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A B S T R A C T   

This paper presents an overview of the theoretic framework of stochastic model updating, 
including critical aspects of model parameterisation, sensitivity analysis, surrogate modelling, 
test-analysis correlation, parameter calibration, etc. Special attention is paid to uncertainty 
analysis, which extends model updating from the deterministic domain to the stochastic domain. 
This extension is significantly promoted by uncertainty quantification metrics, no longer describing 
the model parameters as unknown-but-fixed constants but random variables with uncertain dis-
tributions, i.e. imprecise probabilities. As a result, the stochastic model updating no longer aims at a 
single model prediction with maximum fidelity to a single experiment, but rather a reduced 
uncertainty space of the simulation enveloping the complete scatter of multiple experiment data. 
Quantification of such an imprecise probability requires a dedicated uncertainty propagation 
process to investigate how the uncertainty space of the input is propagated via the model to the 
uncertainty space of the output. The two key aspects, forward uncertainty propagation and in-
verse parameter calibration, along with key techniques such as P-box propagation, statistical 
distance-based metrics, Markov chain Monte Carlo sampling, and Bayesian updating, are elabo-
rated in this tutorial. The overall technical framework is demonstrated by solving the NASA 
Multidisciplinary UQ Challenge 2014, with the purpose of encouraging the readers to reproduce 
the result following this tutorial. The second practical demonstration is performed on a newly 
designed benchmark testbed, where a series of lab-scale aeroplane models are manufactured with 
varying geometry sizes, following pre-defined probabilistic distributions, and tested in terms of 
their natural frequencies and model shapes. Such a measurement database contains naturally not 
only measurement errors but also, more importantly, controllable uncertainties from the pre- 
defined distributions of the structure geometry. Finally, open questions are discussed to fulfil 
the motivation of this tutorial in providing researchers, especially beginners, with further di-
rections on stochastic model updating with uncertainty treatment perspectives.   
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1. Background: Uncertainties, parameters, and categorisation 

Numerical models and their simulations have been recognised to be significant, even irreplaceable, for the complete product life- 
cycle design and maintenance in almost all modern engineering fields. However, the critical role of models raises an equally critical 
problem: How much can we rely on the numerical model regarding the physical system? The fact is, unfortunately, there is always a 
discrepancy between the numerical simulation and the experimental measurement. Such an inevitable discrepancy inspired the 
development of model updating [1,2], since the early 1970 s, to calibrate the parameters or the model itself, such as to tune the model 
simulation toward the experimental measurement. 

Various concepts/terms emphasising the trustfulness of numerical simulation have been developed in the community of compu-
tational mechanics engineering. The development of guidelines for the Verification and Validations (V&V) of Computational Solid 
Mechanics of ASME [3] sought to formalise the process of assessing the credibility of physics-based model simulations through 
dedicated metrics for classifying and quantifying different sources of uncertainties and their impacts on observable outcomes. A 
glossary is provided as follows to clarify and differentiate the various terms and definitions, with the expectation of bringing them 
together into a uniform framework.  

• Model updating, also termed model calibration, is the process of adjusting physical or non-physical parameters in the computational 
model to improve agreement with experimental results.  

• Model verification is the process of determining that a computational model accurately represents the underlying mathematical 
equation and its solution.  

• Model validation is the process of determining the degree to which the model is an accurate representation of dedicated physical 
experiments from the perspective of its intended use.  

• Uncertainty quantification is the process of characterising all uncertainties in the model or experiment and of quantifying their effect 
on the simulation or experimental outputs.  

• Uncertainty propagation is the process of transferring the uncertainty characteristics from the input parameters to the output 
quantify of interest through the numerical model (or a specific pathway among multiple sub-models thereof). 

From the perspective of uncertainty analysis, the discrepancy between models and physical systems is caused by various sources of 
uncertainties, and hence the main task of model updating becomes to investigate, categorise, and finally reduce the uncertainties 
during the modelling and experiment processes. The following three uncertainty sources are typically summarised in literature:  

• Parameter uncertainty: In numerical modelling, the inherent properties of the physical system are imprecisely determined due to 
the lack of knowledge, especially for complex structural systems, novel composites, nonlinear dynamic systems, etc.; 

• Model form uncertainty: the numerical models are developed with inevitable simplifications and approximations, i.e., linear-
isation of non-linear properties, simple elements instead of complex joints, etc.;  

• Experiment uncertainty: although the measurements are regarded as the reference in model updating, they are unfortunately also 
uncertain because of the hard-to-control randomness in experiments, such as environmental noise, system errors, subjective 
judgment, etc. 

The above uncertainties, in both models and experiments, lead to the typical single-simulation-single-test scenario being insuffi-
cient to capture the scattering feature of the simulation and experimental data. It also indicates that the deterministic model updating 
aiming at a single simulation with maximum fidelity to a single test is unnecessary, even misleading [4]. Fig. 1 provides an example of 
the potentially misleading situation when only one test point data and one simulation point data are employed during the deterministic 
model updating. As shown in Fig. 1(a), when the engineer has only these two single points, he would take the direct distance between 
them as his exclusive minimisation objective. However, as more data becomes available in Fig. 1(b), the truth is revealed that the single 
test and simulation points are not necessarily at the centre of the scatters of the simulation and test. The action in Fig. 1(b) just moved 
the simulation scatter even further apart from the test data. If no further validation is performed, such a model, only updated by the 
deterministic process, would lead to critical sequences in its applications. 

In contrast, the stochastic model updating based on the multi-simulation-multi-test scenario requires the model parameters to be 
characterised as not merely unknown-but-fixed constant, but comprehensive characterisations including constants, intervals, precise 
and imprecise probabilities. A maximum fidelity regarding a single test is no longer the objective; on the contrary, stochastic model 
updating seeks to guarantee the robustness of the model while acknowledging the inevitable aleatory uncertainty, and is dedicated to 
reducing the epistemic uncertainty in the modelling and experiment process. The classification of uncertainties as to be epistemic or 
aleatory has been widely accepted. The epistemic uncertainty is led by the lack of knowledge, which is expected to be reduced by 
model updating. The aleatory uncertainty is derived from the inherent randomness of the system, and thus it cannot be reduced, 
whereas an appropriate representation is still required. 

Note that, the uncertainty categorisation (being aleatory or epistemic) should be differentiated from uncertainty sources (from 
parameter, model form, and experiment). All three uncertainty sources are mixtures of both types of uncertainties, although the model 
form uncertainty and experimental uncertainty are dominated by epistemic uncertainty and aleatory uncertainty, respectively. The 
uncertainty in parameters is an equivalent combination of both the aleatory and epistemic uncertainties, since there are both fixed-but- 
unknown constants and random variables to be parameterised in the numerical model. Hence, a suitable parameterisation considering 
the source and type of uncertainty becomes a fundamental step of model updating. Fig. 2 provides a clear logic to perform 
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parameterisation by classifying parameters into four categories according to whether there are epistemic and/or aleatory uncertainties 
involved in the parameters.  

Category I): The parameter with neither epistemic nor aleatory uncertainty is presented as a constant with a fully determined value.  
Category II): The parameter with only epistemic uncertainty is presented as an unknown-but-fixed constant, falling within a pre- 

defined interval.  
Category III): The parameter with only aleatory uncertainty is presented as a random variable with fully determined distribution 

properties, such as distribution format, mean, variance, etc. Such a fully determined distribution is termed as a “precise 
probability”.  

Category IV): The parameter with both epistemic and aleatory uncertainties is presented as a random variable whose distribution 
properties are not fully determined, i.e., the “imprecise probability”. Such an imprecise probability is modelled by the 
so-called Probability-box (P-box), where an infinite number of Cumulative Distribution Function (CDF) curves 
constitute a specific region in the probability space. 

Fig. 2. Categorisation of parameters according to different types of uncertainties.  

Fig. 1. Misleading of single test single simulation scenario during deterministic model updating.  
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The Category I parameters with no uncertainty are clearly an ideal case, which requires no treatment in model updating. The 
deterministic model updating falls exclusively within Category II parameters to determine a specific value within the pre-defined 
interval, such that the single model output would achieve the maximum fidelity regarding the single measurement. In contrast, the 
stochastic model updating is expected to handle all Categories II-IV parameters by reducing the epistemic uncertainty of both Cate-
gories II and IV parameters and appropriately characterising the aleatory uncertainty in Category III parameters. To achieve this 
objective, it is important to perform an appropriate measure of the difference between two uncertain parameters, especially for the 
Category IV parameters. More attention is consequently paid to the development of comprehensive metrics based on various statistical 
measures to capture as much as possible the different forms of uncertainty (epistemic, aleatory) associated with parameters. 

The topic stochastic model updating is a synthetical technology system with key aspects, including sensitivity analysis, test-analysis 
correlation, and parameter calibration, where uncertainty analysis is deeply integrated as a critical role to promote the development of 
model updating from the deterministic domain to the stochastic domain. In sensitivity analysis, the forward uncertainty analysis, i.e. 
the uncertainty propagation, is important to determine how the uncertainty of the input parameters influences the uncertainty of the 
model predictions. In test-analysis correlation and parameter calibration, the inverse uncertainty analysis, i.e. the Uncertainty 
Quantification (UQ), is required to provide a quantitative measure of the discrepancy between model simulations and test mea-
surements, such that both Category II and Category IV parameters in Fig. 2 can be quantified and calibrated. 

Having the background of uncertainty sources, types, parameterisation, and categorisation introduced, the remaining part of this 
tutorial is organised as follows. A simple state-of-the-art of model updating is provided in Sec. 2 with emphasis on the development 
from the deterministic perspective to the stochastic perspective. An overall procedure for the stochastic model updating, as well as its 
key component, is elaborated in Sec. 3. Sec. 4 explains the key techniques for uncertainty propagation and parameter calibration, 
including double-loop P-box propagation, statistical distance-based UQ metrics, and Markov chain Monte Carlo Bayesian updating. 
Sec. 5 provides a step-by-step demonstration of the mentioned techniques by solving the NASA Langley Multidisciplinary UQ Chal-
lenge. Sec. 6 introduces a newly designed benchmark testbed, from which a measurement dataset with both experiment uncertainty 
and controllable parameter uncertainty is presented. Such a testbed and its measurement dataset would be an ideal case study to verify 
up-to-date uncertainty treatment techniques. Open questions and further perspectives on the stochastic model updating and uncer-
tainty treatment are discussed in Sec. 7 to inspire further studies in this field. 

2. A simple review: From deterministic to stochastic approaches 

This section provides a simple state-of-the-art of model updating with representative literature for each key aspect or technique, 
such that the readers, especially the beginners, could draw a quick understanding of this topic emphasising the pathway from 
deterministic to stochastic developments. 

A comprehensive review of model updating in structural dynamics, from a deterministic perspective, is provided by Mottershead 
and Friswell [1], who subsequently published the initial and fundamental monograph [5] on this topic covering the key aspects, e.g. 
model preparation, vibration experiment, sensitivity analysis, error localisation, parameter calibration, etc. Among the plentiful 
techniques for parameter calibration, the sensitivity-based method is one of the most popular approaches based on the linearisation of 
the generally nonlinear relation between the model parameters and structural dynamic features. Mottershead et al. [6] provide a 
tutorial literature for the sensitivity-based updating approach of finite element models with both demonstrative and industry-scale 
applications. The sensitivity-based approach is valid for typical modal features, e.g. natural frequencies and mode shapes, whose 
sensitivity can be theoretically derived from the stiffness and mass. These theoretical derivations become impractical for modern 
structural engineering where strong nonlinear dynamics or transient analysis are presented with large-scale structure systems. 

Instead of the theoretical solutions of sensitivity, the numerical simulation approach, more specifically the Monte Carlo method, 
attracts more interest by providing a direct connection between the model parameters and any output features via multiple deter-
ministic model evaluations. More importantly, the random sampling process has the natural adaptation with uncertainty analysis, 
because the samples are always obtained from probabilistic hypothesis [7]. This tendency is further promoted by the significant 
development of the computational technique, which makes it possible for large-size sampling, from which the statistical information of 
the variables is precisely estimated [8]. The advanced or efficient Monte Carlo based methods have been successfully applied in large 
scale structures, see e.g. Refs. [4,9]. 

In the first decades of this century, stochastic model updating has been developed into two genres: the frequentist and Bayesian 
approaches. The frequentist approach focuses on optimisation techniques to minimize the discrepancy between the existing mea-
surements and the model simulations. In a stochastic sense, the minimizing object is, of course, not only the mean of the data, but also 
some frequentist properties, such as the distribution coefficients [8] and covariance [10]. For the Bayesian genre, Beck and Katafy-
giotis [11] proposed the fundamental framework of Bayesian updating, which was further developed via the Markov chain Monte 
Carlo (MCMC) sampling by Beck and Au [12]. Since it derives the posterior distribution of the calibrating parameters to estimate their 
actual values, the Bayesian approach naturally involves uncertainty treatment in the updating. It also has the superiority to capture 
uncertainty information in the presence of very rare measurement data. As a result, the Bayesian approach has been adopted as one of 
the most popular techniques in stochastic model updating. For example, in both editions of the NASA Langley UQ Challenge 2014 [13] 
and 2021 [14], the Bayesian updating with MCMC algorithm was adopted by most of the responding groups, e.g. Refs [15–17] to solve 
this problem. Comparisons between the sensitivity-based, frequentist, and Bayesian approaches can be found in Refs. [18,19]. 

In addition to the frequentist and Bayesian methodologies, recent developed imprecise probability techniques also have consid-
erable potential to be applied in stochastic model updating, such as interval probabilities [20], evidence theory [21], info-gap theory 
[22], and fuzzy probabilities [23]. For the background of imprecise probability, the comprehensive review by Beer et al. [24] is 
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suggested for an overall understanding of this topic. A comprehensive review of the non-probabilistic approaches, especially the in-
terval and fuzzy techniques are provided by Ref. [20]. Note that, regardless of which approach is adopted for uncertainty modelling 
and quantification, in the context of model updating, it is always critical to propose a suitable calibration metric to quantitatively 
measure the discrepancy between the model simulation and experimental measurement. Such a calibration metric, also known as the 
UQ metric, plays an important role in constructing the objective function in frequentist updating and the likelihood function in 
Bayesian updating. Pioneering work on this issue can be found in Refs. [25,26] where the statistical distance-based metrics, i.e. the 
Mahalanobis distance and Bhattacharyya distance, are introduced in stochastic model updating. 

3. Stochastic model updating methodology 

This section provides an overview of the complete methodology for stochastic model updating as illustrated in Fig. 3. The pro-
cedure, starting from the initial numerical model and the experimental setup, contains key steps such as feature definition, model 
parameterisation, surrogate modelling, parameter calibration, and model validation. The final outcome is the validated model ac-
cording to multiple experimental measurements. Differing from the deterministic procedure, the objective herein is no longer a 
determined simulation with maximum fidelity regarding single test data, but calibrated probability properties of uncertain parameters 
which can represent the dispersion feature of the existing experimental measurements, i.e., a set of numerical predictions enveloping 
the existing experimental uncertainty. 

From the perspective of uncertainty treatment, the presented technique route is committed to reducing the epistemic uncertainty, 
while an appropriate representation of the aleatory uncertainty is also required. Considering the three sources of uncertainties as 
described in Sec. 1, this technique route is designed to handle all three sources by 1) presenting the experiment uncertainty in multiple 
sets of measurement data; 2) parameterising the model form uncertainty and quantifying it together with 3) the parameter uncertainty 
in the mixture form of interval, distribution, and P-box (recall Fig. 2). In Fig. 3, the components surrounded by the light-yellow box 
within the dashed line are the ones different from the deterministic updating and require an additional extension for uncertainty 
treatment. The selected key steps are explained in the following subsections. 

3.1. Feature definition 

The output “feature” is defined as the quantity of interest that the engineer wants to predict from the numerical model. Different 
features clearly have different formats (e.g. scalar, vector, time-/frequency-domain sequence, and random process) with different 
uncertainty properties, and thus require different quantification and calibration methods. The different features also have different 
sensitivities according to the input parameters, leading to different results of the sensitivity analysis and different parameters to be 
calibrated in the following procedure. It is thus the first step of model updating to define suitable features based on practical 

Fig. 3. Stochastic model updating methodology with uncertainty treatment.  
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requirements and the capacity of the experimental setup. 
The most typical features in structural dynamics updating are the modal quantities, i.e., the natural frequencies and mode shapes. 

The absolute mean error is simply utilised to quantify the discrepancy between the simulated and experimental natural frequencies. 
And for mode shapes, the Modal Assurance Criterion (MAC) [27] is a typical tool to measure the correlation between the simulated and 
experimental eigenvectors. Besides the discrete modal quantities, it is common to encounter continuous quantities such as time domain 
system responses or the Frequency Response Function (FRF). Typical techniques to deal with these continuous quantities are to dis-
cretise the time-/frequency-domain curve into multiple feature values at key time/frequency points. And the so-called Signature 
Assurance Criterion (SAC) and Cross Signature Scale Factor (CSF) are calculated based on a similar principle of MAC. Ref. [28] presents 
an integrated application of SAC and CSF for a comprehensive comparison between two FRFs. 

3.2. Parameterisation and sensitivity analysis 

Parameterisation refers to the first definition and extraction of the input parameters from the numerical model. Always performed 
based on engineering judgement, the parameterisation results in a large number of parameters which could be uncertain or significant 
to the model output. Subsequently, the sensitivity analysis has been developed as a typical technique to measure the significance of 
input parameters with respect to the output features, thus aiding the selection of key parameters to be calibrated in the next step. The 
classical, also deterministic, technique is the Sobol’s variance-based method [29]. For a comprehensive knowledge of the global 
sensitivity analysis inspired by Sobol’s method, the well-written book by Saltelli et al. [30] is suggested to the readers. 

When multiple categories of uncertain parameters (as shown in Fig. 2) are presented in a single problem, it is necessary to extend 
the sensitivity analysis from the deterministic perspective to the stochastic perspective. The uncertain parameters raise a question 
which cannot be addressed by the deterministic sensitivity analysis: Considering a parameter which is concluded to be insensitive 
based on its perturbation through the deterministic sensitivity analysis, what would happen if the parameter were found to be 
extremely uncertain? If its uncertainty boundary is clearly larger than the determined perturbation used in the deterministic analysis, 
how is one to measure its sensitivity in the presence of epistemic and aleatory uncertainties? The stochastic sensitivity analysis is 
committed to answering such a question - by ascertaining to what extent the uncertainty space of the features can be reduced, when the 
epistemic uncertainty space of the parameters is completely reduced. This requires additional techniques to propagate the uncertainty 
space from the input parameters to the output features, which will be addressed in Sec. 4 using the double-loop uncertainty propa-
gation technique. 

3.3. Surrogate modelling 

A surrogate model is a fast-running script between the selected parameters (in Sec. 3.2) and the defined features (in Sec. 3.1), which 
is utilised to replace the time-consuming numerical model, e.g. a sophisticated finite element model. The surrogate model is especially 
useful for the sampling-based stochastic approach, where a large number of model evaluations are required for uncertainty propa-
gation and quantification. There are numerous formats of surrogate models, including the polynomial function, radial basis function, 
support vector machine, Kriging function, and neural network, etc. The selection of a suitable surrogate model format is determined 
according to its efficiency, generality, and nonlinearity. Regardless of the selected model format, a certain number of training samples 
are always required to train the surrogate model. Since the surrogate model is expected to balance the trade-off between efficiency and 
precision, the size of training samples is expected to be as small as possible, while the precision of the surrogate model should be high 
enough. A suitable set of training samples is available through another related technique, i.e. the Design of Experiment (DoE), with the 
aim to efficiently and uniformly configure a spatial distribution of the samples within the complete parameter space. A comprehensive 
review of the existing techniques of surrogate modelling and DoE can be found in Ref. [31]. 

3.4. Parameter calibration 

The parameter calibration, the core of model updating, is essentially an inverse procedure taking the discrepancy between the 
simulated and measured output features as a reference, and focusing on the principle and technique about how to calibrate the input 
parameters. To describe this task as an optimisation problem, the output discrepancy is employed to construct the objective function, 
which will be minimised by searching suitable values of parameters with their epistemic space as the optimisation constraint. Another 
calibration strategy is the Bayesian updating where the prior distribution of the parameters is expected to be updated with respect to 
the likelihood function of the existing measurements, and the updated posterior distribution is obtained with reduced epistemic 
uncertainty. Comparison studies between the sensitivity-based optimisation approach and the Bayesian approach are presented in 
Refs. [18,19] where both approaches are applied in a Benchmark model updating problem, i.e. the GARTEUR SM-AG19 (also known as 
AIRMOD) structure [32]. 

Nevertheless, either in the optimisation or the Bayesian process, the Test-Analysis Correlation (TAC) is important, not only because 
it significantly influences the calibration outcome, but also because it is the part mostly extended due to uncertainty treatment. TAC is 
the step to quantitatively measure the agreement (or lack thereof) between simulations and measurements, taking uncertainties into 
account. It, therefore, requires a comprehensive metric which can capture multiple uncertainty sources simultaneously. Some recently 
developed UQ metrics are based on statistical distances. A comprehensive comparison among the Euclidian, Mahalanobis, and 
Bhattacharyya distances in model updating and validation can be found in Ref. [25], where the Bhattacharyya distance is found to be 
more comprehensive to capture more sources of uncertainties. In this paper, special emphasis is paid to the novel UQ metric based on 
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the Bhattacharyya distance, whose performance in parameter calibration will be demonstrated in the example section. 

3.5. Model validation 

Model validation is an essential step to assess the predictive ability of the model before it can be practically utilised. A series of 
validation criteria with increasing requirements are provided in Ref. [6]:  

• As the most basic criterion, the model should predict the existing measurements used for parameter calibration;  
• The model should predict an independent set of measurements which is different from the ones used for parameter calibration;  
• The model should predict the practical modification of the physical system by making the same modification on the model;  
• The calibrated model, when utilised as a component of an assembly, should improve the prediction of the assembly model of the 

complete system. 

Since model form uncertainty is inevitable for any numerical model, no matter how sophisticated it is, it is not rare to find the 
calibrated model cannot fulfil the above criteria. In another situation, the calibrated model can fulfil the criteria. However, the 
calibrated values of its parameters are found to be unphysical or out of the pre-defined boundaries. This is because the modelling 
uncertainty is so severe that it cannot be compensated by calibrating the parameters within their physical ranges. In this case, the 
numerical model must be adjusted to reduce the modelling uncertainty by, e.g., increasing the mesh resolution, using 3D elements to 
replace 2D elements, etc. A new round of parameter calibration is required for the new model until it fulfils the above criteria without 
unphysical parameter values. 

4. Key techniques of forward uncertainty propagation and inverse parameter calibration 

Throughout the model-updating process, key aspects such as sensitivity analysis, parameter calibration, and Test-Analysis Cor-
relation are all influenced by whether or not the uncertainty can be comprehensively and efficiently quantified and propagated. This 
section is consequently focusing on three key techniques ensuring uncertainty treatment can be firmly implemented in the process, i.e. 
the double-loop P-box propagation, statistical distance-based UQ metrics, and Markov chain Monte Carlo (MCMC) Bayesian updating. 

4.1. Double-loop P-box propagation 

In the presence of multiple parameter categories, as shown in Fig. 2, it is a critical but complex task to investigate how the un-
certainty properties are propagated from the input parameters to the output features through the model. As illustrated in Fig. 4, a 
double-loop framework employing both Monte Carlo simulation and optimisation processes are proposed, where the aleatory un-
certainty is handled by the Monte Carlo simulation and the epistemic uncertainty is handled by the optimisation, in the outer and inner 
loop, respectively. Such a double-loop process is capable of decoupling the aleatory uncertainty and epistemic uncertainty in a clear 
logic. 

The four categories of parameters, termed as p1− 4, have four different formats of Cumulative Distribution Functions (CDFs) as 
shown in the right part of Fig. 4. In the outer-loop, the Monte Carlo simulation is performed along the vertical axis of the four CDFs 
within the probability range [0, 1]. The randomly sampled probability value α corresponds to different objects on the horizontal axis, 
termed as random sets in the context, for different categories of parameters:  

Category I: Different α values result in a fixed constant p*;  

Category II: Different α values result in a fixed interval 
[

p ,p
]

; 

Fig. 4. Double-loop procedure for uncertainty propagation in the form of P-box.  
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Category III: Different α values result in a scalar with changing position p*(α);  

Category IV: Different α values result in an interval with changing bounds 
[

p (α),p(α)
]

. 

The above random sets are utilised in the inner loop as the constraint of the optimisation problem, where the minimum and 
maximum of the output features are found through a constrained optimisation: 

Find two sets of input parameters P(min) and P(max), respectively, minimising and maximising the output feature x 

min
p
{x = h(P)}

max
p

{x = h(P)} (1)  

with the constraints 

p(α1)
1 = p*

p(α2)
2 ∈

[

p , p
]

p(α3)
3 = p*(α3)

p(α4)
4 ∈

[

p (α4), p(α4)

]

(2)  

where h(P) is the numerical model through which the uncertainty propagation is performed. It can be a sophisticated Finite Element 
(FE) model, or a much faster surrogate model as explained in Sec. 3.3. 

For a certain number of Monte Carlo samples in the outer loop, the same number of optimisations are executed to generate the 
minimum and maximum sample pairs of the feature x. The CDFs of the minimum and maximum samples are estimated as the upper and 
lower bounds of the P-box in the right side of Fig. 4. This double-loop approach provides a clear logic for uncertainty propagation, and 
the precision can be very high when the number of Monte Carlo samples is large enough. This approach therefore has the potential to 
be employed as a standard method producing benchmark result that may be used to assess the feasibility of other approximate methods 
of uncertainty propagation. A large number of optimisations may raise the calculation cost. However, Ref. [33] has demonstrated that 
the overall calculation cost of the approach is acceptable since each single optimisation is performed on a very narrow interval and thus 
can be solved very quickly. This very narrow interval is driven by the random α value, which truncates only a small part of the original 
range of the Category IV parameter as shown in Fig. 4. 

Another treatment that can significantly reduce the calculation time is parallel computing. The multiple optimisations in the inner 
loop are independent because the aleatory uncertainty value α is randomly sampled from the outer loop. Such a characteristic makes it 
immediately suitable for parallel computing. It will be shown in the case study section that the calculation time of the double-loop 
procedure is acceptable on a standard desktop computer. 

Considering the objective of stochastic sensitivity analysis, the explicit task as explained in Sec. 3.2 is to quantify how much the 
uncertainty properties of output can be changed, when the epistemic uncertainty of input parameter is reduced. As shown in the left 
part of Fig. 4, the ideally complete reduction of epistemic uncertainty of Categories II and IV parameters implies their P-boxes are 
compressed to single curves. Such compression of the input parameter P-boxes clearly leads to compression of the output feature P-box. 
How much the compression occurs to the feature P-box becomes the sensitivity index of the input parameter uncertainty. 

4.2. Statistic distance-based UQ metrics 

Although providing a visual representation, the P-box itself is not a quantitative index. It is therefore necessary to develop metrics 

Fig. 5. Sketch of three statistical distances.  

S. Bi et al.                                                                                                                                                                                                               



Mechanical Systems and Signal Processing 204 (2023) 110784

9

to measure the size of the P-box. Not only being useful in sensitivity analysis, but these metrics should also play key roles in the inverse 
parameter calibration by measuring the discrepancy between the model prediction and measurement data. Since the P-box is a region 
surrounded by two CDF curves, it is natural to quantify this region by comparing the difference between these two CDFs, i.e., two 
distributions. Hence, various statistical distances are proposed on this occasion, as sketched in Fig. 5. 

The Euclidian distance, i.e., the absolute geometry distance between two single points, is probably the most common metric used in 
deterministic model updating. In the presence of multiple samples of the numerical and measured outputs, a common treatment is to 
measure the Euclidian distance between the centre points of the two sample sets (i.e. mean value of the random samples): 

dE
(
Yexp,Ysim

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Yexp − Ysim)(Yexp − Ysim

)T
√

(3)  

where Yexp and Ysim are the measured and simulated feature samples, respectively. The Euclidian distance becomes insufficient for 
stochastic model updating because the dispersion properties are completely ignored in Eq. (3). 

The Mahalanobis distance is a weighted Euclidian distance, where the covariance matrix is employed as the weighting coefficient, 
expressed as 

dM
(
Yexp,Ysim

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Yexp − Ysim

)
C− 1(Yexp − Ysim

)T
√

(4)  

where C is the “pooled” covariance matrix of both the simulation and measurement samples. It is defined as [25] 

C =
(m − 1)Csim + (n − 1)Cexp

m + n − 2
(5)  

where m and n are the numbers of simulated and measured samples, respectively. Csim and Cexp are the covariance matrices of the 
simulated and measured samples. Although the covariance information is considered, it turns out that the Mahalanobis distance is not 
a suitable metric for parameter calibration. The reason is that, from Eqs. (4) and (5), sample sets with large covariances would always 
lead to a small Mahalanobis distance. When it is employed as a calibration metric, the model updating algorithm tends to enlarge the 
variance so as to reach a minimised distance. Nevertheless, the Mahalanobis distance can be used as a validation metric to assess 
whether or not the updated samples are consistent with an independent set of reference data. 

The Bhattacharyya distance is a statistical distance measuring the overlap between two random distributions with the expression as 

dB
(
Yexp, Ysim

)
= − log

[∫

y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pexp(y)Psim(y
)√

dy
]

(6)  

where Pexp and Psim are the Probability Density Functions (PDFs) of the measured and simulated variables, respectively. Clearly the 
Bhattacharyya distance is more comprehensive for uncertainty quantification, since the complete distribution information is involved. 
However, the explicit PDF is not always available in practical applications due to the limited data from experiments. It is therefore 
suggested to utilize the Probability Mass Function (PMF) of a discrete distribution to replace the PDF in Eq. (6). The PMF can be 
obtained by estimating the discrete distribution based on the available measurement samples via the so-called Binning Algorithm [26]. 
This is a technique to achieve the balance between the limitation of existing measurements and the high requirement of uncertainty 
information. For theoretical completeness, the Binning Algorithm is simply recalled here as a similar procedure to plot a histogram of 
random samples. The first step is to determine a public range containing all samples of both Yexp and Ysim. In the second step, it is 
important to select a suitable number of bins nbin based on the number of samples in Yexp and Ysim, and the edge of the bins, i.e. the grid, 
is subsequently determined by uniformly cutting the public range into nbin parts. The next step is to count how many samples falling 
within each bin, and the PMFs of Yexp and Ysim are obtained, respectively. Note that, when multiple dimensional features are 
considered, say m dimensions, the PMF is actually a m-dimensional table. The number of bins for each single dimension is nbin, and thus 
the total number of bins in the PMF table is nm

bin. As a result, the Bhattacharyya distance, between two m-dimensional PMFs, is 
calculated as 

dB
(
Yexp, Ysim

)
= − log

[
∑nbin

im

⋯
∑nbin

i1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

pexp
(
bi1 ,i2 ,⋯,im

)
psim

(
bi1 ,i2 ,⋯,im

)√
]

(7)  

where p
(
bi1 , i2 , …, im

)
is the PMF value of the bin bi1 ,i2 ,⋯,im . Clearly, when m is large, Eq. (5) requires a huge memory storage, which 

delays the calculation speed. As explained in Sec. 3.1, the techniques of feature definition are always employed in practical appli-
cations to extract a single quantity of interest from multiple features. Also, the margin PDM of a specific variable from the whole 
feature space is always employed in practical applications. The practical example in Sec. 6 will demonstrate the selection of different 
margin distributions to configure a feasible Bhattacharyya distance-based calibration metric. The Bhattacharyya distance for a one- 
dimensional PDM is much simplified from Eq. (7) to 

dB
(
Yexp, Ysim

)
= − log

[
∑nbin

i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

pexp(bi)psim(bi)

√
]

(8) 
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The pre-defined nbin has significant influence on the calculated distance value. A larger nbin leads a larger value of the distance. 
Considering the extreme case, on the one hand when nbin = 1, all samples would always fall into the single bin, and thus the Bhat-
tacharyya distance value would be zero for any random samples. On the other hand, when nbin is large enough, there would be no 
sample from Yexp and Ysim falling within a public bin of the PMFs, leading the Bhattacharyya distance to be infinite. A general principle 
to determine nbin is to select a value making the distance to be sensitive with regard to any change of the investigated samples. Although 
this value is generally case-dependent, an estimation of nbin is suggested as 

nbin ≅ max
(
nexp, nsim

)/
5 (9)  

4.3. Bayesian updating with Markov chain Monte Carlo algorithm 

The Bayesian updating strategy has a natural connection with uncertainty treatment because it starts from the prior distribution 
with incomplete knowledge (i.e. epistemic uncertainty), with the aid of the additional observation data, and endeavours to reduce the 
epistemic uncertainty such as to obtain the posterior distribution of the quantity to be estimated. The Bayesian updating is based on the 
Bayes’ Theorem 

P
(
θ|Yexp

)
=

PL
(
Yexp|θ

)
P(θ)

P
(
Yexp

) (10)  

with the key elements described as follows.  

• P(θ) is the prior distribution of the calibrating quantity θ. Note that, the calibrating quantity θ is not necessarily the model 
parameter p itself. In most cases of stochastic model updating, θ is the distribution coefficient of the parameters, e.g., mean, 
variance, correlation coefficient, etc.  

• P
(
θ|Yexp

)
is the posterior distribution of θ. It is essentially a conditional probability distribution with additional knowledge 

extracted from the experimental measurements, Yexp.  
• PL

(
Yexp|θ

)
is the likelihood function, i.e., the probability of the existing measurements, Yexp, conditional to an instance of the 

calibrating quantity θ;  
• P(Yexp) is the evidence, also known as the “normalisation factor“, guaranteeing the integration of the posterior distribution 

P
(
θ|Yexp

)
equal to one. 

The complete implementation of Bayesian updating relies on two key aspects: 1) the definition of the likelihood function and 2) the 
procedure to update the posterior distribution with the MCMC algorithm. 

4.3.1. Definition of the likelihood function 
The likelihood function, PL

(
Yexp|θ

)
, is important because not only is it the criterion of sample selection for each Markov chain 

within the MCMC algorithm (explained in the following subsection), but also, more importantly, it contains information on both the 
existing measurement and the parameters to be calibrated. The different definitions of the likelihood with varying levels of uncertainty 
information involved determine whether the overall model updating is a stochastic or a deterministic procedure. In the presence of 
multiple and independent measurements, supposing the number is nexp, the complete likelihood of such multiple measurements is 
calculated as 

PL
(
Yexp|θ

)
=

∏nexp

k=1
P(yk|θ) (11) 

Eq. (11) requires the explicit distribution of each measurement, P(yk|θ), whose precise estimation requires a large number of 
random samples, i.e. a large number of model evaluations. What’s more, this random sampling process for each P(yk|θ) needs to be 
repeated for nexp times, because of the involvement of multiple sets of experimental data. To reduce the calculation burden, it is 
important to propose an approximate likelihood, as long as it still contains two aspects of information: 1) the discrepancy between 
measurements and simulation; and 2) the parameters to be calibrated. Ref. [26] proposes the approximate likelihood function 
embedding the difference between the model simulations and the experimental measurements: 

PL
(
Yexp|θ

)
∝exp

{

−
d
(
Yexp,Ysim

)2

σ2

}

(12)  

where d(Yexp,Ysim) is the distance-based UQ metrics defined in Sec. 4.2. No longer requiring the explicit PDFs, Eq. (12) clearly has 
much reduced calculation cost. More importantly, it provides a convenient connection between the Bayesian updating framework and 
the UQ metrics. No matter the Euclidian, Mahalanobis, or Bhattacharyya distance is employed as UQ metric, there is no need to change 
the uniform Bayesian updating framework, nor the following MCMC algorithm. However, the parameter calibration result can be 
significantly different, when different distance-based UQ metrics are employed, as it can be demonstrated in the following tutorial 
example. 

S. Bi et al.                                                                                                                                                                                                               



Mechanical Systems and Signal Processing 204 (2023) 110784

11

The coefficient σ in Eq. (12) is the pre-defined standard deviation of the likelihood function, which is used to control the cen-
tralisation degree of the posterior distribution. The practical effect of σ in the MCMC sampling process is that it determines the 
“searching width” of each iteration. In most cases, a small σ is desired because it results in a peaked posterior distribution which is more 
likely to indicate the explicit estimation result. But a too small a σ could lead to searching over a very narrow space and the whole 
MCMC procedure would require more iterations and possibly a trap in a local region. A practical suggested range of σ is given as [10− 3,

10− 1]. It is suggested to adjust this according to the mean of the distance-based metrics. 

4.3.2. Updating of the posterior distribution with MCMC algorithm 
Recall the Bayesian Theorem in Eq. (10), in order to obtain the posterior distribution, the normalisation factor P(Xexp) should be 

evaluated, using the following theoretical definition: 

P
(
Xexp

)
=

∫

PL
(
Yexp|θ

)
P(θ)dθ (13) 

However, this is prohibitive in practical applications, since it requires the direct integration on the explicit distribution of the 
likelihood, which is generally unavailable. The normalisation factor is therefore one of the difficulties of Bayesian updating, especially 
for high-dimensional distribution with complex distribution format. As an alternative, the well-known MCMC algorithm is used here to 
avoid direct integration of Eq. (13). The most common version of MCMC in model updating is the so-called Transitional MCMC 
(TMCMC) proposed in Ref. [34]. Not directly targeting the final posterior distribution, it suggests an iterative sampling procedure 
taking a series of intermediate PDFs as target in each of the iteration steps, where the PDF in the final step converges to the posterior 
PDF. The principle of TMCMC algorithm is expressed as 

P(j)(θ) = PL
(
Yexp|θ

)βj P(θ) (14)  

where βj is the weighting power falling within the range [0, 1], and monotonically increasing following the iterations. In the 1st 

iteration step when β1 = 0, P(1)(θ) is actually the prior distribution. Supposing totally n iterations are executed before convergency, 
when βn = 1 in the last step, P(n)(θ) equals to the multiplication between the likelihood and the prior distribution, which results in the 
final posterior distribution. Such treatment is especially useful when the target posterior distribution is multimodal or highly-peaked, 
and causes the target distribution to be reached by single direct MCMC sampling. 

A sketch flow of the TMCMC logic is illustrated in Fig. 6. The TMCMC algorithm consists of single MCMC in each iteration step, to 
generate Markov chains starting from each existing samples derived from the intermediate PDF in the previous iteration. The candidate 
chains (i.e., samples) are accepted or rejected according to the Metropolis-Hastings (MH) criterion. 

A simple summary of the MH algorithm is given as follows. It employs a “proposal distribution” to generate the candidate samples 

θ*. Considering in the (j)-th iteration, the proposal distribution q
(

θ*|θ(j)
)

is defined as a joint normal distribution taking the previous 

Fig. 6. Flow of the TMCMC process with intermediate PDFs and MH criterion.  
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sample θ(j) as the mean value: 

θ* ∼ q
(
θ*⃒⃒θ(j) ) = N

(
θ(j),Σ

)
(15)  

where the covariance matrix Σ controls the searching width of the proposal distribution. Σ is adaptively determined according to the 
total number of samples Nsam and their mean θ in this iteration. An empirical equation to determine the Σ is given by the original paper 
[34] 

Σ = γ2
∑Nsam

i=1
ŵ(θi) •

[
{θi − θ} × {θi − θ}T ] (16) 

Eq. (16) involves a weighting function ŵ(θi) of each sample θi and a scaling coefficient γ whose optimal value is determined to be 
0.2 in the original paper. Without going into the very detail, calculation of ŵ(θi) is omitted here, the readers are suggested to refer to 
Ref. [34]. 

After the candidate sample θ* is obtained from Eq. (15), the main task of MH algorithm is to determine whether to accept θ* or reject 
it. The criteria α and u are defined using the likelihood P(Yexp

⃒
⃒θ) and standard uniform distribution, respectively 

α = min

[
P
(
Yexp

⃒
⃒θ*)

P
(
Yexp

⃒
⃒θ(j) ), 1

]

u ∼ Uniform(0, 1)
(17) 

The candidate sample θ* is accepted/rejected by the following logic 

θ(j+1) =

{
θ*,α ≥ u
θ(j),α < u

(18) 

A simple understanding of the above logic is that, when the likelihood of the candidate sample is larger than that of the current 
sample, the candidate sample is accepted; when its likelihood is smaller than the current sample, however, it is not immediately 
rejected. An additional chance is given to the candidate sample if the ratio between the likelihoods of the candidate sample and the 
current sample is larger than the random value u. Such a logic ensures that the MCMC sampling converges towards the target region 
and simultaneously does not overlook any possible regions in the whole searching space. 

After the MH selection is implemented on all Nsam candidate samples, the (j)-th iteration is finished and Nsam new samples are 
transmitted to the next iteration. The entire TMCMC process requires each iteration step to first calculation the increment of the 

weighting power Δβj. The optimal way to determine Δβj is to keep the Coefficient of Variance (CoV) of the data set P
(

D|θ(j)i

)Δβj 
as close 

as possible to 100%. If there are Nsam number of samples in the (j)-th iteration (θ(j)1 ,θ(j)2 ,⋯,θ(j)Nsam
), then the corresponding CoV of the 

likelihood data set is 

COV =
σ
{

P(D|θi)
Δβj

}

μ
{

P(D|θi)
Δβj

} = 100% (19) 

The optimal value of Δβj is obtained as the root of the following equation 

f
(
Δβj

)
= σ

{
exp

(
P(D|θi) • Δβj

) }
− μ

{
exp

(
P(D|θi) • Δβj

) }
(20) 

The iterative process terminates when βj+1 = βj + Δβj ≥ 1. The TMCMC pseudocode describing the main steps and iterative logic is 
presented in Algorithm 1.  

Algorithm 1: TMCMC Iterative Sampling 

Set iteration index j = 1 and βj = 0 

Take Nsam initial samples from prior distribution: θ =
[
θ(1)1 , θ(1)2 ,⋯, θ(1)Nsam

]
∼ P(θ)

while βj < 1 do 
Set j = j + 1 
Compute optimal Δβj based on the Nsam samples using Eq. (20) 

Compute Pj: Pj∝PL
(
Yexp|θ

)βj • P(θ)
Resample with weighted probability θj ∼ ŵ(θi)

Generate single Markov chain from each sample 
for i = 1 : Nsam 

Sample candidate from proposal distribution: θ* ∼ q(θ*
i
⃒
⃒θi)

Accept or reject θ*
i following the Metropolis-Hastings algorithm 

end for 
end while  
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5. Tutorial example of the NASA UQ Challenge 2014 

The NASA UQ Challenge 2014 [13] is an interdisciplinary competition problem launched by the NASA Langley Research Center. 
The challenge problem is developed based on an aerodynamics control experiment of a laboratory-scale aircraft model. Although 
deriving from a discipline-specific application, this problem is extracted as a discipline-independent system with the core aerodynamic 
control process structured as a black-box model. This problem is hence investigated by different parties with multiple results released 
and compared, e.g., in Refs. [15,26,35]. This section aims at demonstrating the key techniques for forward uncertainty propagation 
and inverse parameter calibration by solving the relevant tasks in the NASA UQ Challenge problem. Readers are encouraged to 
reproduce the results following this tutorial example and compare it with other published results in the literature. 

5.1. Problem description 

The complete NASA UQ Challenge 2014 contains multiple subproblems of uncertainty characterisation, sensitivity analysis, reli-
ability analysis, robust design, etc. This example is not aiming to solve the whole problem, but focusing on two subtasks: 1) to 
propagate the P-boxes of the input parameters to the P-box of the output using the double-loop propagation technique; 2) to calibrate 
the uncertainty model of the input parameters based on the available observations using the Bayesian MCMC updating technique. 

Fig. 7 illustrates the structure of the NASA UQ Challenge 2014, which involves a black-box model y = h(pi) with five input pa-
rameters p1− 5 and one output feature y. The uncertainty characterisation of the parameters is presented in Table 1. Considering the 
parameter categorisation (recall Fig. 2), p2 is an unknown-but-fixed constant in the range [0, 1], hence it belongs to Category II. p3 
follows the uniform distribution with fully determined distribution properties, hence it belongs to Category III. p1,4,5 are random 
variables following certain distributions but their distribution coefficients (mean, variance, correlations, etc.) are not fully determined, 
hence they belong to Category IV. This example contains the following two tasks:  

1) Uncertainty propagation: Perform the forward procedure to investigate how the uncertainty properties are propagated from the 
multiple categories’ parameters to the features. This involves the propagation of both the aleatory uncertainty and epistemic 
uncertainty, simultaneously. 

2) Parameter calibration: Perform the inverse procedure based on a set of given observation samples to reduce the epistemic un-
certainty of the parameters in turn. These experimental samples, provided by the Challenge host, are generated from the “true” 
distributions of the input parameters. The task here is to find the true values of the distribution coefficients from the given range in 
the last column of Table 1. Since the aleatory uncertainty is irreducible, only the parameters with epistemic uncertainty, i.e. p1,2,4,5, 
require to be calibrated in this subtask. 

Fig. 7. Structure and relative tasks of the NASA UQ Challenge 2014.  

Table 1 
Uncertainty characteristics of the input parameters.  

Category Parameter Distribution Uncertainty characteristics 

IV p1 Beta μ1 ∈ [0.6, 0.8]
σ2

1 ∈ [0.02,0.04]
p4, p5 Gaussian μi ∈ [ − 5.0,5.0]

σ2
i ∈ [0.0025,4.0]

ρ ∈ [ − 1.0, 1.0], i = 4, 5 
III p3 Uniform a3 = 0,b3 = 1.0 
II p2 Constant p2 ∈ [0.0,1.0]
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5.2. Forward uncertainty propagation 

According to the double-loop procedure in Sec. 4.1, the first step is to determine the P-boxes of the input parameters. Clearly 
parameters from different categories have varying formats of the P-boxes. The P-box of the Category II parameter has the simplest 
shape appearing as a rectangle, whose left and right edges are determined as the lower and upper bounds of the parameter’s interval. 
This is because the Category II parameters have only epistemic uncertainty. Any possible value within its interval corresponding to an 
impulse function with the amplitude as 1.0. An infinite number of impulse functions constitute a rectangle with length as 1.0 and width 
to be the same as the parameter interval. As an example, the P-box of p2 is illustrated in Fig. 8(b). 

The P-box of the Category IV parameter is more complex since both epistemic and aleatory uncertainties are involved. The 
determination of this type of P-boxes is based on the fact that the shape and position of a single CDF curve are driven by its mean and 
variance. The mean value controls the horizontal position of the CDF curve: A CDF with a small mean is generally located at the left 
part of the coordinate plane; the one with a large mean is located at the far-right. The variance controls the degree of tilt: A CDF with a 
smaller variance is generally “steeper”; the one with a larger variance is generally flatter. Based on this principle, it is easy to conclude 
that the P-box is always enveloped by the four extreme CDF curves:  

• The CDF with minimum mean and minimum variance P(μmin,σ2
min);  

• The CDF with maximum mean and minimum variance P(μmax,σ2
min);  

• The CDF with minimum mean and maximum variance P(μmin,σ2
max);  

• The CDF with maximum mean and maximum variance P(μmax,σ2
max). 

For example, the P-box of p4 and p5 is obtained by comparing the CDFs of the four Gaussian distributions N( − 5.0,0.0025), N( − 5.0,
4.0), N(5.0,0.0025), and N(5.0,4.0). The whole region enveloped by the four CDFs is illustrated in Fig. 8(c). For the determination of 
the P-box of p1, an additional process is required to transfer the mean and variance to the shape coefficients (α and β) of the Beta 
distribution, following the equations 

α = μ
(

μ(1 − μ)
σ2 − 1

)

(21)  

β = (1 − μ)
(

μ(1 − μ)
σ2 − 1

)

(22) 

The four edge CDFs with maximum/minimum mean and variance, presented in shape coefficients, are Beta(6.6,4.4), Beta(3.0,2.0), 
Beta(5.6,1.4), Beta(2.4,0.6). The P-box of p1 is illustrated Fig. 8(a). 

As long as the P-boxes of the input parameters are obtained, the double-loop propagation is implemented to estimate the P-box of 
the output. In the outer-loop, the number of Monte Carlo samples of the probability value α is set to Nsample = 1000. Different 
probability samples result to the constant interval of p2 to be [0, 1] as shown in Fig. 8(b). However, for p1, p4, and p5, the different 
sampled probability values along the vertical axis in Fig. 8(a, c) truncate varying intervals in the horizontal axis of the input pa-
rameters. Such intervals of p1, p2, p4, and p5 are taken as constraint to solve the inner-loop optimisation as given in Eq. (1). 

The fmincon.m optimiser in MATLAB© is employed to find the 1000 pairs of minimum and maximum samples. Their histograms 
and fitted PDFs are illustrated in Fig. 9(a). Clearly, the distribution of the output feature y is no longer a standard distribution. In 
contrast, it appears as an implicit and multimodal function because of the complicated black-box model between the inputs and 
outputs. The actual shape the output P-box is illustrated in Fig. 9(b). The implicit distribution of the minimum/maximum samples 
result in the so-called “distribution-free” P-box, because the boundary CDF curve is not that of a standard distribution, e.g. Gaussian or 

Fig. 8. The P-boxes of the four input parameters: (a) P-box of p1 with uncertain Beta distributions, (b) P-box of p2 within a given interval, (c) P-box 
of p4 and p5 with uncertain Gaussian distributions. 
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Beta. This demonstrates the double-loop propagation is capable of drawing the whole figure of the complete P-box no matter its 
boundary CDFs are explicit or implicit. This is a significant advantage over most of the simplified propagation techniques where only 
the probabilistic moments, e.g., mean, or variance, can be estimated. 

For calculation efficiency, the Monte-Carlo-Optimisation double-loop approach is already much more efficient than the exclusive 
Monte Carlo double-loop approach. When merely Monte Carlo sampling is employed in both the outer- and inner-loop, assuming 1000 
samples are required to estimate each CDF distribution and totally 1000 CDFs are required to estimate the P-box region, a total 106 

model evaluations are required. The Monte-Carlo-Optimisation double-loop approach is further beneficial from the independence 
among each optimisation. Hence, parallel calculation is employed to dramatically reduce the calculation time. The above double-loop 
P-box propagation, with Nsample = 1000, takes only 428 s on a standard desktop with Intel(R) Core(TM) i7 CPU (8 cores for parallel 
calculation). 

5.3. Parameter calibration 

In this section the process of parameter calibration is described. It includes a study of effects of using different distance-based 
likelihood functions, consideration of non-unique parameter estimates and the P-box propagation of such estimates to reveal the 
reduction of epistemic uncertainty brought about by the calibration process. 

5.3.1. Cross-comparison of results from different statistical distance-based likelihoods 
The problem host provides 50 observation samples of the output y, termed as Yexp, generated from the unknown true values within 

the ranges in the last column of Table 1. The task here is, starting from the available Yexp, to inversely calibrate the distribution co-
efficients of the input parameters, so as to turn the predicted output Ysim as close as possible to the observation samples Yexp. The 
calibration metrics based on various statistical distances have significant influence on the calibrated results, since different distances 
(as defined in Sec. 4.2) involves different levels of uncertainty information from the simulation and observation samples. 

This example has totally eight coefficients, θ1 − θ8, to be calibrated. Their physical representations, prescribed ranges, and true 
values (afterwards released by the problem host) are listed in Table 2. It is shown that some true values appear at, or very close to, the 
edge of the prescribed ranges, e.g. θ3 = 1.0 for its range. 

[0.0,1.0], θ5 = 0.04 for its range [0.0025,4.0]. Some prescribed ranges are given to be large and with general bounds, e.g. θ8 is given 
the range [ − 1.0, 1.0], which covers all possible values as a correlation coefficient. Such settings lead to a very challenging calibration 

Fig. 9. The distributions of the minimum and maximum samples and the P-box of the output feature.  

Table 2 
Prescribed features and updating results of the calibrating coefficients.  

Parameter Description Calibrating 
Coefficient 

Original 
interval 

True 
value 

Calibrated values θ 
Euclidian 
distance 

Mahalanobis 
distance 

Bhattacharyya 
distance 

p1 Mean θ1 [0.6, 0.8] 0.6364 0.709 0.700 0.649 
Variance θ2 [0.02,0.04] 0.0356 0.035 0.037 0.039 

p2  θ3 [0.0,1.0] 1.0 0.564 0.541 0.997 
p4 Mean θ4 [ − 5.0, 5.0] 4.0 − 2.617 0.847 4.096 

Variance θ5 [0.0025, 4.0] 0.04 1.640 2.543 1.404 
p5 Mean θ6 [ − 5.0, 5.0] − 1.5 0.498 3.633 − 4.700 

Variance θ7 [0.0025, 4.0] 0.36 1.633 2.187 0.186 
p4, p5 Correlation 

Coefficient 
θ8 [ − 1.0, 1.0] 0.5 0.103 − 0.586 0.634  
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problem. This example employs all three distances, i.e. the Euclidian distance, Mahalanobis distance, and Bhattacharyya distance, to 
define the likelihood function in the Bayesian updating framework, and embeds them into the same framework with the TMCMC 
algorithm. In each TMCMC iteration step, the number of samples is set as 1000. The posterior PDFs are fitted based on these 1000 
samples by the Kernel Density Estimation technique [36]. The histograms and fitted PDFs calibrated by the different statistical 

Fig. 10. Updated posterior distributions of θ1 − θ8 using the Euclidean distance.  

Fig. 11. Updated posterior distributions of θ1 − θ8 using the Mahalanobis distance.  
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distances are illustrated in Figs. 10-12, respectively. The updated values of θ1 − θ8 are obtained by taking the maximum value of PDF 
curves, and are listed in Table 2. 

Fig. 10 illustrates the updating results from the Euclidian distance, where θ2, i.e. the standard deviation of p1, is the only quantity 
with a good updating result. θ3 and θ7 have flat-shaped distributions, which are still nearly uniform, implying they are not obviously 
calibrated from their prior distribution. The remaining coefficients, θ1,4,5,6,8 have peaks far from the position of their true values, 
showing the updating process does not converge to the correct answer. Such results are expected because the Euclidian distance-based 
likelihood function only involves the distance between means. No dispersion information is considered in such likelihood functions, 
and hence it is natural that the variances and correlations of the parameters cannot be updated. 

The updating results employing the Mahalanobis distance are illustrated in Fig. 11. The general updating effect is even worse than 
the results from the Euclidian results, since most posterior distributions, e.g. those of θ2− 6,8, are still nearly uniform. The maximums of 
such posterior distributions are not prominent enough to be identified as the updated values. Only the posterior distributions of θ1 and 
θ7 have relatively obvious peaks, although the locations of the peaks are not close to the true values. Explanation of such unsatisfactory 
results is that, although the Mahalanobis distance-based likelihood function involves the covariance information, such information is 
not sensitive to the overlap between the simulation and observation samples. Even if the TMCMC algorithm is capable of reducing the 
Mahalanobis distance, it is not necessarily able to search the true values of the distribution coefficients of the input parameters. 

As illustrated in Fig. 12, the Bayesian updating with the Bhattacharyya distance-based likelihood function obtains very different 
posterior distributions, compared with the ones in Figs. 10 and 11. The most obvious and extreme example is the posterior PDF of θ3, 
which is extremely centralised to the edge of its range, i.e. the true value to be reached. In contrast, the posterior PDF of θ3 in Figs. 10 
and 11 do not achieve a good result since they are still nearly uniform without any tendency towards the target true value. The similar 
effect is observed for θ2, θ4, and θ7, which are more clearly peaked than the ones in Figs. 10 and 11. It is shown by the comparison of 
Figs. 10-12 and in Table 2 that the updating precision of the result with the Bhattacharyya distance is clearly higher than that of the 
Euclidian and Mahalanobis distances. 

5.3.2. Non-uniqueness solutions and output distributions 
However, special attention should be paid on θ5 and θ6 in Fig. 12, whose posterior PDFs have two peaks. One of the peaks of θ6 is 

quite close to its true value, while the other one is far from it but with a higher probability. If only one maximum point is selected from 
the PDF curve, clearly for θ6 the value − 4.7 will be selected as the calibrated result as shown in Table 2. However, another peak with 
− 1.6 should not be ignored since it is another potential local solution. And actually, it is the true value. The possible local solutions of 
θ5 = 1.4or2.74, θ6 = − 4.7or − 1.6 are further investigated as shown in Table 3. Four configurations of all possible local solutions of θ5 
and θ6 are listed in Table 3. Each configuration along with the calibrated values of other coefficients, see θ1− 4 and θ7,8 in the last 
column of Table 2, is employed to generate 1000 samples of the input parameters p1− 5, which are substituted into the model y = h(pi)

to obtain the predicted samples Ysim. The Bhattacharyya distances between the predicted samples and the observations samples are 
calculated and listed in Table 3. It is shown that the distance values of all four configurations are similar, and they are quite different 

Fig. 12. Updated posterior distributions of θ1 − θ8 using the Bhattacharyya distance.  

S. Bi et al.                                                                                                                                                                                                               



Mechanical Systems and Signal Processing 204 (2023) 110784

18

Table 3 
Bhattacharyya distances between the predicted samples Ysim and the observation samples Yexp.  

Different configurations Bhattacharyya distance after calibration Bhattacharyya distance before calibration 
Index θ5 θ6 

#1 1.4  − 4.7  0.692 1.0156 
#2 1.4  − 1.6  0.671 
#3 2.74  − 4.7  0.689 
#4 2.74  − 1.6  0.650  

Fig. 13. Calibrated PDFs of the output samples with different configurations of θ5 and..θ6  

Table 4 
Statistical distances between the observation output samples and the predicted output samples before and after 
the Bayesian updating with the TMCMC algorithm.  

Likelihood function with Before calibration After calibration 

Euclidian distance  0.0116  0.0025 
Mahalanobis distance  0.0847  0.0126 
Bhattacharyya distance  1.0156  0.6921  

Fig. 14. Comparison of the output PDFs according to different statistic distances.  
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from the distance value before calibration. This demonstrates that all the local solutions of θ5 and θ6 lead to the similar samples of the 
model output. This is to say, the capability of the TMCMC algorithm is demonstrated because it is capable of minimising the Bhat-
tacharyya distance. The phenomenon that some calibrating quantities cannot converge to their true values is caused by the non-unique 
nature of the problem itself. A vivid illustration is presented in Fig. 13 where the fitted output PDF curves derived from the four 
coefficient configurations are plotted together with the initial PDF. It is observed that the four PDFs after calibration are similar, while 
all of them have apparent discrepancy from the initial PDF. 

The following assessment focuses on the model outputs. In practical applications where the true values of the input parameters are 
unknown, the investigation of the output becomes the more direct, even the sole measure to evaluate the updating effect. Table 4 
presents the distances between the predicted samples Ysim and the observation samples Yexp, regarding different likelihood functions 
constructed by the Euclidian, Mahalanobis, and Bhattacharyya distances. This table mainly demonstrates the capability of the TMCMC 
algorithm. Regardless which statistic distance is employed, the TMCMC algorithm is capable of reducing the distance values within the 
Bayesian updating framework. Besides the comparison of distance values, the actual distributions, i.e. PDF curves, of the model output 
y, along with the histogram of the 50 provided observations, are illustrated in Fig. 14. The observation histogram and the solid red PDF 
curve serve as the target of the updating process. It is observed that the PDF calibrated by the Bhattacharyya distance (labelled as 
PDF_BD) is closer to the target than the PDFs calibrated by other two distances (PDF_ED and PDF_MD). Such result fulfils the 
expectation that the Bhattacharyya distance is a more relevant metric to measure the discrepancy between two probabilistic 
distributions. 

5.3.3. Uncertainty reduction in the form of P-box reshaping 
This subsection provides a further explanation of how to generate the final updating result from the posterior distributions, and 

how to understand the updating results from the perspective of uncertainty reduction and P-box presentation. 
For clarity, the posterior distributions of θ1 − θ8 according to the Bhattacharyya distance-based likelihood function in Fig. 12 are 

normalised and re-plotted in Fig. 15. Note that the posterior distribution curves of θ1 − θ8 are not the real PDFs in the statistical sense. 
Actually, θ1 − θ8 are not random variables, hence they do not have any probabilistic distributions. The posterior distribution curves 
here are used to estimate the final updated values/ranges of θ1 − θ8. 

To truncate the intervals from the posterior distribution, a so-called “truncation level”, α ∈ [0, 1], is defined. It is an indicator of the 
degree of epistemic uncertainty reduction from the whole uncertainty space, i.e., how much the original intervals in Table 5 would be 
reduced. As illustrated in Fig. 15, four truncation levels, α = 0.5, 0.7, 0.9, 1.0, are implemented on the normalised posterior distri-
butions, and the obtained intervals are listed in Table 5. The extreme case is, when α = 1.0, the truncation outcome is no longer an 

Fig. 15. Normalised posterior distributions employed to estimate ranges according to various truncation levels.  
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interval but a constant value located at the peak of the curve. This is the same approach used in Sec. 5.3.1 to estimate the specific values 
of θ1 − θ8, and this is why the last columns of Table 2 and Table 5 are the same. 

Special attention should be paid to the 0.9-level truncated interval of θ5 and the 0.5-level truncated interval of θ8. From Fig. 15, it is 
observed that these intervals have multiple segments, because of the multimodal feature of the posterior distributions. Such a trun-
cation approach is based on the understanding that the posterior distribution of the calibrating quantity in Bayesian updating 
essentially represents the degree of the trust when this quantity is assigned to different values. Taking the 0.9 truncation level of θ5 in 
Fig. 15 as an example, any values of θ5 with a posterior PDF higher than 0.9 should be reserved, rather than only keeping the highest 
peak. Note that this should not be confused with the local/global solutions in optimisation, where the only highest peak is regarded as 
the global solution while any lower peaks are assumed as local solutions and to be disregarded. This is one of the main differences 
between the Bayesian philosophy and optimisation techniques. 

Fig. 16 provides a clear understanding of the stochastic updating effects from the perspective of epistemic uncertainty reduction. 
The different truncated intervals of θ1 − θ8 in Table 5 result in different P-boxes of the input parameters, which are subsequently 
propagated by the double-loop approach in Sec. 4.1 to generate the P-boxes of the model output. The 0.0 α-level means that no 
truncation is implemented, hence the whole original intervals of θ1 − θ8 are employed to propagate the largest P-box containing the 
most epistemic uncertainty. Since the truncation α-level increases, the output P-box is progressively “pinched” implying the epistemic 
uncertainty is progressively reduced. 

In the ideally perfect case, when the truncation α-level reaches 1.0, the P-box will be finally pinched into a single CDF curve, and 
such a curve should be exactly the same as the CDF fitted from the experimental data. However, in practical applications such result is 
mostly impossible, because it requires the numerical model to be a perfect representation of physical systems without any model form 
errors. It is interesting to be observed that, in Fig. 16, some parts of the experimental CDF have gone beyond the edge of the α-0.9P-box. 
This phenomenon is normal because, as seen from Fig. 12, the final updated values of θ2, θ5, and θ6 are different from their true values. 
It is unnecessary to expect the P-box to completely converge towards the experimental CDF. Nevertheless, the fact that the P-boxes 
with high truncation α-levels can still envelop the experimental CDF curve demonstrates the updated model prediction is coincident 

Table 5 
Truncated intervals of the calibrating quantities according to various levels of truncation factor.  

Calibrating Quantity Original interval Truncated intervals after calibration 
0.5-level 0.7-level 0.9-level 1.0-level 

θ1 [0.6, 0.8] [0.625,0.693] [0.633, 0.664] [0.641,0.656] 0.649 
θ2 [0.02,0.04] [0.0371,0.04] [0.0378,0.0399] [0.0382,0.0396] 0.0388 
θ3 [0.0,1.0] [0.988,1.0] [0.992,0.999] [0.996,0.998] 0.997 
θ4 [ − 5.0, 5.0] [2.15,4.89] [2.41,4.69] [2.78,4.44] 4.096 
θ5 [0.0025, 4.0] [0.49,3.39] [0.72,3.17] [1.05,1.74]&[2.51,2.92] 1.404 
θ6 [ − 5.0, 5.0] [ − 5.0, − 4.34] [ − 4.92, − 4.67] [ − 4.82, − 4.58] − 4.700 
θ7 [0.0025, 4.0] [0.0025, 0.643] [0.0025, 0.487] [0.0425,0.339] 0.186 
θ8 [ − 1.0, 1.0] [ − 0.958, − 0.560]&[ − 0.159, 0.972] [0.197, 0.884] [0.452, 0.778] 0.634  

Fig. 16. P-boxes of the output when various truncation levels are implemented to the posterior distributions.  
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with the experimental observations given the tolerance of a certain amount of epistemic uncertainty, which is actually a measure of the 
robustness, a key criterion of stochastic updating effect. 

6. Practical example of an uncertain benchmark testbed 

6.1. Design, experiment, and parameterisation of the model 

An uncertain benchmark testbed is dedicatedly designed for stochastic model updating with the emphasis on involving multisource 
uncertainties. It is a testbed with not a single structure, but a series of nominally identical lab-scale airplane models whose geometry 
characteristic is intentionally changing. Such configurations ensure the involvement of multisource uncertainties, since the experi-
mental observations would contain not only the experimental uncertainty but also the controllable uncertainty from the structures 
themselves. It is a fact that measurement errors may arise due to electronic noise. Also, inexperienced operators may process signals 
incorrectly, resulting in seemingly noisy FRFs and bias. However, it is well recognized that uncertainty associated with well carried-out 
experiments is tiny in comparison to modelling uncertainty. In this paper we address the problem of model updating on the assumption 
that the effects of operational measurement error are negligibly small in comparison to the modelling error and the artificially 
controlled structural uncertainty. 

The testbed is constructed based on the prototype airplane model with its geometry details illustrated in Fig. 17. Totally 30 airplane 
models are manufactured with most of the geometric sizes exactly following the specification in Fig. 17, except the half wingspan a and 
wing tip chord b. Here these two parameters a and b are designed as random variables following a pre-defined distribution, with their 
nominal mean values equal to 300 mm and 25 mm, respectively. The actual 30 wing pieces with varying sizes are illustrated in Fig. 18 
(a). The vibration test is performed on each structure to measure the airplane’s natural frequencies and mode shapes. During the test, 
the airplane model is placed in a free suspension condition, and with both non-contact excitation (loudspeaker) and laser vibrometer as 
shown in Fig. 18(b). Such free-suspension setup and non-contact techniques are adopted to reduce the installation randomness among 
each 30 experiments. The final obtained measurement dataset (Table A1) would contain not only the experimental uncertainty caused 

Fig. 17. Geometry details of the benchmark airplane model.  
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by environmental noise, observation error, sensor tolerance, etc., but also the controllable and “synthetic” uncertainty deriving from 
the pre-defined distribution of the geometry parameters a and b. 

The initial FE model is built with 3D hexahedron elements as shown in Fig. 19(a). For parameterisation, the first choice is the 
geometry size a and b, because they are prescribed as uncertain parameters. The next concern is the elements of the joint parts among 
the fuselage, the wing, and the tail wings, as shown in Fig. 19(b), where considerable model form error would exist because of the 

Fig. 18. 30 manufactured airplane models and the vibration test.  

Fig. 19. (a) Initial FE model with hexahedron elements; (b) decomposition of the joint components.  

Table 6 
Parameterisation of the FE model and their uncertainty characteristics.  

Category Parameter Description Uncertainty model Uncertainty characteristics 

IV a Half wingspan Joint 
Gaussian 

μa ∈ [290, 310](mm) 
σa ∈ [0,5](mm) 

b Wingtip chord μb ∈ [20,30](mm) 
σb ∈ [0,5](mm) 
ρ ∈ [ − 1.0, 1.0]

II E1 Young’s modulus 
of fuselage/wing joint 

Fixed-but-unknown 
constant 

E1 ∈ [0.5, 0.9](1011Pa) 

E2 Young’s modulus 
of fuselage/tail joint 

E2 ∈ [0.5, 0.9](1011Pa)  
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simplification of the bolted connection. The Young’s modulus of joints elements are hence selected parameters to be updated. The 
prescribed uncertainty characteristics of the above selected parameters are listed in Table 6. 

6.2. Calibration results 

6.2.1. Preliminary investigation of the measured natural frequencies 
The 30 sets of measured natural frequencies are listed in the A ppendix Table A1. They are expected to involve multiple sources of 

uncertainties deriving from experimental randomness, signal processing, observation system errors, and more dominantly, the pre- 
designed uncertainty feature of the wing geometry parameters a and b. It is hence important to have a preliminary investigation of 
the distribution feature of the frequencies. Fig. 20 presents both the marginal distribution of each frequency and the joint 2-dimen-
sional distributions of any two frequencies. The PDF fitting technique employed here is the Kernel Density Estimation. It is 
observed that the first four natural frequencies have similar marginal distributions and their joint distributions show a strong linear 
relation. However, the 5th natural frequency has different character not only in its marginal distribution but also in its joint distri-
butions with other four frequencies, as shown in the bottom line of the plot matrix in Fig. 20. 

The above phenomenon can be explained by the mode shapes of the different modes as illustrated in Fig. 21. It is observed that the 
first four modes are all about the bending of the wing, while the 5th mode is the torsion mode. The different mode patterns lead the 
varying correlations between different natural frequencies. Another possible reason is that the uncertain wing tip chord b (recall 
Fig. 17) has a more significant influence on the torsion mode (the 5th mode) rather than the other bending modes (the 1st-4th modes). 
As a result, the 5th natural frequency has a larger dispersion than the other four frequencies. 

The complicated distribution features of the first five natural frequencies fulfil our expectation that the datasets contain multiple 
sources of uncertainties, and it presents a challenge in reproducing the distribution features via the updating of the uncertainty model 
of the input parameters. 

6.2.2. Influence of the likelihood function to the calibration results 
Since the different statistical distances (Euclidian, Mahalanobis, and Bhattacharyya distances) are compared in detail in the NASA 

UQ Challenge example, this example will only employ the Bhattacharyya distance to construct the likelihood function in the Bayesian 
updating process. Nevertheless, the complicated distribution feature of the frequencies implies that the different configurations 
employing the Bhattacharyya distance to construct the final likelihood functions has significant influence to the calibration results. 
And hence should be further investigated as follows. 

6.2.3. Likelihood based on even mean of the Bhattacharyya distances 
The likelihood is first constructed as the even mean values of the Bhattacharyya distances between each of the simulated and 

Fig. 20. Marginal and joint distributions of the first five natural frequencies in the measurement dataset.  
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measured natural frequencies. 

BDeven = (BD1 + BD2 + BD3 + BD4 + BD5)/5 (23) 

where BDi = dB

(
f (exp)
i , f sim

i

)
, i = 1,⋯,5, is the Bhattacharyya distance of the marginal distribution of each frequencies, calculated 

based on Eq. (8). The likelihood function is then calculated as 

PLeven = exp
{

−
BD2

even

σ2

}

(24) 

The Bayesian TMCMC process is performed employing the above definition of the likelihood function with the width coefficient σ 
set as 0.05. According to Table 6, there are totally seven uncertainty characteristics coefficients to be calibrated, namely, the mean μ 
and standard deviation σ of a and b, the correlation coefficient r between a and b, and the constant value of E1 and E2. The posterior 
distributions of the seven calibrating coefficients are illustrated in Fig. 22. Their updated values are obtained as the highest point found 
from the posterior PDF functions, as shown in Fig. 22, and listed in Table 7. 

For the practical application, it is more direct to compare the distribution of the predicted natural frequencies, which is illustrated 
in Fig. 23. It is interesting to compare the updating effect among different frequencies. For f2 − f4, their updated PDFs are quite close to 
the PDFs of the measured data, implying the Bayesian updating process works well for these three frequencies. However, the updated 
PDFs of f1 still presents a discrepancy from the target measurement data. And especially for f5, its PDF after the updating process is still 
nearly the same as its prior PDF before the updating process. This means the current Bayesian updating process is ineffective for f5. 
Such phenomenon can be explained by the above investigation of the distribution feature of the five natural frequencies in Fig. 20, 
where f5 exhibits a different dispersion feature compared with f1 − f4. Because the likelihood function is defined based on the even 
mean value of all five frequencies, the strong linearity among f1 − f4 lead the updating process is dominated by the error from f1 − f4 but 
not f5. This reveals the motivation to adjust the likelihood function according to the specific linearity and proportion among the output 
features. 

6.2.4. Likelihood based on weighted mean of the Bhattacharyya distances 
A simple adjustment of the original likelihood is to rearrange the weightings among the frequencies when calculating the overall 

Fig. 21. Mode shapes calculated from the preliminary FE model (the first five modes are used for calibration in Sce. 6.2, and the 7th mode will be 
used for validation in Sec. 6.3). 

Table 7 
Updated values of the uncertainty coefficients of the input parameters.  

Parameter Description Uncertainty Coefficient Original interval Calibrated values θ 
Even likelihood Weighted likelihood 

a Mean μa(*102mm) [2.9, 3.1] 3.022 3.026 
Standard deviation σa(*10 mm) [0,0.5] 0.109 0.450 

b Mean μb(*102mm) [2,3] 2.352 2.480 
Standard deviation σb(*10 mm) [0,0.5] 0.495 0.106 

a and b Correlation Coefficient r [ − 1.0, 1.0] − 0.713 − 0.151 
E1 Fixed-but-unknown constant E1(*1011Pa) [0.5, 0.9] 0.522 0.757 
E2 Fixed-but-unknown constant E2(*1011Pa) [0.5, 0.9] 0.542 0.726  
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Bhattacharyya distance 

BDweight = (BD1 + BD2 + BD3 + BD4 + 2*BD5)
/

6 (25) 

Compared with the even mean value in Eq. (21), the weighting of f5 is increased from 20% to 33.3%, and correspondingly the 
weighting of f1− 4 is decreased from 20% to 16.7%. Such adjustment leads to an immediate effect on the updated PDFs of the predicted 
frequencies, as shown in Fig. 24. Especially, the updated PDF of f5 is closely coincident with the measured PDF, which is an obvious 

Fig. 22. Posterior distributions of the uncertainty coefficients of the input parameters updated with the even mean likelihood function.  

Fig. 23. Comparison among the measured, initial, and updated PDFs of the natural frequencies with even mean likelihood function.  
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change compared with the one in Fig. 23. Simultaneously, however, the consistency of the updated PDFs of f1− 4 is not as good as the 
ones in Fig. 23. This phenomenon reveals the trade-off between the updating effect of f1− 4 and f5. Such a trade-off origins from the 
imperfectness of the FE model, which is inevitable, but a sophisticated model or a more appropriate parameterisation would relieve 
such phenomenon. 

Fig. 24. Comparison among the measured, initial, and updated PDFs of the natural frequencies with weighted mean likelihood function.  

Fig. 25. Scatters of the measured and updated frequencies with the even mean likelihood function.  
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Fig. 26. Scatters of the measured and updated frequencies with the weighted mean likelihood function.  

Fig. 27. Posterior distributions of the uncertainty coefficients of the input parameters updated with the weighted mean likelihood function.  
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The different updating effects can be further vividly revealed by the comparison between Fig. 25 and Fig. 26, where the scatters 
(and their fitted 2D joint PDFs) are presented. Similarly, special attention should be paid on the scatters involving f5 (the subfigures in 
the left part of both Fig. 25 and Fig. 26). It is observed that, when the even mean likelihood is employed in Fig. 25, the updated scatters 
of f1vs.f5 and f3vs.f5 are still obviously inconsistent with the target measured scatters. While when the weighted mean likelihood is 
employed in Fig. 26, the updated scatters of f1vs.f5 and f3vs.f5 coincide much more with the measurement data. Note that, this 
comparison is not necessarily to conclude that the weighted mean likelihood function is superior upon the even mean likelihood 
function. It is merely a demonstration that the customised likelihood function would act as a steering of the Bayesian updating process 
when one specific quantity of interest is paid more attention than the others. 

The different updating effects of the different likelihood functions is a good demonstration of the ability of the TMCMC searching 
algorithm. Different definitions of the likelihood functions are actually the different searching criteria in the Bayesian updating 
process. By assigning a higher weighting to a specific frequency, the TMCMC algorithm is capable of searching particular regions in the 
parameter space leading to a better fitting effect for this specific frequency. This means the TMCMC algorithm is sensitive and effective 
to a given searching direction. 

Now come back to the updating effect of the input parameters. The different likelihood function results in a very different posterior 
distributions of the input parameters coefficients, as shown Fig. 27, compared with the ones in Fig. 22. This reveals the challenging 
feature of the example and leads to the discussion of the open questions of the benchmark testbed in the following subsection. 

6.3. Validation results 

The above parameter updating results are obtained by employing the first five frequencies as the reference data. This subsection 
provides the model validation result according to the second validation criterion introduced in Sec. 3.5. The 7th mode (see Fig. 21) is 
employed here as the independent data to assess whether the updated model can predict its distribution feature. The reason for 
selecting the 7th mode rather than the 6th mode is that the 5th and 6th FE modes are the anti-symmetric and symmetric wing twisting 
modes respectively, very close to each other in frequency. In practical experiments, the two are combined and a 6th test mode is 
therefore non-existent. 

Updating results from both the even mean likelihood and the weighted mean likelihood in Sec. 6.2 are investigated. The mean, 
standard deviation, and correlation coefficient of a and b are extracted from Table 7. Based on the pre-setting of the joint Gaussian 
distribution, 30 samples of a and b are obtained. Together with the obtained constant values of E1 and E2 (also in Table 7), these input 
parameters are sent to the FE model and 30 samples of f7 are obtained. The histograms and fitted PDFs of f7 are illustrated and compare 
with the experimental samples in Fig. 28. The means and variances of these samples are compared in Table 8. 

It is observed from Table 8 that both the even-likelihood result and the weighted-likelihood result have a good match for the mean 
(with the relative errors less than 1.5%). This implies that, from a deterministic model updating point of view, the validation result is 
already satisfactory. For the variance, however, the error is higher than the mean. But it is interesting to note that the variance error of 

Fig. 28. Validation result of the 7th natural frequency.  

Table 8 
Comparison of the FE data and the experimental data of the 7th natural frequency (with percentage error in the brackets).  

The 7th frequency Experimentaldata  
(Hz) 

FE data (Hz) 
Even-likelihood Weighted- 

likelihood 

Mean  227.74 225.66 (-0.91%) 224.41 (-1.47%) 
Variance  33.01 2.98 (-91.97%) 40.45 (22.52%)  
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the weighted likelihood data is much less than the one of the even-likelihood data. This phenomenon can be clearly reflected by Fig. 28 
where the distribution of the weighted-likelihood samples fits with the experimental samples much better than the even-likelihood 
result. Although the fitting degree is not as good as the results of f1 − f5 in Fig. 23 and Fig. 24, it does not influence the conclusion 
that the validation using f7 is acceptable given the mean and variance errors of the weighted-likelihood data have been clearly reduced. 

6.4. Summary and open questions 

The fact is that, no matter the posterior distributions in Fig. 22 or Fig. 27, they are not fully converged to the pre-set true distri-
bution coefficients of a and b. This reveals the challenging feature of the benchmark testcase and some summaries and possible di-
rections to improve the updating performance are given as follows.  

• The capacity of the TMCMC algorithm is demonstrated in this example as being able to produce output features with probabilistic 
characteristics coinciding with the measurements, subject to specific emphasis on certain frequencies, e.g. f5.  

• One highlight of the Bayesian updating framework is the flexibility of the customised likelihood function with different weightings 
assigned to the output features, which effectively steers the direction of the TMCMC sampling process.  

• Non-uniqueness is much more common for stochastic model updating than the deterministic tasks, especially when variances and 
correlations are involved. The ability to differentiate the global solutions from multiple local solutions will be one of the key 
expectations for advanced updating algorithms.  

• The trade-off of the updating effects among f1 − f5 originates from the imperfectness of the FE model in representing the physical 
system as well as the practical experimental randomness. Parameterisation is a critical step to set an appropriate compensation 
between the modelling uncertainty and experimental uncertainty. Remodelling with new mesh configuration and selection of new 
parameters other than E1 and E2 would relieve the compensation effect, and lead to different updating effects. 

7. Perspectives and future challenges 

The following section presents the latest advancements and challenges in stochastic model updating. The goal is to provide readers 
with insights that can inspire further exploration of this topic. 

Distribution-free model updating: The techniques and examples presented in this tutorial are all under the condition that the 
probabilistic distribution format of the input parameters is already known. This is a strong assumption, especially in a situation where 
limited observation data is available. The NASA UQ Challenge 2021 [37] is developed to confront such a distribution-free problem 
with limited observation. Various techniques have been developed, e.g. staircase density function [38], Gaussian mixture model, and 
Bate mixture model [16], to parameterise the unknown distributions into undermined coefficients. This is actually a transformation of 
the distribution-free problem into the distribution-based problem by this additional parameterisation step. Further techniques capable 
of quantifying the unknown distribution directly without introducing more coefficients would be a significant contribution to this 
problem. The distribution-free model updating would be significantly facilitated by hybrid uncertainties quantification, non- 
parametric imprecise probabilities and distribution-free P-box technique. 

Non-probabilistic model updating: Interval and fuzzy methods have been extensively studied as complements to probabilistic 
UQ, making them promising options for use in stochastic model updating. Both approaches are set-theoretical approaches, which do 
not engage probabilities for assessing likelihood or belief of some events. Hence, they require less information for quantification in 
comparison to probabilistic approaches, which is helpful when data are very limited. The interval approach [39,40] focuses on 
estimating and propagating bounds for the quantity of interest. Applied to modelling of epistemic uncertainty, intervals become tighter 
as available information grows in quantity and quality. Fuzzy sets can be understood as a generalisation of intervals, representing a 
nested set of intervals and be used as an instrument to process intervals of varying size [24,41]. As such, fuzzy sets are suitable for 
quantifying linguistic variables and approximate statements or expressions. When using interval and fuzzy techniques for model 
updating, a different method for uncertainty propagation is needed compared to sampling-based distribution propagation. This is 
typically an optimisation approach to find the bounds. To fully utilise the cost-effective nature of intervals and fuzzy sets in stochastic 
model updating, a precise and efficient propagation process would be the key. 

Nonlinear model updating: Modern engineering systems often exhibit nonlinearity due to factors such as large deformations, 
nonlinear boundary conditions, or geometrically nonlinear effects. Nonlinearities can create intricate interactions between model 
parameters, cause significant variability in the sensitivities of model parameters, and often result in non-unique and localised solu-
tions. Nonlinearity presents a challenge that requires more advanced model updating techniques [42]. First, a more sophisticated 
parameterisation is necessary to isolate the nonlinearity from the entire system and distinguish specific parameters related to it, e.g. see 
the work Ref [43]. Second, advanced test techniques are important for nonlinear model updating to provide full-field measurements 
[44] with sufficient data to reveal nonlinearity from large-scale industrial systems. 

Robust model updating: When dealing with uncertainty, it is essential to also prioritise robustness in model updating in addition 
to precision. Robustness means being able to accept uncertainty and is a way to measure how much uncertainty can be tolerated while 
still maintaining acceptable model precision. Multi-objective optimisation is a common solution when it comes to making a trade-off 
choice [45] between robustness and precision in stochastic model updating. It is hence important to define a clear and quantitative 
metric of robustness before it can be implemented in the multi-objective optimisation process, although a common agreement of 
robustness metrics has been far from achieved given the fact that varying conceptual definitions are used in the literature [46]. 

Credibility of simulation outside the validation domain: When using numerical models, analysts are often confronted with the 
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situation whereby simulation predictions are used to inform decision-making in a domain where experimental data are unavailable. In 
such cases, the numerical model is trusted to extrapolate in the forecasting domain simply because it has been shown to be trustworthy 
in the validation domain, where experimental data are available. Although the inherent dangers of this prediction extrapolation are 
widely recognised, few methods are available to actually establish simulation credibility for a given application. Credible model 
extrapolation is hence a significant perspective of model updating to reflect the uncertainty from the validation domain to the 
extrapolation domain. 

Parameterisation and stochastic sensitivity analysis: The benchmark testbed example in Sec. 6 highlights the importance of the 
initial parameterisation in achieving the proper compensation between modelling uncertainty and experimental uncertainty. A well- 
executed parameterisation of the FE model sets the stage for effective model updating, which in turn enhances the model’s robustness 
and extrapolation performance. To achieve this, more advanced techniques like stochastic and global sensitivity analysis [33,47] are 
necessary. These techniques not only take into account the functional importance of the parameter but also accurately model its 
relative uncertainty according to its statistical nature. 

Model updating with data science: The tide of data science has clearly influenced model updating but actually has yet to reach a 
level of revolution. The fact is that vast literature on data science and model updating is still limited to training a surrogate model using 
machine learning or reinforcement learning. However, a nature contradiction is that the data science-based model relies on massive 
data, which is exactly missing for practical engineering observations. Data science can support other aspects of model updating, not 
just surrogate modelling. One exciting possibility is to fully replace the optimisation and sampling algorithm with an intelligent, self- 
renewing algorithm by engaging deeply in the inverse parameter calibration process. Also, the stochastic pattern identification and 
feature extraction would be the significant perspectives of data science to boost the embrace of uncertainty quantification in stochastic 
model updating. 
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Appendix 

Table A1 
Table A1 
Measured natural frequencies of the airplane models with 30 varying wing pieces.  

Index f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz) 

1 19.5939 39.7633 88.6695 103.149 141.1495 
2 19.7038 39.9739 89.3527 103.9124 141.2092 
3 19.0858 38.9641 86.1415 100.9968 138.7494 
4 20.2534 40.5603 91.1972 105.4919 143.7954 
5 19.562 39.7552 88.8154 103.5576 138.5737 
6 20.2339 40.4956 90.8475 105.1642 144.2686 
7 20.289 40.7772 92.0356 106.4934 142.8112 
8 19.9444 40.287 90.3861 104.9847 141.7157 
9 19.9382 40.2902 90.7258 105.1755 140.3442 
10 20.3694 40.7582 92.0218 106.2751 143.9561 
11 19.9688 40.0731 90.4805 104.7616 140.455 
12 19.6028 39.7311 89.4728 103.8851 138.6102 
13 18.8157 38.2389 84.5431 98.9893 138.0854 
14 18.5723 38.237 84.5388 99.3751 135.4328 
15 20.2594 40.6322 91.8662 106.1835 143.7322 
16 20.0747 40.4262 91.1133 105.433 141.4829 
17 19.8147 40.1952 90.1828 104.754 141.0558 
18 19.4615 39.5471 88.1474 102.7056 139.6227 
19 20.1035 40.5532 91.8229 106.1403 139.9808 
20 20.8916 41.614 95.1423 109.2518 144.2192 
21 19.9619 40.1781 90.2592 104.5704 140.9626 
22 19.5338 39.7062 88.5632 103.2578 139.0521 
23 20.9609 41.6971 95.1049 109.0708 145.1307 

(continued on next page) 
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Table A1 (continued ) 

Index f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz) 

24 19.7298 39.9948 89.2391 103.9312 140.5159 
25 19.4527 39.4478 87.8373 102.4027 139.5921 
26 19.6318 39.9219 89.4969 104.0277 138.2781 
27 20.133 40.6985 92.6301 106.8184 137.7652 
28 19.6585 39.909 89.5363 103.9684 139.0352 
29 19.9378 39.9397 89.3377 103.6612 143.0868 
30 20.055 40.1601 89.7844 104.257 144.0743 
Mean 19.8531 40.0842 89.9764 104.4215 140.8914 
Variance 0.2611 0.5772 5.8244 5.0873 5.7667  
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