜽, 𝜽൧                                   (5) 13 

The fundamental operations of arithmetic for intervals (Moore 1996) are interpreted by two 14 

interval variables 𝜃1
𝐼 and 𝜃2

𝐼 , which is given as  15 

ە
ۖ
۔

ۖ
ۓ

𝜃1
𝐼 + 𝜃2

𝐼 = ൣ𝜃1
𝑙 + 𝜃2

𝑙 , 𝜃1
𝑢 + 𝜃2

𝑢൧

𝜃1
𝐼 − 𝜃2

𝐼 = ൣ𝜃1
𝑙 − 𝜃2

𝑢, 𝜃1
𝑢 − 𝜃2

𝑙 ൧

𝜃1
𝐼×𝜃2

𝐼=ൣ𝑚𝑖𝑛൛𝜃1
𝑙 𝜃2

𝑙 ,𝜃1
𝑙 𝜃2

𝑢,𝜃1
𝑢𝜃2

𝑙 ,𝜃1
𝑢𝜃2

𝑢ൟ,𝑚𝑎𝑥൛𝜃1
𝑙 𝜃2

𝑙 ,𝜃1
𝑙 𝜃2

𝑢,𝜃1
𝑢𝜃2

𝑙 ,𝜃1
𝑢𝜃2

𝑢ൟ൧

𝜃1
𝐼

𝜃2
𝐼 =𝜃1

𝐼×ቈ
1

𝜃2
𝑢,

1

𝜃2
𝑙 ቉

             (6) 16 

This work mainly focuses on the problem of local sensitivity analysis, which ignores the 17 

relationship between input parameters. The sensitivity analysis index 𝐒𝐼𝑛𝑡 is to quantify the 18 

impact of the change of interval parameters from 𝜽𝑰 into 𝜽𝑰 + ∆𝜽𝑰 on the model uncertainty 19 

output 𝒇𝑰. Interval sensitivity analysis is simply illustrated in Fig. 1. We can find that for the 20 

sensitive interval parameters, once there is some variation in their boundaries, both the interval 21 

center and the interval radius of outputs significantly change. However, on the contrary, even 22 

if the insensitive interval parameters encounter large perturbations, it may cause a small impact 23 

on model outputs.   24 



6 

 

 1 

Fig. 1 Diagrammatic sketch for sensitivity analysis of interval parameters. 2 

3 Interval perturbation FE method 3 

In the context of a model containing interval uncertainties, Fig. 2 depicts the relationships 4 

among interval propagation, sensitivity analysis, and model updating, also called model 5 

calibration. The interval uncertainty propagation approach is investigated to determine the 6 

bounds of model outputs. The relative significance of interval parameters is assessed using 7 

sensitivity analysis. The model updating for sensitive inputs is applied to improve the accuracy 8 

of the simulation model. Interval propagation is regarded as a critical operator for both the 9 

sensitivity analysis and the model updating. The interval perturbation method (Zhao et al. 2018; 10 

Zhao et al. 2020), a typical interval propagation method, is investigated in this work. 11 

 12 

Fig. 2 The relationship between the sensitivity analysis, the interval uncertainty propagation, 13 

and the model calibration.                           14 

Interval uncertainties can be rewritten as  15 

𝜽𝑰 = ൛𝜃𝑖
𝐼ൟ = ሼ𝜃𝐶 + ∆𝜃𝐼ሽ𝑖, 𝑖 = 1,2, … 𝑁                       (7) 16 

where 𝜃𝑖
𝐼 = 𝜃𝑖

𝑐 + ∆𝜃𝑖
𝐼 = 𝜃𝑖

𝑐 + ∆𝜃𝑖 ∙ 𝜀𝑖
𝐼, and 𝜀𝑖

𝐼=[-1,1]. 17 

According to the perturbation method, the interval output 𝐹൫𝜽𝑰൯ can be given in a series mode 18 



7 

 

as  1 

𝑭൫𝜽𝑰൯ = 𝑭൫𝜀𝑖
𝐼൯ = 𝑓0 + 𝜀𝑖

𝐼𝑓1 + ሺ𝜀𝑖
𝐼ሻ2𝑓1+…+ሺ𝜀𝑖

𝐼ሻ𝑚𝑓𝑚, 𝑖 = 1,2, … 𝑁            (8) 2 

where 𝑚 is the truncation order of the series. Based on the Taylor series expansion expanded 3 

at the middle point of the interval vector 𝜽𝑰, Eq. (8) can be transformed as 4 

𝑭൫𝜽𝑰൯ = 𝑭൫𝜽𝑪൯ + σ
𝜕𝑭ሺ𝜽ሻ

𝜕𝜃𝑝1

𝑁
𝑝1=1 ฬ

𝜃𝑖
𝐼=𝜃𝐶,𝑖≠𝑝1

∙ ∆𝜃𝑝1
                               5 

+
1

2
σ σ

𝜕𝑭2ሺ𝜽ሻ

𝜕𝜃𝑝1𝜕𝜃𝑝2

𝑁
𝑝2=1

𝑁
𝑝1=1 ฬ

𝜃𝑖
𝐼=𝜃𝐶,𝑖≠𝑝1,𝑝2

∙ ∆𝜃𝑝1
∆𝜃𝑝2

+ ⋯                  6 

+
1

𝑚
σ …𝑁

𝑝1=1 σ
𝜕𝑭𝑚ሺ𝜽ሻ

𝜕𝜃𝑝1…𝜕𝜃𝑝𝑚

𝑁
𝑝𝑚=1 ฬ

𝜃𝑖
𝐼=𝜃𝐶,𝑖≠𝑝1,…,𝑝𝑚

∙ ∆𝜃𝑝1
… ∆𝜃𝑝𝑚

+ 𝑅      ሺ9ሻ 7 

Since the values of ∆𝜃𝑝1
∙ ∆𝜃𝑝2

, … , ∆𝜃𝑝1
∙ … ∙ ∆𝜃𝑝𝑚

 in more than second-order form is very 8 

small, Eq.(9) can be approximated to a first-order form based on the interval algorithm, which 9 

is given as 10 

𝑭൫𝜽𝑰൯ ≅ 𝑭෡൫𝜽𝑰൯ = 𝑭൫𝜽𝑪൯ + σ
𝜕𝑭ሺ𝜽ሻ

𝜕𝜃𝑗

𝑁
𝑗=1 ฬ

𝜃𝑖
𝐼=𝜃𝐶,𝑖≠𝑗

∙ ∆𝜃𝑗, 𝑗 = 1,2, … , 𝑁       (10) 11 

Then, we can obtain the following equations that 12 

𝑭෡൫𝜽𝑰൯ = σ ൫𝜃𝑗
𝑐 + ∆𝜃𝑗

𝐼൯𝐹𝑖
𝑛
𝑗=1 = 𝑭൫𝜽𝑪൯ + σ 𝐹𝑖

𝑛
𝑗=1 ∙ ∆𝜃𝑗

𝐼            (11) 13 

where 𝐹𝑖 = σ
𝜕𝑭ሺ𝜽ሻ

𝜕𝜃𝑗

𝑁
𝑗=1 ฬ

𝜃𝑖
𝐼=𝜃𝐶,𝑖≠𝑗

. 14 

From Eq.(12), we can find that once we have the uncertain part of σ 𝐹𝑖
𝑛
𝑗=1 ∙ ∆𝜃𝑗

𝐼, we can 15 

calculate the approximate bounds of the model output 𝒇෠𝑰 = 𝑭൫𝜽𝑰൯. The differential method is 16 

introduced to calculate the lower and upper bounds of the model output 𝒇෠𝑰 , which is 17 

shown as 18 

ە
ۖ
۔

ۖ
𝒇෠ۓ = 𝐹ሺ𝜽𝒄ሻ + σ

𝑭ቀ𝜃𝑗
𝑐+𝛿𝜃𝑗ቁ−𝑭ቀ𝜃𝑗

𝑐ቁ

𝛿𝜃𝑗

𝑁
𝑗=1 𝛥𝜃𝑗

𝒇෠ = 𝐹ሺ𝜽𝒄ሻ − σ
𝑭ቀ𝜃𝑗

𝑐+𝛿𝜃𝑗ቁ−𝑭ቀ𝜃𝑗
𝑐ቁ

𝛿𝜃𝑗

𝑁
𝑗=1 𝛥𝜃𝑗

                   (12) 19 

where 𝛿𝜃𝑗 is the minor variable of the interval variable 𝜃𝑗.  20 

4 Interval sensitivity analysis with Interval Similarity Operator  21 

4.1 Interval Similarity Operator 22 

In the context of local sensitivity analysis, for example, when the parameters are changed 23 

from 𝜽𝑰 = ሼ𝜃1
𝐼 , 𝜃2

𝐼 , … , 𝜃𝑛
𝐼 ሽ  to 𝜽෡𝑰 = ൛𝜃෠1

𝐼 , 𝜃2
𝐼 , … , 𝜃𝑛

𝐼 ൟ , namely 𝜃1
𝐼  becomes 𝜃෠1

𝐼 , the outputs are 24 

accordingly changed from the initial value of 𝒇𝑰 = ൛𝑓𝑗
𝐼ൟ to the perturbed value of 𝒇෠𝑰 = ൛𝑓መ𝑗

𝐼ൟ. 25 

It should be noted that although only one input parameter interval changes, all the output 26 

intervals are changed simultaneously. Zhao et al. (2022) proposed an uncertainty quantification 27 

metric of interval similarity operator (ISO) to address the issue of structural model updating. 28 

In this work, this metric is introduced to propose a novel sensitivity index to quantify the 29 
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discrepancy between one-dimensional intervals 𝒇𝑰 and 𝒇෠𝑰, reflecting the sensitivity of each 1 

input interval parameter. 2 

Firstly, the Interval Relative Position Operator (IRPO) is utilized to measure the difference 3 

between two intervals based on the mathematical rule of interval length 𝐿ሺ∙ሻ, defined as follows: 4 

𝐿ሺ𝑓𝐼ሻ = 𝑓 − 𝑓                              (15) 5 

Two intervals 𝑓𝐼 = ሾ𝑓, 𝑓ሿ  and  𝑓መ𝐼 = ሾ𝑓መ, 𝑓መሿ  are utilized to explain the proposed Interval 6 

Similarity Operator. Six typical positional relationships between intervals 𝑓𝐼  and 𝑓መ𝐼  are 7 

presented in Figure 3.  8 

 9 

Fig. 3 Six interval relative positions. 10 

The IRPO is calculated according to different overlap cases in Fig. 3, and its calculation rules 11 

are given as 12 

𝐼𝑅𝑃𝑂൫𝑓𝐼 , 𝑓መ𝐼൯ =

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

ቀ𝑓−𝑓መቁ

𝑚𝑎𝑥൛𝐿ሺ𝑓𝐼ሻ,𝐿൫𝑓መ𝐼൯ൟ
                   𝐶𝑎𝑠𝑒 1,2 

ቀ𝑓−𝑓 ቁ

𝑚𝑎𝑥൛𝐿ሺ𝑓𝐼ሻ,𝐿൫𝑓መ𝐼൯ൟ
                    𝐶𝑎𝑠𝑒 3

ቀ𝑓መ−𝑓መቁ

𝑚𝑎𝑥൛𝐿ሺ𝑓𝐼ሻ,𝐿൫𝑓መ𝐼൯ൟ
                    𝐶𝑎𝑠𝑒 4

ቀ𝑓መ−𝑓 ቁ

𝑚𝑎𝑥൛𝐿ሺ𝑓𝐼ሻ,𝐿൫𝑓መ𝐼൯ൟ
                  𝐶𝑎𝑠𝑒 5,6

              (16) 13 

where m𝑎𝑥൛𝐿ሺ𝑓𝐼ሻ, 𝐿൫𝑓መ𝐼൯ൟ represents the maximum interval length between 𝑓𝐼 and 𝑓መ𝐼. 14 

For the cases 1 and 6, 𝑓𝐼 and 𝑓መ𝐼 have an overlapping space, and then the IRPO is negative. 15 

When the length of intervals 𝑓𝐼 and 𝑓መ𝐼 are infinite, the denominator of IRPO tends to zero. 16 

In cases 2-5, there is an overlap between 𝑓𝐼 and 𝑓መ𝐼，and the value of the IRPO is clearly 17 

positive and restrained to the range of (0,1). If both the position and the length of 𝑓𝐼  is 18 

consistent with that of 𝑓መ𝐼, 𝐼𝑅𝑃𝑂 achieves its maximum value of 1. Hence the range of 𝐼𝑅𝑃𝑂 19 



9 

 

is  1 

𝐼𝑅𝑃𝑂൫𝑓𝐼 , 𝑓መ𝐼൯ ∈ ሺ−∞, 1ሿ                         (17) 2 

  Next, impose that the IRPO has a high gradient as the value moves close to one; we develop 3 

an Interval Sensitivity Operator based on the IRPO to quantify the similarity between two 4 

interval vectors concerning their geometric position and shape. The fundamental calculation 5 

rule of ISO is given by  6 

𝐼𝑆𝑂൫𝒇𝑰, 𝒇෠𝑰൯ = 𝑚𝑒𝑎𝑛 ቆ1 −
1

1+𝑒𝑥𝑝ሼ−𝐼𝑅𝑃𝑂ቀ𝑓𝑗
𝐼,𝑓መ𝑗

𝐼ቁቅ
ቇ , 𝑗 = 1,2, … , 𝑚         (18) 7 

where 𝑚𝑒𝑎𝑛ሺ∙ሻ represents the mean value of ሺ∙ሻ. 8 

From Eq. (18), we can find that the value of ISO is limited within ሺ0, +∞ሻ. A high gradient 9 

of Eq. (18) reflects the similarity between 𝒇𝑰 and 𝒇෠𝑰. On the contrary, when 𝐼𝑆𝑂 moves to 10 

the infinite positive, this means 𝒇𝑰  is significantly different from 𝒇෠𝑰 . In the context of 11 

sensitivity analysis, this implies that variations in parameter 𝜃𝑖
𝐼 have a strong influence on the 12 

outputs 𝒇𝑰.    13 

According to Eq. (4), the proposed interval sensitivity index 𝑺  based on ISO can be 14 

expressed as Eqs. (19)-(20). This index vector consists of a series of sensitive index variables 15 

ሼ𝑆𝑖, 𝑖 = 1, … , 𝑛ሽ, and each variable 𝑆𝑖 quantifies the sensitivity of parameter 𝜃𝑖
𝐼. 16 

𝑺 = ሼ𝑆𝑖ሽ, 𝑖 = 1, … , 𝑛                         (19) 17 

𝑆𝑖 =
∆𝒇𝑰

∆𝜃𝐼 =
𝐼𝑆𝑂൫𝒇𝑰,𝒇෠𝑰൯

∆𝜃𝑖
𝐼                          (20) 18 

We can rank the sensitivity index 𝑆𝑖 in descending order to select the sensitive parameters. 19 

It should be noted that this proposed interval sensitivity index is calculated based on the 20 

boundaries of model outputs without any inner data points, which is especially appropriate for 21 

the model with pure interval uncertainties. Meanwhile, when there are stochastic uncertainties 22 

or hybrid stochastic and interval uncertainties in the model since the geometric position and 23 

range of model outputs can be measured through ISO, this index can be adopted for models 24 

with complicated uncertainties as well.  25 

4.2 Framework of sensitivity analysis with interval uncertainties 26 

This work belongs to the One-at-a-Time method (OAAT), so the problem of coupling 27 

between model parameters is not considered here. Besides, in contrast to the sensitivity analysis 28 

with stochastic uncertainties, this interval sensitivity analysis is performed with no hypothesis 29 

of probabilistic distributions. The objective is to quantify the variation of interval outputs 𝒇𝑰 →30 

 𝒇෠𝑰  caused by the change in the interval parameters 𝜃𝑖
𝐼 → 𝜃෠𝑖

𝐼 , such that the sequence of 𝑆𝑖 31 

represents the sensitivity of inputs 𝜽𝑰.  32 

The framework of the proposed sensitivity analysis method is illustrated in Fig. 4, which 33 

consists of three parts: (1) the major body, (2) the interval uncertainty propagation, and (3) the 34 

sensitivity index calculation. As mentioned above, the interval perturbation method is 35 
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introduced to estimate model output intervals effectively. Then, the sensitivity index 𝑆𝑖 1 

corresponding to each parameter 𝜃𝑖
𝐼  is accordingly calculated to measure the discrepancy 2 

between the initial interval output 𝒇𝑰and the perturbated output 𝒇෠𝑰. The major body contains a 3 

pre-determined initial and perturbed range of parameters, namely 𝜃𝑖
𝐼 and 𝜃෠𝑖

𝐼. Finally, we rank 4 

the sensitivity index 𝑆𝑖 in descending order. The detailed steps are illustrated as follows:   5 

Step 1: The framework starts from a pre-determined range of the model parameters 𝜽𝑰 =6 

ሼ𝜃1
𝐼 , … , 𝜃𝑛

𝐼 ሽ with its initial interval center𝜽𝑪 = ሼ𝜃𝑖
𝑐ሽ and corresponding interval radius ∆𝜽𝑰 =7 

൛∆𝜃𝑖
𝐼ൟ. The initial interval 𝜃𝐼 represents the gross knowledge from engineering judgments.  8 

Step 2: Select an interval parameter component 𝜃𝑖
𝐼  and change its interval radius 9 

proportionally to model the small change of 𝜃𝑖
𝐼. Keep other interval parameter components 10 

unchanged. We finally obtain the interval perturbed parameter 𝜽෡𝑰 = ൛𝜃1
𝐼 , … , 𝜃෠𝑖

𝐼 , … , 𝜃𝑛
𝐼  ൟ. 11 

Step 3: Estimate the initial model output interval 𝒇𝑰 = ሼ𝑓1
𝐼, … , 𝑓𝑚

𝐼 ሽ and the perturbed output 12 

interval 𝒇෠𝑰 = ൛𝑓መ1
𝐼 , … , 𝑓መ𝑚

𝐼 ൟ through the interval perturbation method, which concerns the initial 13 

interval parameter 𝜽𝑰 = ሼ𝜃1
𝐼 , … , 𝜃𝑛

𝐼 ሽ  and the perturbed interval parameter 𝜽෡𝑰 =14 

൛𝜃෠1
𝐼 , 𝜃2

𝐼 , … , 𝜃𝑛
𝐼  ൟ, respectively. 15 

Step 4: Calculate the IRPO and the ISO of 𝒇𝑰 and 𝒇෠𝑰, and calculate the sensitivity value 𝑆መ1 16 

corresponding to 𝜃෠1
𝐼. 17 

Step 5: Repeat Step 2-Step 4 n times to obtain a series of sensitivity indexes 𝑆መ𝑖, 𝑖 = 1,2, … , 𝑛 18 

corresponding to interval parameters ሼ𝜃1
𝐼 , … , 𝜃𝑛

𝐼 ሽ. 19 

Step 6: Sequence the value of 𝑆መ𝑖, 𝑖 = 1,2, … , 𝑛 in descending order to present the sensitivity 20 

of interval parameters ሼ𝜃1
𝐼 , … , 𝜃𝑛

𝐼 ሽ. 21 

 22 

Fig. 4 Flowchart of sensitivity analysis for interval parameters. 23 
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6. Case studies 1 

6.1 Case 1: Ishigami function 2 

6.1.1 Problem description  3 

A tutorial case study of the Ishigami function is presented in this section, which originated from 4 

Ref. (Ishigami and Homma 1990) and is analyzed by Ref. (Bi et al. 2019). The Ishigami 5 

function is a general example of sensitivity analysis, which is given as follows: 6 

𝑦ሺ𝑃ሻ = sinሺ𝑝1ሻ + 𝑎 sinሺ𝑝2ሻ2 + 𝑏𝑝3
4 sinሺ𝑝1ሻ             (21) 7 

where 𝑃 = ሼ𝑝1，𝑝2，𝑝3
 ሽ is the input parameters; 𝑦 is the output feature; a and b are constant 8 

coefficients with pre-determined values as Ref. (Marrel et al. 2008), a=7 and b=0.1.  9 

Since Bi et al. (2019) mainly focus on the stochastic sensitivity analysis with both aleatory 10 

and epistemic uncertainties, the uncertainties 𝑝1−3 in Ref. (Bi et al. 2019) assumed that 𝑝1 11 

and 𝑝2  are prescribed to follow the uniform distribution, and 𝑝3  follows the Gaussian 12 

distribution. However, this uncertainty characteristic is inappropriate for the application of the 13 

proposed method because the determined distribution types of 𝑝1−3 belong to probabilistic 14 

uncertainties without any interval uncertainties.  15 

In this case, 𝑝1−3 are defined as interval parameters, and according to Eq. (4), we assume 16 

that the lengths of interval radius ∆𝑷 are changed 50% as presented in Table 1. For example, 17 

the initial length of ∆𝑝1 is 0.8, which is changed to 0.4 in the perturbed interval 𝑝Ƹ1
𝐼 , namely 18 

the interval of 𝑝1
𝐼  is changed from [-2.4,-0.8] to [-2,-1.2]. Since this work is mainly about local 19 

sensitivity analysis, the other variables 𝑝2
𝐼  and 𝑝3

𝐼  of 𝑷𝑰 are unchanged. By comparing the 20 

variation of the outputs caused by the initial and perturbed intervals of parameters, the 21 

sensitivity of each input can be identified.  22 

Table 1 The initial and perturbed parameter intervals. 23 

Parameters 𝑝1
𝐼  𝑝2

𝐼  𝑝3
𝐼  Variation proportion ratio 

Initial intervals 𝑷𝑰 [-2.4,-0.8] [-0.8,0.8] [4.2,5.8] 50% 

Perturbed intervals 𝑷෡𝑰 [-2,-1.2] [-0.4,0.4] [4.6,5.4] 50% 

  Since this work belongs to the problem of local sensitivity analysis, this interval sensitivity 24 

analysis aims to quantify the importance of each input according to how many intervals of 25 

uncertainty space of all outputs can be changed when the interval length of this initial input is 26 

proportionally increased, where the changed inputs are called perturbed inputs here. For this 27 

case, the perturbed interval parameters 𝑝1−3  are presented in Table 1. The objective of 28 

proportionally changing the interval radius ∆𝑝𝐼= {∆𝑝1
𝐼 , ∆𝑝2

𝐼 , ∆𝑝3
𝐼 } to generate perturbed inputs 29 

with a radius of ∆𝑝෢ 𝐼= {∆𝑝෢
1
𝐼 , ∆𝑝෢

2
𝐼 , ∆𝑝෢

3
𝐼 } is illustrated in Figure 5, where the interval centers are 30 

completely fixed. The most intuitive manner is to measure how much the output interval space 31 

is changed to reflect the sensitivity of parameters. Hence the following operator to calculate the 32 
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interval outputs according to 𝑝𝐼 and 𝑝Ƹ 𝐼. As the Ishigami function is simple, 5000 Monte Carlo 1 

simulations are conducted to estimate the initial interval outputs 𝑦𝐼 and perturbed output 𝑦ො𝐼. 2 

 3 

Fig. 5 Initial and perturbed input intervals.  4 

  Table 2 presents the initial output interval 𝑦𝐼  calculated based on the initial parameter 5 

intervals 𝑝1
𝐼 , 𝑝2

𝐼 , and 𝑝3
𝐼 . In the context of local sensitivity analysis, there are three perturbed 6 

interval output spaces corresponding to variations sequentially occurring in 𝑝1
𝐼 , 𝑝2

𝐼 , and 𝑝3
𝐼 . 7 

The three perturbed interval outputs are given in Table 2. The output variability significantly 8 

reflects the degree of dispersion in the output uncertainty space, which is investigated in Figure 9 

6. For example, the perturbed procedure is executed for an interval of 𝑝Ƹ1
𝐼  meanwhile, keeping 10 

the interval bounds of 𝑝2
𝐼 , and 𝑝3

𝐼 . Accordingly, the perturbed output 𝑦ො𝑝1
𝐼  is available. From 11 

Figure 6, it can be seen that the perturbation in 𝑝3
𝐼  results in the most obvious changes in output, 12 

i.e. 𝑦𝐼 to 𝑦ො𝑝3
𝐼 , implying the 𝑝3

𝐼  is sensitive to the outputs 𝑦𝐼. 13 

Table 2 Initial and perturbed input intervals. 14 

Initial 

parameters 
Initial output 𝑦𝐼 

Perturbed parameter 

orders 
Perturbed output 𝑦ො𝐼 

𝑝1
𝐼 , 𝑝2

𝐼 , 𝑝3
𝐼  𝑦𝐼=[-111.55,-21.52] 

𝑝Ƹ1
𝐼 , 𝑝2

𝐼 , 𝑝3
𝐼  𝑦ො𝑝1

𝐼 =[-113.07,-27.78] 

𝑝1
𝐼 , 𝑝Ƹ2

𝐼 , 𝑝3
𝐼  𝑦ො𝑝2

𝐼 =[-111.82,-22.04] 

𝑝1
𝐼 , 𝑝2

𝐼 , 𝑝Ƹ3
𝐼  𝑦ො𝑝3

𝐼 =[-85.30,-29.65] 
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 1 

Fig. 6 Comparison between the initial and perturbated outputs intervals. 2 

The IRPO, ISO, and comprehensive sensitivity index of 𝑝1
𝐼   are evaluated according to 3 

Section 3. The same strategy is performed for 𝑝2
𝐼 , and 𝑝3

𝐼 , and their corresponding sensitivity 4 

indices are presented in Table 3. According to the determined input parameters, 5000 times 5 

Monte Carlo samples with the assumption of parameters following uniform distribution are 6 

performed to propagate the uncertainty from the inputs to the outputs, yielding 5000 data points 7 

bounded by the output intervals. Hence the sensitivity indices of Bhattacharyya distance in Ref. 8 

(Bi et al. 2019) can be adopted in this case, whose results are similar to those calculated by the 9 

proposed indices as shown in Figure 7.  10 

Table 3 Sensitivity analysis of 𝑝1−3. 11 

Sensitivity index 𝑆መ𝑝1
 𝑆መ𝑝2

 𝑆መ𝑝3
 Sensitivity rank 

Bhattacharyya distance  

Ref. (Bi et al. 2019) 
0.02525 0.0055 0.228 𝑆መ𝑝3

> 𝑆መ𝑝1
> 𝑆መ𝑝2

 

ISO 0.03475 0.003 0.20325 𝑆መ𝑝3
> 𝑆መ𝑝1

> 𝑆መ𝑝2
 

 12 
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 1 

Fig. 7 Sensitivity analysis of 𝑝1
𝐼 , 𝑝2

𝐼 , and 𝑝3
𝐼   2 

The sensitivity ranking is 𝑆መ𝑝3
> 𝑆መ𝑝1

> 𝑆መ𝑝2
, and 𝑆መ𝑝1

 and 𝑆መ𝑝2
 are significantly smaller than 3 

𝑆መ𝑝3
, indicating that 𝑆መ𝑝3

 is more sensitive than 𝑆መ𝑝1
 and 𝑆መ𝑝2

 from the point of view of interval 4 

uncertainty. Meanwhile, 𝐼𝑆𝑂𝑝1  and 𝐼𝑆𝑂𝑝2  are close to 0, implying a high geometric 5 

similarity between intervals 𝑦𝐼 and 𝑦ො𝐼.  6 

It should be noted that the Bhattacharyya distance is calculated based on the distribution 7 

function of data, implying it is unable to deal with interval uncertainties. The proposed ISO is 8 

calculated only by the bounds of output intervals, which is reliable in engineering. Besides, 9 

the calculation time of the ISO is much less than that of the Bhattacharyya distance, which 10 

is proved by Fig. 8. 11 

 12 

Fig. 8 Comparison of calculation time of the ISO and Bhattacharyya distance metrics. 13 
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6.1.2 Parameters with hybrid probabilistic and interval uncertainties  1 

To assess the effectiveness of the proposed sensitivity analysis method, a published work on 2 

this Ishigami function, namely Ref. (Bi et al. 2019) is utilized herein as a reference to compare 3 

with the results of the current work. In Ref. (Bi et al. 2019), the parameters of the Ishigami 4 

function contain both hybrid probabilistic and interval uncertainties, which are expressed by 5 

the P-box technique. More complex uncertainty characteristics of the parameters are assigned 6 

as presented in Table 4, and correspondingly, the outputs 𝑦𝐼𝑅 are with hybrid stochastic and 7 

interval uncertainties. The P-box of an imprecise uniform distribution can be easily determined, 8 

i.e., the P-box of 𝑝1 is enveloped by the CDFs of 𝑝1~Uሺ−4, 2ሻ and 𝑝1~Uሺ−3, 3ሻ as shown 9 

in Figure 9. The uncertainty of 𝑝1 is controlled by the coefficients of 𝑎1 and 𝑏1 in 错误!未10 

找到引用源。, and the P-boxes of 𝑝2−3 can be determined by the uncertain coefficients of 11 

𝑎2, 𝑏2, 𝜇3, and 𝜎3. A two-level procedure is proposed in Ref. (Bi et al. 2019) to calculate the 12 

P-boxes of outputs according to the input P-boxes. The Bhattacharyya distance is utilized to 13 

measure the discrepancy between the bounded CDF of the output P-box. For comparison, the 14 

proposed ISO is adopted to replace the Bhattacharyya distance for sensitivity analysis15 

 16 

Fig. 9 The P-box of 𝑝1−3 in Ref. (Bi et al. 2019). 17 

Table 4 Uncertainty characteristics of 𝑝1−3 in Ref. (Bi et al. 2019).  18 

Parameters 

 Ref. (Ishigami and 

Homma 1990) 

Parameter probabilistic distribution Uncertain coefficient 

𝑝1 𝑝1~𝑈ሺ𝑎1
𝐼 , 𝑏1ሻ 𝑎1

𝐼 ∈ ሾ−4.0, −3.0ሿ; 𝑏1
𝐼 ∈ ሾ2.0,3.0ሿ 

𝑝2 𝑝2~𝑈ሺ𝑎2
𝐼 , 𝑏2ሻ 𝑎2

𝐼 ∈ ሾ−3.0, −1.0ሿ; 𝑏2
𝐼 ∈ ሾ3.0,5.0ሿ 

𝑝3 𝑝3~𝑈ሺ𝜇3
𝐼 , 𝜎3

2ሻ 𝜇3
𝐼 ∈ ሾ0.0,1.0ሿ; 𝜎3

𝐼 ∈ ሾξ5, ξ2ሿ 

  To calculate the sensitivity of the parameter 𝑝1 , ten levels of interval 𝑎1  and 𝑏1  are 19 

investigated by assigning ten equidistant values within the intervals. The full factorial design 20 

results in 100 configurations of 𝑎1 and 𝑏1, and correspondingly 100 perturbated P-boxes of 21 

𝑝1 are obtained. Then 100 groups of perturbated P-boxes of outputs are simulated according to 22 

100 groups of an interval variable ሼ𝑎1
𝐼 , 𝑏1

𝐼 ሽ𝑗,j=1,..,100, respectively. To compare the uncertain 23 

space to give an explicit sensitivity ranking of 𝑝1−3, the metrics of Bhattacharyya distance and 24 



16 

 

ISO are adopted to quantify the uncertainty space of the output P-box. Figure 10 presents one 1 

of the 100 perturbated P-boxes according to 𝑝1−3 in the form of CDFs, and Figure 11 gives 2 

specific data points of perturbated outputs. The sensitivity rank of parameters is evaluated based 3 

on the difference between the perturbed and original outputs concerning 𝑝1−3. 4 

 5 

Fig. 10 Reduced output stochastic space when epistemic uncertainties of input parameters are 6 

reduced compared with the original P-box, which is calculated according to Ref. (Bi et al. 7 

2019). 8 

 9 

Fig. 11 Reduced output interval space when the epistemic uncertainties of input parameters 10 
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are reduced compared with the original P-box.  1 

Figure 10 illustrates the sensitivity rank rule of Ref. (Bi et al. 2019), where the reduced 2 

uncertainty space of output is measured from the view of CDF. Figure 11 investigates the 3 

variation between the original and perturbed output uncertainty space by applying the interval 4 

concept. It is difficult to rank the parameter sensitivity with manual observation, but it is easy 5 

to directly tell the sensitivity rank through an interval observation mode, as shown in Figs 10-6 

11. Since those uncertain data points are quantified by different uncertainty quantification tools, 7 

the results of sensitivity rank are inconsistent, as shown in Table 5 and Fig.12.  8 

Table 5 Uncertainty characteristics of 𝑝1−3. 9 

Rank 
Results according to different indices 

𝑆መ𝐼𝑆𝑂 𝑆መ𝐵𝐷 in Ref. (Bi et al. 2019) 

1 𝑆መ𝑝3
 𝑆መ𝑝2

 

2 𝑆መ𝑝1
 𝑆መ𝑝1

 

3 𝑆መ𝑝2
 𝑆መ𝑝3

 

 10 

Fig. 12 Sensitivity analysis comparison with respect to the metrics of ISO and Bhattacharyya 11 

distance.  12 

From the point of view of the interval concept, the uncertain output space of 𝑝3 is changed 13 

most obviously compared with the original one, where the subjective judgment consists of the 14 

objective calculation results calculated by ISO. The ranks calculated by ISO differ from that of 15 

Ref. (Bi et al. 2019). This is because the interval is mainly affected by the extreme data points, 16 

while the CDF is calculated according to the dispersion of the datapoints. The sensitivity rank 17 

computed by interval uncertainty quantification of ISO is credible. This is because we mainly 18 

focus on the low-probability tail risk, which occurs when the model outputs are extremely large 19 
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or small in engineering practice. It can be found that the change in data from the probabilistic 1 

point of view cannot imply a significant change in data from the interval point of view.  2 

6.2 Case 2: Satellite FE model 3 

This case of a satellite model is derived from Ref. (Zhang et al, 2019), which is utilized for 4 

model calibration analysis. Here, this model is analyzed to demonstrate the performance of the 5 

ISO metric within the proposed sensitivity analysis. The FE model of the satellite is presented 6 

in Figure 13, and this model consists of the upper platform, the shear platform, the central 7 

panels, and the lower platform.  8 

 9 

Fig. 13 Finite element model of the satellite. 10 

6.2.1 Interval uncertainties propagation 11 

In this satellite FE model, the Elastic modulus of the FE model 𝜃1 is 7.0×1010pa, the density 12 

𝜃2 is 2.7×103kg·m-3, and the thickness of the lower platform 𝜃4 is 1mm. Some parameters of 13 

this FE model are assumed to be interval as given in Table 6. The first two eigenfrequency 14 

intervals 𝑓1
𝐼 and 𝑓2

𝐼 are regarded as the model output features. 15 

Table 6 Satellite parameter table 16 

Parameters Interval centers  Interval radius 

𝜃3
𝐼  The thickness of the central panel 2 (mm) 0.2 (mm) 

𝜃5
𝐼  The thickness of the shear platform 3 (mm) 0.2 (mm) 

𝜃6
𝐼  The thickness of the upper platform 2 (mm) 0.2 (mm) 

Since it is time-consuming to calculate the FE model of the satellite structure, the interval 17 

perturbation method is adopted to estimate the interval outputs efficiently. 10000 Monte Carlo 18 

simulations are conducted to estimate 𝑓1
𝐼 and 𝑓2

𝐼. The results of the two methods are presented 19 

in Fig. 14 and Table 7. It can be found that the bounds calculated by the perturbated method are 20 

consistent with that of MC simulation, demonstrating the accuracy of the interval perturbation 21 

method. Besides, the calculation time of MC simulations is 85960s, while that of the interval 22 

perturbation method is about 240s, as shown in Fig. 15. This illustrates the effectiveness of 23 

interval perturbation method when coping with the problem of interval propagation.  24 
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 1 

Fig. 14 Interval of 𝑓1
𝐼 and 𝑓2

𝐼 calculated by MCS and the interval perturbation method. 2 

Table 7 Interval perturbation method 3 

Parameters MC simulation Interval perturbation method Relative error 

𝑓1
𝐼 [ 18.33,20.94] [18.29, 21.04] [ 0.21%, 0.47%] 

𝑓2
𝐼 [ 18.78, 21.6] [18.74, 21.7] [0.21%, 0.46% ] 

 4 

Fig. 15 Comparison of calculation time between MCS and the interval perturbation method. 5 

6.2.2 Sensitivity analysis of 𝜽𝟑
𝑰 , 𝜽𝟓

𝑰  and 𝜽𝟔
𝑰  6 

A sensitivity analysis is executed for some interval parameters of the 𝜃3
𝐼  , 𝜃5

𝐼   and 𝜃6
𝐼  . 7 

Proportional changes in the interval radius ∆𝜃𝐼= {∆𝜃3
𝐼 , ∆𝜃5

𝐼 , ∆𝜃6
𝐼} generate input intervals with 8 

the perturbed radius of ∆𝜃෢ 𝐼= {∆𝜃෢
3
𝐼 , ∆𝜃෢

5
𝐼 , ∆𝜃෢

6
𝐼}, where the interval centers are completely fixed. 9 

Figure 16 intuitively presents the changed interval inputs, and Table 8 lists the initial parameter 10 

interval 𝜃𝐼 and the perturbed parameter interval 𝜃෠𝐼.  11 
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 1 

Fig. 16 Comparison between initial and perturbed input intervals.  2 

Table 8 The initial and perturbed intervals of 𝜃3
𝐼 , 𝜃5

𝐼  and 𝜃6
𝐼   3 

Parameters 𝜃𝐼 𝜃෠𝐼 
Variation proportion ratio of 

interval radius 

𝜃3
𝐼  [1.8,2.2] [1.9,2.1] 50% 

𝜃5
𝐼  [2.8,3.2] [2.9,3.1] 50% 

𝜃6
𝐼  [1.8,2.2] [1.9,2.1] 50% 

  The initial output intervals 𝑓1
𝐼  and 𝑓2

𝐼  are calculated according to the initial parameters  4 

𝜃3
𝐼  , 𝜃5

𝐼   and 𝜃6
𝐼  . Next, the sensitivity framework in Section 4 is implemented to rank the 5 

sensitivity of input parameters. Three perturbed interval output spaces 𝜃෠𝐼 are listed in Table 9 6 

respective to the parameter perturbed sequentially. The initial and perturbed output intervals of 7 

𝑓1
𝐼 and 𝑓2

𝐼 are shown in Figs. 17 -18, respectively.  8 

Table 9 Sensitivity analysis for 𝜃3
𝐼 , 𝜃5

𝐼  and 𝜃6
𝐼  9 

Parameters Perturbated 𝑓መ𝐼 Initial 𝑓𝐼 𝑆መ𝜃𝑖
 Sensitivity rank 

𝜃෠3
𝐼 , 𝜃5

𝐼 , 𝜃6
𝐼  

𝑓መ1
𝐼 = ሾ18.50,20.83ሿ 

𝑓1
𝐼 

=ሾ18.29,21.04ሿ 

𝑓2
𝐼 

=ሾ18.74,21.70ሿ 

3.004 

𝑆መ𝜃5
> 𝑆መ𝜃3

> 𝑆መ𝜃6
 

𝑓መ2
𝐼 = ሾ18.97,21.47ሿ 

𝜃3
𝐼 , 𝜃෠5

𝐼 , 𝜃6
𝐼  

𝑓መ1
𝐼 = ሾ18.71,20.62ሿ 

3.326 
𝑓መ2

𝐼 = ሾ19.19,21.26ሿ 

𝜃3
𝐼 , 𝜃5

𝐼 , 𝜃෠6
𝐼  

𝑓መ1
𝐼 = ሾ18.35,20.98ሿ 

2.772 
𝑓መ2

𝐼 = ሾ18.81,21.64ሿ 

 10 
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 1 

Fig. 17 Initial and perturbated output intervals of 𝑓1
𝐼 2 

 3 

Fig. 18 Initial and perturbed output intervals of 𝑓2
𝐼.  4 

From Figs. 17-18, we can find that the variations between the initial and perturbed outputs 5 

space of 𝜃෠5
𝐼  are the largest, which reveals the impact of the model input interval parameter 6 

𝜃5
𝐼 , namely the thickness of the shear platform on the model output intervals 𝑓1

𝐼 and 𝑓2
𝐼 is 7 

significant. On the contrary, 𝜃6
𝐼  is the least important parameter. The last column of Table 9 8 

presents the ranking results of the current work, namely 𝜃5 > 𝜃3 > 𝜃6 , according to the 9 

proposed sensitivity index, which is visualized in Fig. 19. The sensitivity ranks imply that the 10 

interval uncertainty of shear platform thickness 𝜃5 significantly impacts the primary model 11 

natural frequencies of the satellite model.  12 
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 1 

Fig. 19 Sensitivity order of 𝜃3
𝐼 , 𝜃5

𝐼 , and 𝜃6
𝐼  2 

6.2.3 Sensitivity analysis for model with multiple parameters and multiple 3 

outputs 4 

In this section, the parameters 𝜃1, 𝜃2,  and 𝜃4  are assumed to be intervals, and the first 5 

eigenfrequency to the eighth eigenfrequency 𝑓1−8
𝐼  are investigated as multiple output features. 6 

The proposed sensitivity analysis is performed for six parameters 𝜃1−6
𝐼  , and the initial and 7 

perturbed intervals of parameters are presented in Table 10.  8 

Table 10 The initial and perturbated intervals of 𝜃1
𝐼 to 𝜃6

𝐼  9 

Parameters 𝜃𝐼 𝜃෠𝐼 
Variation proportion ratio of 

interval radius 

𝜃1
𝐼 [6.8,7.2] [6.9,7.1] 50% 

𝜃2
𝐼  [2.5,2.9] [2.6,2.8] 50% 

𝜃3
𝐼  [1.8,2.2] [1.9,2.1] 50% 

𝜃4
𝐼 [0.8,0.2] [0.9,1.1] 50% 

𝜃5
𝐼  [2.8,3.2] [2.9,3.1] 50% 

𝜃6
𝐼  [1.8,2.2] [1.9,2.1] 50% 

We calculate the sensitivity indexes with respect to each parameter, and finally rank them as 10 

given in Table 11 and Fig 20. 𝜃4
𝐼 , the lower platform of the satellite model, is the most sensitive 11 

parameter among those six interval parameters, and 𝜃6
𝐼  , the thickness of the upper 12 

platform is the most not sensitive parameter. Besides, it should be noted that the rank of 13 

𝜃3
𝐼 , 𝜃5

𝐼 , and 𝜃6
𝐼  in this case is consistent with that in Section 6.2.2, while with the different 14 

sensitivity index value. This is because the dimensions of outputs are increased from 3 to 8. For 15 

multiple outputs, the sensitivity of parameters is not changed in this Satellite FE model, which 16 
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illustrates the stability of the proposed sensitivity analysis method.  1 

Table 11 Sensitivity analysis for 𝜃1−6
𝐼 . 2 

Parameters 𝑆መ𝜃𝑖
with ISO Sensitivity rank 

𝜃1
𝐼 2.844 

𝑆መ𝜃4
> 𝑆መ𝜃2

> 𝑆መ𝜃5
> 𝑆መ𝜃3

> 𝑆መ𝜃1
> 𝑆መ𝜃6

 

𝜃2
𝐼  3.033 

𝜃3
𝐼  2.880 

𝜃4
𝐼 3.206 

𝜃5
𝐼  2.951 

𝜃6
𝐼  2.836 

 3 

Fig. 20 Sensitivity order of 𝜃1−6
𝐼  4 

  Since the proposed method is a local sensitivity analysis method, we can determine the 5 

sensitivity of each output feature of 𝑓1
𝐼 to 𝑓8

𝐼 to each parameter based on the sensitivity index 6 

with ISO. For example, Fig. 21 presents the initial and perturbed intervals of 𝑓1
𝐼  to 𝑓8

𝐼 7 

concerning the most sensitive parameter 𝜃4
𝐼. We can observe that the variations between the 8 

𝑓8
𝐼 and 𝑓መ8

𝐼 cased by the changes of 𝜃4
𝐼 are apparent, and the value of ISO between 𝑓8

𝐼 and 9 

𝑓መ8
𝐼 is 0.3568. Meanwhile, the most stable parameter of 𝜃6

𝐼 , the changes in 𝜃6
𝐼  lead to slight 10 

changes in outputs 𝑓1
𝐼 to 𝑓8

𝐼 as shown in Fig. 22. The proposed method not only can order the 11 

sensitivity of interval parameters but also can measure the changes of each interval output 12 

features. 13 
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 1 

Fig. 21 The variation of 𝑓1
𝐼 to 𝑓8

𝐼 results from the changes of 𝜃4
𝐼 2 

 3 

Fig. 22 The variation of 𝑓1
𝐼 to 𝑓8

𝐼 results from the changes of 𝜃6
𝐼  4 

In order to examine the potential impact of variation proportion ratio of parameter interval 5 

radius on the sensitivity of parameters, the sensitivity ranks for 𝜃1
𝐼 to 𝜃6

𝐼  corresponding to 6 

different variation of the parameter interval radius are shown in Table 12 and Fig. 23. 7 
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Table 12 TSensitivity ranks according to different variation proportion ratio of interval 1 

radius. 2 

Variation proportion ratio 

 of interval radius 
Sensitivity ranks of 𝜃1

𝐼- 𝜃6
𝐼  

10% 𝑆መ𝜃4
> 𝑆መ𝜃2

> 𝑆መ𝜃5
> 𝑆መ𝜃6

> 𝑆መ𝜃3
> 𝑆መ𝜃1

 

20% 𝑆መ𝜃4
> 𝑆መ𝜃5

> 𝑆መ𝜃2
> 𝑆መ𝜃1

> 𝑆መ𝜃3
> 𝑆መ𝜃6

 

30% 𝑆መ𝜃4
> 𝑆መ𝜃2

> 𝑆መ𝜃5
> 𝑆መ𝜃3

> 𝑆መ𝜃1
> 𝑆መ𝜃6

 

40% 𝑆መ𝜃4
> 𝑆መ𝜃5

> 𝑆መ𝜃2
> 𝑆መ𝜃6

> 𝑆መ𝜃3
> 𝑆መ𝜃1

 

50% 𝑆መ𝜃4
> 𝑆መ𝜃2

> 𝑆መ𝜃5
> 𝑆መ𝜃3

> 𝑆መ𝜃1
> 𝑆መ𝜃6

 

60% 𝑆መ𝜃4
> 𝑆መ𝜃5

> 𝑆መ𝜃2
> 𝑆መ𝜃3

> 𝑆መ𝜃1
> 𝑆መ𝜃6

 

 3 

Fig. 23 Sensitivity ranks of 𝜃1
𝐼- 𝜃6

𝐼  correpongding to different variation proportion ratio of 4 

interval radius. 5 
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We can find that as the variation proportion ratio of the interval radius increases from 10% 1 

to 60%, the sensitivity ranks of parameters experience slight changes. Of notable significance 2 

is parameter 𝜃4
𝐼 , which represents the thickness of the lower platform, as it consistently 3 

maintains the first order rank in influencing output features, regardless of the variation of the 4 

parameter interval radius. Conversely, uncertainties surrounding parameter 𝜃6
𝐼 , which denotes 5 

the thickness of the upper platform, have minimal impact on output uncertainty and rank 6 

towards the end of the sensitivity order. Henc, it is recommended to pay more attention to the 7 

thickness of the lower platform, and it may be more beneficial to focus on adjusting and 8 

optimizing parameter 𝜃4
𝐼 in order to achieve desired output results. 9 

7 Conclusion 10 

An exhaustive interval sensitivity analysis method based on the interval perturbation method 11 

and interval similarity operator is developed. In this interval sensitivity analysis framework, 12 

the ISO metric is adopted to quantify the discrepancy between two intervals based on the 13 

interval geometric position and the interval bounds without requiring inner interval samples. 14 

This metric can rank different sensitivity analysis frameworks, e.g. interval sensitivity analysis 15 

and sensitivity analysis with hybrid stochastic and interval uncertainties, which is illustrated by 16 

the tutorial case of the Ishigami function. The interval perturbation method is introduced for 17 

interval uncertainty propagation, which has the advantage of not requiring abundant FE 18 

simulation to estimate precise extreme bounds of interval outputs. It is a significant benefit for 19 

sensitivity analysis in the presence of practical engineering structures. The feasibility and 20 

effectiveness of this proposed interval sensitivity analysis algorithm are verified by two 21 

numerical examples of the classical Ishigami function and the satellite example. Further 22 

development for interval analysis includes the applications for nonlinearity systems, the 23 

consideration of the inner relationship between multi-dimensional outputs, and the hybrid 24 

stochastic and interval uncertainties propagation.  25 
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