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Abstract Engineering design and technological risk assessment both entail learning or dis-
covering new knowledge. Optimal learning is a procedure whereby new knowledge is obtained
while minimizing some specific measure of effort (e.g. time or money expended). A paradox is a
statement that appears self-contradictory, or contrary to common sense, or simply wrong, and yet
might be true. The paradox of optimal learning is the assertion that a learning procedure cannot
be optimized a priori — when designing the procedure — if the procedure depends on knowledge
that the learning itself is intended to obtain. This is called a reflexive learning procedure. Many
learning procedures can be optimized a priori. However, a priori optimization of a reflexive learn-
ing procedure is (usually) not possible. Most (but not all) reflexive learning procedures cannot be
optimized without repeatedly implementing the procedure which may be very expensive. We dis-
cuss the prevalence of reflexive learning and present examples of the paradox. We also characterize
those situations in which a reflexive learning procedure can be optimized. We discuss a response
to the paradox (when it holds) based on the concept of robustness to uncertainty as developed in
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info-gap decision theory. We explain that maximizing the robustness is complementary to — but
distinct from — minimizing a measure of effort of the learning procedure.

Keywords optimal learning, uncertainty, robustness, learning paradox, info-gaps
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1 Introduction

Many quantitative entities have precise numerical values that are unknown. We don’t know the
length of this newly discovered cave. We don’t know how long it will take to bring this promising
technological innovation to practical fruition. We don’t know the 47th significant digit of the rest
mass of the electron. We don’t know exactly how long it takes light to travel 1 km in a vacuum. We
don’t know the 100 quadrillionth digit of π.

Engineering design and technological risk assessment both entail learning or discovering new
knowledge, e.g. innovative solutions for a product specification or evaluating severities of new
failure mechanisms. Optimal learning is a procedure whereby new knowledge is obtained while
some specific measure of effort (e.g. time expended) is minimized. Some of the quantitative entities
mentioned above can be learned by optimal learning procedures. However, sometimes the learning
procedure depends on the specific new knowledge that will be obtained. We will refer to such
learning procedures as reflexive learning procedures.

A learning procedure usually depends on the context or substance of what is being learned. For
instance, the procedure for learning the nth digit of π is different from the procedure for learning
the nth digit of the rest mass of the electron. However, neither of these procedures depends on the
value of that digit — whether it is 0, or 1, or 2, etc. Neither of those procedures is a reflexive learning
procedure. In contrast, the procedure for learning the depth of a new cave depends on that depth,
because the procedure must specify the amount of food taken by the explorers, and that depends
on whether the cave is deep or shallow.

We will see that most (but not all) reflexive learning procedures cannot be optimized a priori:
at the design stage and before actual implementation (Ben-Haim, 2018, pp.70–72). Many learning
procedures can be optimized a priori, so the inability to optimize a reflexive learning procedure when
designing the procedure may seem paradoxical. This paper characterizes the paradox, presents a
response based on info-gap decision theory, and identifies the unique conditions under which a
reflexive learning procedure can be optimized a priori.

Section 2 briefly reviews concepts of learning, including optimal learning, in a wide range of
disciplines. Section 3 discusses two preliminary qualitative examples of the paradox of optimal
learning. Section 4 presents the mathematical formulation of the paradox of optimal learning. Sec-
tion 5 characterizes those situations in which a reflexive learning procedure can be optimized a
priori. Section 6 presents the mathematical formulation of info-gap robust-satisficing. Sections 7 to
10 discuss quantitative examples of the paradox and responses based on the concept of robustness
to uncertainty as developed in info-gap decision theory. Sections 7–9 formulate a selection of prob-
lems to indicate the range of topics that are accessible, while section 10 is a detailed numerical
example. Section 11 concludes the discussion.

We will use the term “learning” to refer to acquiring true or correct knowledge. While truth
and correctness are sometimes disputed, by “learning” we do not mean things such as Huck Finn’s
acquiring the ability to “say the multiplication table up to six times seven is thirty-five” (Twain,
1884).

2 Learning: Optimal and Otherwise

Learning, and its optimization, has been explored in diverse contexts. We will briefly review re-
cent studies of learning in computation and data science, reliability-based design optimization,
economics, education, engineering systems, industrial management and operations research, and
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medicine. We will see the widespread importance ascribed to learning, as well as attempts to im-
prove and even optimize the learning process. This is accompanied in specific situations by recog-
nition that optimization is impractical or even impossible. This motivates the present paper which
identifies generic structural factors that impose a fundamental limitation on optimization of learn-
ing.

Computation and data science is a broad and diverse field in which numerical evidence is em-
ployed in formulating and calibrating quantitative models. This is a learning procedure in the sense
that one uses the data to learn an accurate or useful implementation of a model.

Fang et al. (2020) study the formulation of a regression function where the independent entity
is a full probability distribution rather than a vector in a Euclidean vector space. They study a
learning procedure whereby a squared error of the regression is sequentially minimized. What
is learned is the functional relation between the set of probability distributions and the outcome
quantity. The regression procedure itself does not depend on what is learned, and hence this is
not a reflexive learning procedure. The authors present a learning algorithm in which the rate of
learning is optimal.

Chang et al. (2022) explore the modelling of complex systems that are characterized by random
variables X = {X1, . . . , Xn}. The joint probability distribution, P(X), may be difficult to estimate,
and may even be uncomputable, due to complex relations among the variables. They approximate
P(X) with a polynomial of finite order. Furthermore, they show that learning the structure of this
polynomial can be done in a duration that is related polynomially (rather than exponentially) to
the order of the approximating polynomial. The procedure for learning the polynomial structure
depends on the order of the polynomial that is sought, and is thus a reflexive learning procedure.
They don’t address the optimality of this learning procedure, though they stress that polynomial
time is required, which is less than exponential time.

Reliability-based design optimization. (RBDO)
Zhang et al. (2020) study RBDO of complex or large-dimensional engineering systems by em-

ploying more manageable surrogate models. The properties of the complex system are learned,
and the reliability of the design alternatives are assessed, by sampling the surrogate models. The
authors demonstrate an accurate and computationally efficient design procedure. This is a reflex-
ive learning procedure in the sense that the surrogate models are chosen in order to learn about
the complex system which itself is being designed.

Li and Wang (2019) study the analysis of reliability while employing precise experimental
data combined with models that may be biased. Their central question — which focusses on
a reflexive learning procedure — is how to identify relevant information from both the model
and the data upon which to assess the reliability of the system that has been modeled and mea-
sured. They develop a procedure for addressing this problem and fusing the model-based and
experimental information.

Li and Wang (2020) explore RBDO when employing both low- and high-fidelity data. The
learning procedure is the exploitation of the uncertain data in achieving optimal design. This
will be a reflexive learning procedure when the data that are collected and selected depend on
the design options that are analyzed.

Li and Wang (2022) use artificial neural networks for RBDO. The neural networks are trained
with data that may differ, probabilistically, from test data on the system being developed. The
design is optimized by learning about the system from training and test data. This learning is
reflexive because it occurs on the system being designed.
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Economics has merited many studies of learning procedures. We first consider three examples in
micro-economics, and then a macro-economic monetary policy example.

Aghion et al. (1991) develop a rigorous mathematical formulation in which an agent improves
knowledge of their payoff function by repeatedly selecting an action, under identical conditions,
and observing the outcome. They demonstrate that the long-run benefit of learning converges
asymptotically to zero. They also show, under various rather strict mathematical conditions, that
the agent can obtain a “true global optimum asymptotically” (p.642). The idea of a paradox of
optimal learning is reflected in the following passage:

“As long as the agent has not learnt all relevant aspects of his objective function he will
be in pursuit of two conflicting objectives: the maximisation of his expected short-run
payoff, and the maximisation of the informational content of the current action.” (p.621)

This is related to the paradox of optimal learning, namely, that reflexive learning cannot be opti-
mized when the learning process depends on what is to be learned. Aghion et al. however focus
primarily on the asymptotic properties of the learning in which the paradox is resolved by repetition
of the learning process.

Rob (1991) studies learning in markets with innovations or new products. Specifically, firms
decide whether or not to enter such markets based on observing the profitability of earlier entrants.
Firms’ uncertainty about the profitability of new products is gradually reduced by learning from
the market experience of other firms. The learning procedure that firms employ — observing the
success rate of earlier entrants — depends on how many other firms have entered, which in turn
depends on profitability of entry. Thus the learning procedure depends on what the firms wish to
learn: profitability of entry. This is a reflexive learning procedure. Rob shows that the equilibrium
rate of entry to the market decreases monotonically over time. Furthermore, the entry rate is less
than a socially optimal rate. In this sense the learning is sub-optimal.

In a related study, Brezzi and Lai (2002) explore the dilemma facing a rational economic agent
who wishes to maximize reward though a sequence of economic actions. The agent uses some
of those actions to learn about the probability distribution of rewards, rather than choosing the
putatively optimal action at each step. The learning procedure is the experimental deviation from
putatively optimal action. The implementation of this experimentation depends on the economic
reward, which is what the agent seeks to learn. The learning is thus reflexive. Nearly optimal
learning procedures for finite time horizons are developed.

Wieland (2000) studies German monetary policy after reunification of East and West Germany.
The impact of monetary policy is uncertain due to limited understanding of the public response
to policy. The central bank must therefore engage in two tasks: controlling the policy target (e.g.
inflation) and estimating the impact on the economy of policy actions. Wieland stresses that policy
actions and estimation of policy impact are linked because estimation can improve policy actions.
The learning procedure (estimation of market impact of monetary policy) is influenced by the level
of policy impact because detection of dramatic impact will be easier than detection of small im-
pact. The learning procedure is thus reflexive and thus cannot be optimized a priori. What Wieland
refers to as an “optimal learning strategy” exploits this linkage and significantly improves economic
stabilization and reduces the tendency for inflation (p.200).

Education is a learning procedure, and its improvement is the focus of much research.
Eichhorn et al. (2019) recommend procedures for teachers to enhance effectiveness of learning of

mathematics by students in elementary and high school. The procedures are pedagogical, and the
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students learn. Thus the article presents a teaching procedure, not a learning procedure. Nonethe-
less the combined teacher-student interaction is a learning procedure. It is not reflexive because the
procedure does not depend on what the student does not yet know because this is known to the
teacher, and there is no paradox of optimal learning.

Son and Sethi (2006) study the problem of optimally allocating time between distinct learning
tasks. They demonstrate that “optimal allocations are highly sensitive to structural characteristics
of the learning environment. Hence strategies that are highly effective with one class of learning
curves may be quite ineffective with another.” (p.770) In particular, the optimal allocation depends
on the “shape of the learning curve” and on the “goals or objectives of the learner” (p.760). It is
evident that prior specification of an optimal learning-time allocation may be infeasible because the
learning curve can change, or be poorly known a priori, and goals or objectives can change in the
course of the learning.

Schuetze and Yan (2022) explore the balance between breadth and depth when learning the
meanings of new words in limited time. The optimum balance is not unique, it depends on the indi-
vidual and the topic, but balance between breadth and depth is relevant to these and other learning
procedures. We note that the optimal balance may be unknown prior to the learning because that
optimum may depend on subsequent use of the knowledge that will be obtained.

Engineering systems can be designed to adapt to the operational environment based on learning.
Liu and Murphey (2020) study energy management in plug-in hybrid electric vehicles that run on
two different power sources: the engine and the battery. The energy management decision that
must be made continuously throughout the trip is the required power output of each source. The
learning that takes place is an estimation of the remaining energy-cost of the trip. The algorithm
for deducing this estimate is independent of the value that is learned, and thus is not reflexive. The
authors show large reduction in the time required to make this estimate, though optimization is not
addressed.

Machine learning has been widely used in engineering design. Specifically, transfer learning
refers to the application of knowledge obtained in solving one problem, to solution of a different
problem. For instance, Huang et al. (2022) explore transfer learning to problems in additive manu-
facturing. They write that “simulation for thermal modeling in metal AM [additive manufacturing]
. . . is tedious and time-consuming”, and that transfer learning enhances the efficiency of analysis.
Similarly, Pandita et al. (2022) stress that experimentation and modeling of additive manufacturing
processes “are expensive and oftentimes demand significant logistic and overheads.” They study
“transferring learned process maps from a source to a target process.”

Industrial management and operations research can also employ learning.
Chen et al. (2020) study the problem of a firm that maintains an inventory of their product in

anticipation of future sales. Too large an inventory is wasteful, while too small an inventory leads
to lost sales. The policy by which the inventory is maintained depends on customer demand and
on production capacity, both of which are random variables whose probability distributions are
imperfectly known. For example, in the case of new products or changing markets, these probability
distributions are changing and the firm must learn them over time based on past realizations of
demand and supply. The authors present an algorithm for learning these probability distributions
that enables an inventory policy that, asymptotically over time, approaches the policy that would
be optimal if they actually knew the probability distributions of customer demand and production
capacity. The paradox of optimal learning is manifested in the fact that the learning is optimal only
asymptotically.
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Epstein and Ji (2022) study the choice between generic options where the outcome is uncertain
due to exogenous randomness and ignorance about a parameter, θ, that can take one of two values.
The decision maker does not know the probability distribution of θ but knows a set containing
more than one possible probability distribution for θ. The decision maker can defer the choice and
observe outcomes and thus learn about the distribution of θ, but these observations entail a cost.
They explore the question of optimal learning: when to stop sampling and make a decision. One
context in which they study this is an extension of Ellberg’s urn problem (Ellsberg, 1961) of deciding
whether to bet on an urn with a known combination of blue or red balls, or an urn with an unknown
combination. They extend Ellsberg’s problem by considering the possibility of learning about the
ambiguous urn with unknown color ratio. The authors “show that it can be optimal to reject learning
completely, and, if some learning is optimal, then it is never optimal to bet on the risky urn after stopping.”
(italics in the original, p.1318). The learning derives from observing outcomes from the ambiguous
urn, and thus depends on the composition of that urn. Hence the learning is reflexive. The authors’
rejection of learning reflects in part the structure of the specific problem, and in part the paradox of
optimal learning: the learning procedure cannot be optimized because it depends on what is to be
learned.

Medical practice requires much learning, some of which is the attainment of motoric skill rather
than knowledge. Cau et al. (2022) study the process by which students of surgery learn new surgical
“gestures”. The learning of these actions can be impeded by an emotion of “epistemic confusion”
when an unanticipated or unfamiliar situation arises, even in a simulated operation. The control
of this emotion can enhance the efficacy of the learning process, and also subsequently make the
surgeon more effective in actual practice. This is reflexive learning because the learning procedure
(performing the maneuver in simulation) depends on what must be learned (the surgical maneu-
ver). (This differs, for example, from the non-reflexive learning procedure of discovering the next
digit of π: the algorithm does not depend on the value of that digit.) The authors stress that learn-
ing must occur rapidly, so optimal learning might entail minimizing the time until the maneuver is
learned. The maneuver was mastered by the teacher but not by the student whose learning is im-
peded by events that the learner could not anticipate precisely because the learner is inexperienced.
The teacher attempts to ameliorate the emotional dimension of this confusion by providing psy-
chological support. However, events that are unanticipated by the learner are inevitable precisely
because the learner is still learning. Emotional response to confusion by an inexperienced learner
cannot be entirely removed. This is the paradox of optimal learning: the process of learning cannot
be optimized because it depends on the action that must be learned. Confusion and the attendant
emotions, caused by unanticipated events in the surgical procedure, are inevitable in the learning
process of an inexperienced individual.

3 Examples of the Paradox of Optimal Learning

As explained earlier, learning is prevalent in many fields, and optimal learning is a procedure
whereby new knowledge is obtained while minimizing some specific measure of effort (e.g. time or
money expended). A paradox is a statement that appears self-contradictory, or contrary to common
sense, or simply wrong, and yet might be true. The paradox of optimal learning is the assertion
that a learning procedure cannot be optimized a priori — at the design stage — when the proce-
dure depends on knowledge that the learning itself is intended to obtain. This is called a reflexive
learning procedure. Many learning procedures can be optimized before implementation. However,
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optimization of most (but not all) reflexive learning procedures is not possible.
For example, suppose that we wish to know how long it will take to bring an innovative insight

to practical fruition. We can’t know how long it will take until the project is successfully completed
because unknown problems will have to be solved and unanticipated inventions will be needed
along the way. The effort required to complete the project (and to learn the project duration) is
measured as the amount of money required to fund the development team. Determination of the
minimal amount of money that must be set aside for this development project depends on the
duration of the development, which is unknown. The learning procedure (implementation of the
project) and the effort (money required) depend on what is to be learned (the project duration).
Optimal learning (minimizing the effort) is inaccessible. We cannot optimize the cost of innovative
technological development at the project planning stage.

As another example, suppose that we wish to know the first 3 significant digits of the depth of
this newly discovered cave. The effort required to obtain this knowledge is measured as the amount
of food that must be carried by the explorers probing the cave. Determination of the minimal quan-
tity of food requires knowledge of the depth of the cave, which is unknown. The learning procedure
(spelunking) and the effort (food carried) depend on what is to be learned (cave depth). An optimal
procedure for learning the cave depth is inaccessible when planning the exploration.

One resolution of the cave-depth paradox would seem to be to employ an adaptive learning
procedure. Current knowledge indicates the amount of food typically required to reach and return
from the end of caves in this region. One might add some additional food, and then start spelunking.
If half of the food is consumed before reaching the bottom of the cave then return to the surface,
augment the amount of food, and start again. This adaptive procedure is repeated until the end of
the cave is reached.

But can one optimize this adaptive procedure before initiating it? For instance, can one minimize
the total time required? Adding a single cracker on each iteration clearly is sub-optimal because
many iterations will be needed. Adding a vast quantity of food is also sub-optimal because the
explorers will be slowed down by the vast loads they are carrying. However, the optimal increment
of food added on each iteration depends on the depth of the cave. An optimal adaptive procedure
for learning the cave depth is inaccessible before beginning the spelunking.

In both of these examples the learning procedure depends on the specific new knowledge that
will be learned. The technological development involves commitment of resources and payments
to the developers, all of which are influenced by the duration of development. The quantity of food
needed by the spelunkers depends on the depth of the cave. We are not claiming that there is no
optimum in either of these examples. There may indeed be a minimal budget or a minimal food
requirement, and one may even accidentally choose the minimum just by chance. We are claiming
that one cannot know or evaluate the minimum a priori.

A paradox is a statement that seems to be self-contradictory or erroneous but that might nonethe-
less be true. The paradox of optimal learning is the assertion that a priori optimization of a learning
procedure is not possible if the learning procedure depends on the knowledge that one seeks to
learn. The above preliminary examples illustrate reflexive learning procedures that cannot be opti-
mized at the design stage: before implementation. Nonetheless, some reflexive learning procedures
can be optimized a priori, as we will see. And we provide a response when they cannot be optimized.
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4 Mathematical Formulation of the Paradox of Optimal Learning

The knowledge that is sought may be a specific number, or a vector, or a functional relationship,
or qualitative semantic terms, or a combination of these entities. Let k denote the knowledge that
is sought, and let r specify the realization of a specific learning procedure intended to obtain this
knowledge. r represents how the learning procedure is actually implemented. The effort that would
be required to learn (or verify) that the knowledge takes the value k, with this realization of the
learning procedure, is denoted e(k, r). We will assume that the effort is a single scalar quantity.

An optimal learning procedure is one that minimizes the effort. We denote an optimal learning
procedure as:

r?(k) = arg min
r

e(k, r) (1)

The precise statement of the paradox of optimal learning is that optimization of the learning
procedure, r, is not possible a priori — when designing the learning procedure — if r?(k) depends
on the knowledge that is sought, k. This knowledge is unknown before the learning has been per-
formed, so r?(k) cannot be known or determined when designing the learning procedure. This is
illustrated schematically in fig. 1. The horizontal axis schematically represents the domain of pos-
sible learning procedures, r, and the vertical axis is the effort, e(k, r), required to obtain knowledge
k with procedure r. The figure shows the effort, as a function of the learning procedure, for 3 dif-
ferent realizations of the knowledge. The optimal learning procedure, r?(kn), is different for each
knowledge state, k1, k2, and k3. One cannot know which of these procedures is optimal without
knowing which state of knowledge prevails: the learning procedure cannot be optimized before the
knowledge has been attained.

It is possible that r?(k) is actually independent of k even if the learning procedure, as manifested
in the effort e(k, r), is reflexive and does depend on k. The effort, e(k, r), as a function of the learning
procedure, r, may change as the knowledge, k, changes. Even the minimal value of the effort may
differ as k changes. It is still possible that the learning procedure which minimizes the effort, r?(k), is
independent of k. This is illustrated schematically in fig. 2 in which we see that the optimal learning
procedure, r?(kn), is the same for each knowledge state, k1, k2, and k3.

Figure 1: Schematic effort func-
tions with different optimal
learning procedures.

Figure 2: Schematic effort func-
tions with the same optimal
learning procedure.

The effort function, e(k, r), is known a priori, before the value of k is learned. Thus one can know
if its minimum (as a function of r) is independent of k and that consequently the paradox of optimal
learning is avoided. That is, it is possible that the paradox of optimal learning is avoided and a priori
optimization is possible. We will see an example in section 5.
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5 Optimal Learning is Sometimes Possible

The effort required to learn something may depend very strongly on the specific value that is to be
learned. The effort to learn the depth of a cave or the height of a mountain increases greatly as the
depth or height increases. Consider a simplistic preliminary example.

The knowledge, k, is a single scalar value and the effort is an exponential function of k:

e(k, r) = aebk (2)

where a and b are known positive constants that depend on the learning procedure, r. The learn-
ing procedure is a reflexive learning procedure if it depends on the knowledge, as in the cave-
exploration example.

If the knowledge, k, is known to take some positive value, then the effort can be minimized
by choosing the learning procedure so that both a and b are as small as possible (but positive by
definition). In this case, the learning can be optimized a priori because the procedure that minimizes
the effort does not depend on the value of k. However, if all we know is that k is a real number,
then we don’t know whether b should be small or large in order to minimize the effort; a priori
optimization of the learning procedure is not possible. Both cases entail reflexive learning, but the
first case can be optimized before implementation (because the minimum effort does not depend on
the specific value of k) while the second cannot.

6 Mathematical Formulation of Robust Satisficing

The paradox of optimal learning is the assertion that one cannot optimize — a priori, before imple-
mentation — some measure of the effort when the learning procedure depends on knowledge that
has not yet been obtained. An info-gap response is to satisfice the effort and to optimize the robust-
ness against one’s ignorance of the knowledge that is sought. We will treat this ignorance as a deep
uncertainty, as modeled and managed in info-gap decision theory (Ben-Haim, 2006). The optimiza-
tion is shifted from a substantive component (the effort) to a procedural component (the robustness
to uncertainty). Optimization of the robustness in a reflexive learning procedure can be achieved,
as we will illustrate with examples in sections 7–10.

Our goal is to satisfice the effort, namely, to assure that the effort does not exceed a critical value,
ec:

e(k, r) ≤ ec (3)

We do not know the knowledge, k, though some limited and highly uncertain knowledge is
available. That knowledge and ignorance is represented by an info-gap model of uncertainty (Ben-
Haim, 2006). An info-gap model is an unbounded family of nested sets, U (h), for h ≥ 0, of possible
realizations of the uncertain entity (the knowledge in the present context); we will see examples
subsequently. Info-gap models of uncertainty satisfy two axioms, contraction and nesting.

Contraction is the assertion:
U (0) =

{
k̃
}

(4)

where k̃ is a known (but possibly faulty) estimate of the knowledge. The contraction axiom asserts
that the estimate is correct in the absence of uncertainty.

Nesting is the assertion:
h < h′ =⇒ U (h) ⊆ U (h′) (5)
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The nesting axiom asserts that the uncertainty sets become more inclusive as h increases.
These axioms endow h with its meaning as an horizon of uncertainty: the range of variation of

the uncertain entity increases as h increases. An info-gap model is a non-probabilistic representation
of the uncertainty about the knowledge. Furthermore, the family of sets is unbounded — all we
know about h is that it is non-negative — so there is no known worst case or greatest error.

The robustness — to uncertainty in the knowledge — of the learning procedure r, is the greatest
tolerable uncertainty. More precisely, the robustness is the maximum horizon of uncertainty, h,
up to which the effort satisfies the condition in eq.(3) for all realizations of the knowledge in the
uncertainty set U (h). Formally, the robustness of a learning procedure r is:

ĥ(ec, r) = max
{

h :
(

max
k∈U (h)

e(k, r)
)
≤ ec

}
(6)

We point out that the robustness function, ĥ(ec, r) does not depend on the knowledge, k, that is
sought. Thus the robustness can be evaluated, and the learning procedure that maximizes the ro-
bustness can be determined. That is, the value of r that maximizes the robustness, ĥ(ec, r), can be
found a priori, even if the value of r that minimizes the effort, e(k, r), cannot be found a priori.

Let r̂ denote the learning procedure that maximizes the robustness:

r̂ = arg max
r

ĥ(ec, r) (7)

We note again that r̂ does not depend on the knowledge, k, which has not yet been obtained. Thus
r̂ can be determined a priori, unlike r?(k) in eq.(1).

One might ask how much does the robust-optimal learning procedure, r̂, depend on the initial
guess, around which the info-gap model of uncertainty is constructed? The answer is entailed in
the meaning and definition of the robustness. If the robustness is large then the robust-optimal
learning procedure is relatively independent of the initial knowledge, while low robustness im-
plies larger dependence on the prior knowledge.

Eq.(6) implies a complementarity between effort and robustness: small effort entails large ro-
bustness. However, we cannot maximize the robustness by minimizing the effort because the learn-
ing is reflexive. Nonetheless, r̂ is the learning procedure that minimizes the maximum of the effort
as a function of the unbounded horizon of uncertainty, h. We cannot minimize the effort, but we can
minimize the sensitivity of the effort to uncertainty in the knowledge that is sought. This is what r̂
achieves.

The complementarity between effort and robustness to uncertainty can be expressed in the fol-
lowing proposition.

Proposition 1 Lower effort implies greater robustness to uncertainty.
Given:
• A scalar effort function, e(k, r).

• An info-gap model of uncertainty in the knowledge, U (h), h ≥ 0.

• The robustness function based on this info-gap model, ĥ(ec, r), defined in eq.(6).

• Two learning procedures, r and r′.
If:

e(k, r) ≤ e(k, r′) for all k ∈ U (h), h ≥ 0 (8)

Then:
ĥ(ec, r) ≥ ĥ(ec, r′) for all ec (9)
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The proof of proposition 1 appears in appendix A.
We note that the implication in proposition 1 is uni-directional — lower effort throughout the

knowledge domain implies greater robustness. The reverse implication need not hold. Lower effort
and greater robustness display a complementarity, but they are not equivalent. This is related to the
difference between r?(k) and r̂ in eqs.(1) in (7): the latter can always be determined a priori while the
former cannot.

We will consider 4 examples in the following 4 sections.

7 Empirical Regression: Analysis of Robustness to Uncertainty

The knowledge to be obtained, k, is an empirical regression between two variables, such as stress
versus strain in a new non-isotropic material, or force versus acceleration in a medium with high
viscosity. The design of the sampling procedure to obtain this knowledge depends on a poorly
known probability density function that contains at least some of the knowledge that is sought.
Thus this is a reflexive learning procedure.

The best estimate of the probability density is p̃(x), and the uncertainty in this estimate is rep-
resented by an info-gap model, U (h) for h ≥ 0. We must estimate the independent variable x (e.g.
stress or force). The effort required for this estimation is proportional to the value of x. If x takes
a low or moderate value then only low or moderate effort is required for the estimation (e.q. only
low or moderate forces are required); a large value of x requires large effort.

We will use the quantile function to assess the effort. For any value of α between 0 and 1, let
qα denote the quantile function of x based on the true distribution, p(x). The quantile is defined
as the probability that x does not exceed qα. The formal definition of the quantile is:

α = Prob(x ≤ qα) =
∫ qα

−∞
p(x)dx (10)

Thus the effort, as assessed by the quantile qα, is the probability that the value to be estimated is
no greater than qα.

We require that the effort, as assessed by the quantile, not exceed a critical value, qc:

qα ≤ qc (11)

The robustness of the learning procedure, to uncertainty in the probability distribution, is the
greatest horizon of uncertainty, h, up to which the quantile qα satisfies eq.(11) for all probability
distributions p(x) in the uncertainty set U (h):

ĥ(qc) = max
{

h :
(

max
p∈U (h)

qα

)
≤ qc

}
(12)

As a specific simple example suppose that we know that the probability density is exponential,
but that the estimate of the exponential coefficient is uncertain. Thus:

p(x) = λe−λx, x ≥ 0 (13)

The coefficient λ is uncertain, though it must be positive. The known estimate of λ is λ̃ but, while
this estimate is based on some prior knowledge, the extent of error of this estimate is unknown.
In some situations one may also have prior knowledge of an error estimate, denoted w, e.g. as
a result of sampling or prior experience. In this case the most one can say is that the fractional
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error of λ̃, in units of w, is unbounded. In other situations one has no prior error estimate, in
which case we choose w = λ̃, and the fractional error of λ̃, in units of λ̃ itself, is unbounded.
This uncertainty in the probability distribution is quantified by the following info-gap model for
uncertainty in λ:

U (h) =
{

λ : λ > 0,

∣∣∣∣∣λ− λ̃

w

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (14)

where w is a known positive constant.
The following expression for the robustness is derived in appendix B:

ĥ(qc) =
1
w

(
λ̃ +

ln(1− α)

qc

)
(15)

The robustness is defined to be zero for values of qc at which this expression is negative.

Figure 3: Robustness functions illustrat-
ing trade off, zeroing and preference re-
versal.

Fig. 3 shows robustness curves for two different realizations of the learning procedure as man-
ifested in the parameters λ̃, w and α. From the robustness function in eq.(15) we see that the hori-
zontal intercept occurs when qc takes its estimated value which from eq.(29) in appendix B is:

qα = − 1
λ̃

ln(1− α) (16)

The horizontal intercepts of the robustness curves are 1.20 (dash) and 2.30 (solid) because the
estimated quantile for α = 0.7 (dash) is less than for α = 0.9 (solid). The effort is assessed with
this quantile, so α = 0.7 has lower predicted effort and thus is putatively preferred. However, these
predicted quantiles have no robustness to uncertainty in the shape of the uncertain probability dis-
tribution (the robustness at the horizontal intercept is zero). Hence preference for the dashed con-
figuration — based on these predictions — is unfounded. This is the property of zeroing: predicted
outcomes have zero robustness to uncertainty in the data and models upon which the predictions
are based.

The robustness curves in fig. 3 have positive slope, showing that robustness increases (which is
desirable) as the critical quantile, qc, gets larger (which is undesirable because this means greater
effort). This positive slope reflects the universal trade off between robustness to uncertainty and
quality of the outcome. More demanding outcomes (lower qc in the present example) have lower
robustness to uncertainty. Combining the concepts of zeroing and trade off, one sees that predicted
outcomes are unreliable (zeroing), while less desirable outcomes are more confidently anticipated
(trade off). The robustness function quantifies this trade off.
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From eq.(15) we see that the robustness asymptotically approaches the value λ̃/w as the critical
quantile, qc, approaches infinity. The asymptotic robustness values in fig. 3 are 3.3 (solid) and 1.6
(dash). The solid configuration has better (greater) asymptotic robustness to uncertainty but puta-
tively worse (greater) predicted quantile. Consequently the robustness curves cross one another. At
low values of qc the dash configuration is more robust and hence preferred over the solid configura-
tion, while the situation is reversed at larger values of qc. In other words, the intersection between
the robustness curves, as seen in fig. 3, entails the potential for a reversal of the robust preference
between these two learning procedures.

We now relate the info-gap concept of robustness to the paradox of optimal learning.
As explained earlier, the paradox of optimal learning is the assertion that a learning procedure

cannot be optimized a priori when the procedure depends on knowledge that the learning itself is
intended to obtain. In the present example the learning procedure (random sampling of a popula-
tion) depends on an uncertain probability distribution that entails at least part of the knowledge that
is sought (a regression). Thus p(x) is uncertain (because the knowledge is yet to be obtained) and
hence the quantile cannot be minimized. The robustness to uncertainty, however, can be evaluated
as we have seen.

Each robustness curve in fig. 3 refers to a different learning procedure as characterized by the pa-
rameters (λ̃, w, α). The dash procedure is putatively better than the solid procedure as demonstrated
by their horizontal intercepts. The putatively optimal choice between these learning procedures
would be for dash. However, the zeroing property implies that this prioritization is unreliable, even
fatuous or irresponsible, because the predicted qualities of these two procedures have no robust-
ness to the uncertainty of the knowledge underlying the predictions. This underlying knowledge
(the uncertain probability distribution) entails part of the knowledge that is sought (the regression
relation). One cannot optimize the choice between these two learning procedures, a priori, because
they depend on the knowledge that is sought. This is the paradox of optimal learning.

The learning procedure itself cannot be optimized a priori, but the robustness to uncertainty can
be optimized while satisficing the learning procedure. That is, the burden of optimization is shifted
from the learning procedure itself, to the robustness to one’s current ignorance that will be dis-
pelled by the learning procedure. This is a shift from a substantive entity (the learning procedure)
to a methodological entity (immunity to uncertainty). We are not removing the initial paradox or
refuting the assertion that a priori optimization of the learning procedure is impossible. Rather, we
are shifting attention to a different task: management of ignorance. As explained earlier, the robust-
ness curves enable a unique choice between the dash and solid learning procedures, to optimize the
robustness, depending on the decision maker’s required level of performance, qc.

8 Empirical Estimation of an Uncertain 1-Dimensional Function

In many situations one uses a limited number of measurements to estimate the shape of a function.
For instance, quality control measurements certify the shape of a processed surface. Measurements
of market prices and quantities purchased of a specific product are used to estimate the relation
between supply and demand for that product. The mechanical efficiency of a milling machine is
assessed by measuring the rate of progress as a function of power. Other examples abound, and we
will consider a simple generic version of these estimations.

The function f (x) is defined on the 1-dimensional domain X = [0, 1]. We will use measure-
ments at discrete points in X to estimate the shape of the function. The question we face is how to
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choose the measurement locations, which we denote with the set XN . We will show that one cannot
choose the measurement locations to optimize a substantive measure of performance. We will then
argue that one can choose the measurement locations to satisfice the substantive performance and
optimize the robustness to uncertainty about the estimated function.

The best-known approximation to the function f (x) is f̃ (x). However, the fidelity of this ap-
proximation to the true function is highly uncertain. That is, f̃ (x) is quite likely wrong in important
but unknown ways. Thus f̃ (x) is not a good basis for selecting measurement locations, though it
will serve as the center point for an info-gap model of uncertainty in f (x).

The learning procedure is based on where, in X, to perform the N measurements. The design
of the learning procedure hinges on how to choose the measurement locations in the set XN . One
approach is to disperse the measurements so that the density of measurements is proportional to
the rate of change of the function, f (x). This implies performing more measurements where f (x) is
varying rapidly. To formalize this we divide the domain X into M equal small intervals, and let µi

denote the midpoint of the ith interval. Denote the absolute derivative of f (x) at µi as:

δi =

∣∣∣∣d f (x)
dx

∣∣∣∣
µi

, i = 1, . . . , M (17)

The number of measurements to be performed in the ith interval is proportional to the rate of change
of f (x) in that interval:

ni =
δi

∑M
j=1 δj

N, i = 1, . . . , M (18)

For simplicity we are ignoring the fact that the ni’s must take discrete values.
This is a reflexive learning procedure because the choice of the measurement points depends on

the function, f (x), that is to be estimated, as seen in eqs.(17) and (18). The choice of measurement
points according to eq.(18) is optimal, but it cannot be implemented a priori because the learning
procedure is reflexive. That is, eqs.(17) and (18) depend on the function, f (x), about which we are
trying to learn.

One standard approach to solving this quandary is to choose the measurement positions by
employing the estimated function, f̃ (x), in eq.(17). Let X?

N denote this choice of the measurement
positions. The problem with this approach is that f̃ is likely to be quite wrong, so selecting the
measurement positions according to f̃ is unrealistic.

We now suggest an alternative response to the impossibility of optimally choosing XN a priori.
This approach explicitly addresses the uncertainty in the function f (x). Let νi( f ) denote the right-
hand side of eq.(18), which is the optimal value of the number of measurements in the ith bin. These
quantities are unknown at the design stage because they depend on the unknown function, f (x),
whose shape is to be learned by the measurements. Let ni denote a choice of the number of mea-
surements to be performed in the ith bin, which may differ from νi( f ), for i = 1, . . . , M. The total
squared difference between the actual and optimal number of measurements is:

S( f , XN) =
M

∑
i=1

[ni − νi( f )]2 (19)

The choice of ni in eq.(18) would minimize this quantity. However, that choice is unknowable,
before performing the measurements, precisely because it depends on f (x) which is what we are
trying to learn.
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The approach advocated here is to choose the measurement locations to satisfice the squared
deviation, S( f , XN), and to maximize the robustness to uncertainty in the true function, f (x). We
formulate this as follows.

Let U (h) denote an info-gap model for uncertainty in the function f (x). This info-gap model
contains whatever knowledge we have about f (x), e.g. the current best estimate f̃ (x), and perhaps
additional information such as monotonicity, or uni-modality, or end-point values, etc. The robust-
ness function is the greatest horizon of uncertainty, h, up to which the mean squared error is no
greater than a critical value, Sc. The formal definition of the robustness function is:

ĥ(Sc, XN) = max
{

h :
(

max
f∈U (h)

S( f , XN)

)
≤ Sc

}
(20)

The robust-optimal choice of the measurement positions is the value of the set XN that maxi-
mizes the robustness for satisficing the squared error. Formally, the robust-optimal measurement
positions are defined as the set:

X̂N = arg max
XN

ĥ(Sc, XN) (21)

This choice of measurement locations will usually differ from the estimated optimal locations, X?
N ,

defined earlier. We stress that the measurement locations X̂N can be evaluated a priori, while the
locations in X?

N cannot.

9 Adaptive Estimation of an Uncertain 1-Dimensional Function

We now consider an adaptive modification of the example in section 8.
The function f (x) is defined on the 1-dimensional domain X = [0, 1]. We will use measurements

at discrete points in X to estimate the shape of the function. The measurement locations are chosen
adaptively, that is, after each measurement an adaptive location-selection algorithm chooses the
next measurement location. We will show that one cannot design this adaptive algorithm, a priori,
to minimize the number of steps needed to achieve a specified level of fidelity between the true and
the estimated functions. We will then argue that one can design the adaptive algorithm a priori to
satisfice the number of steps and the level of fidelity, and to optimize the robustness to uncertainty
about the estimated function.

N (possibly noisy) measurements of f (x) have been made, and that data is used to fit a functional
approximation to f (x). Specifically, the measurements are used to choose the coefficients, c, of
a function denoted φ(x|c, N). The remaining uncertainty in the true function is represented by
an info-gap model, UN(h). Note that UN(h) does not necessarily become more restrictive as the
number of measurements grow; new information may in fact reveal new uncertainties.

After the Nth measurement, the measure of deviation of the estimated function, φ(x|c, N), from
the true function, f (x), is denoted S( f , N). For example, this might be the integral squared devia-
tion:

S( f , N) =
∫ 1

0
[φ(x|c, N)− f (x)]2 dx (22)

We desire a small value for this measure of error. Let Sc denote the largest acceptable value. We
assume that S( f , N) is a non-increasing function of N, that is, the error of the estimate does not
increase as the number of measurements increases.

Let N( f , Sc) denote the number of measurements required so that the measure of error does not
exceed a critical value Sc. Note that this number of measurements depends on the function, f (x),
that is unknown and is being estimated.
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Let α denote the design decisions underlying the formulation of the adaptive algorithm. These
may include parameters, or functions, or linguistic variables. For any specification of the measure of
error, let α?( f , Sc) denote the design of the adaptive algorithm that minimizes the number of steps
required to achieve error Sc:

α?( f , Sc) = arg min
α

N( f , Sc) (23)

Note that this algorithm depends on the function, f (x), that is being estimated. In other words,
the design of the adaptive algorithm is a reflexive learning procedure. One cannot determine the
optimal adaptive algorithm, α?( f , Sc), a priori because it depends on the function that is being esti-
mated.

Recall that φ(x|c, N) denotes the estimate of the function after the Nth measurement. One could
design the adaptation in eq.(23) based on φ(x|c, N) rather than on f (x), and this will be plausible
once this estimate is reasonably accurate. However, early in the adaptive procedure, when f (x) is
deeply uncertain and φ(x|c, N) is still quite likely wrong in important ways, this will be an unreli-
able procedure.

We now propose an alternative procedure for designing the adaptive algorithm. This procedure
is based on satisficing the number of steps (required to reduce the measure of error to Sc) and max-
imizing the robustness to uncertainty in the estimated function. In other words, we are not trying
to optimize the error (which cannot be done a priori because this is a reflexive learning procedure).
Rather we are satisficing the error and optimizing the robustness to uncertainty. The robustness (to
uncertainty in f (x)) for reducing the measure of error to Sc in no more than Nc steps is defined as:

ĥ(Sc, Nc) = max
{

h :
(

max
f∈U (h)

N( f , Sc)

)
≤ Nc

}
(24)

The robustness function depends on the adaptive algorithm, α, because the number of steps,
N( f , Sc), depends on the algorithm. The robust-optimal algorithm, α̂(Nc, Sc), maximizes the ro-
bustness to uncertainty, while satisficing the measure of error and the number of steps. This robust-
optimal algorithm is formally defined:

α̂(Sc, Nc) = arg max
α

ĥ(Sc, Nc) (25)

This optimization of the adaptive algorithm can be performed a priori because it does not depend on
the unknown function, f (x). In fact, α̂(Sc, Nc) explicitly addresses the uncertainty in f (x) through
the info-gap model of uncertainty. In addition, one will usually find that α̂(Sc, Nc) differs from
α?( f , Nc) for any particular realization of the function f (x). More importantly, α̂(Sc, Nc) is the adap-
tive algorithm that achieves specified performance — in terms of measure of error and number of
steps — for any realization of the unknown function up to horizon of uncertainty equal to the ro-
bustness. If this robustness is large then one can have confidence in achieving these outcomes; low
robustness implies that these outcome requirements are unrealistic.

10 Surrogate Functions in Design of Complex Systems: Satisficing the
Effort

Consider a complex mechanical system, for instance a railroad car roaring along the track, or a
micro-mechanical manipulator, or an autonomous robotic surgical device. The design process en-
tails “learning” or “discovering” the values of various design parameters — material properties,
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geometrical dimensions, rotational degrees of freedom, etc. — that will achieve the required per-
formance. The design process involves, among other things, heavy computations of mechanical
models that depend on the design that is sought. The paradox of optimal learning asserts that one
cannot formulate an a priori procedure for discovering these design values that optimizes a measure
of effort — e.g. number or duration of the computations. This is because the learning procedure is
reflexive: the computations and associated numerical search depend on the design values that are
sought. Likewise, if the design procedure is adaptive, then the paradox of optimal learning asserts
that one cannot design the adaptive procedure a priori to minimize a measure of effort. However,
the effort can be satisficed by focussing on the robustness to uncertainty in the value of the design
variables. In this section we develop these ideas in a specific numerical example.

10.1 Introduction

We focus on a single design variable such as a beam thickness or material stiffness, and a single
performance function such as vibration amplitude, or cost, or weight. Any choice of the design
variable determines a unique value of the system performance, for which a small value is desirable.
The design variable is denoted by d and the system performance function is S(d).

The performance function can be evaluated very accurately at any point in the design space, but
this is very costly and can be done only a limited number of times. Very little is initially known
about the performance function except that it is a real scalar function and perhaps non-negative by
definition.

Precise evaluation of S(d) is made at N points in the design space denoted by the set D =

{d1, . . . , dN}. The number of precise evaluations, N, is a measure of the effort in the design process.
One would like to minimize the number of these heavy calculations, while enabling choice of the
design variables to achieve satisfactory performance. However, the number and location of the
calculation points depends on what one seeks to learn: the choice of the design variables to achieve
good performance as assessed by S(d). Thus this is a reflexive learning procedure. The paradox of
optimal learning asserts that one cannot minimize N a priori, either statically (fixed N) or adaptively
(successive additional calculations).

The values of S(d) at the calculation points, D, are fit with a “surrogate” function, φ(d), that
is readily computed and that passes through the N exact values of the performance function (see
Queipo et al. 2005). This surrogate provides an approximation to the performance throughout the
design space, and will serve as the basis for design, though we will have to address the uncertain
fidelity of φ(d) to S(d) at points other than D.

The central task that we face is to identify regions in the design space in which the performance
function is acceptable. Performance is acceptable if its value is no greater than a critical value Sc,
which may be a specified value or it may be a parameter that will be explored in the design process.
If the exact calculated value of S(di) at some calculated point di in design space is acceptable, then
we would like to identify the region around this design point throughout which the performance
is acceptable. More generally, if φ(d) seems acceptable at some point d (recalling that φ(d) deviates
from S(d)), then we want to know how large a region around d is actually acceptable according to
S(d). Two supporting questions are related to this task: should an additional exact calculation of the
performance function be made, and if so, where in the design space should the calculation be made?
These calculations are very costly, so one would like to minimize the number, but this is unfeasible
because the learning is reflexive, as noted earlier. Hence we satisfice the number of calculations
while managing the uncertainty of the performance function with the info-gap robustness.
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10.2 Formulation of Robustness to Uncertainty

φ(d) is known throughout the design space, and acts as a surrogate for the true performance func-
tion, S(d), which is known only at the N points at which S(d) was calculated. Suppose that we
have identified a region, ∆, in design space throughout which φ(d) ≤ Sc, suggesting that this is an
acceptable region of the design space. However, the function φ(d) is precise only at the points at
which the performance function was calculated, and φ(d) may deviate from S(d) at other points in
∆. We want to know if the N calculations are sufficient to confidently assert that S(d) ≤ Sc through-
out ∆. We can be confident in ∆ as a legitimate design set — based on N exact calculations — if
S(d) can deviate greatly from φ(d) and still satisfy the performance requirement throughout ∆. We
formalize these ideas as follows.

Let U (h) denote an info-gap model for uncertainty in the performance function, S(d). There are
various possibilities for the info-gap model, depending on what one knows or is willing to assume.
We will assume very little formal prior information about the performance function, while also
recognizing that the designer may have qualitative contextual understanding that further constrains
the possible performance functions. The fractional-error model is a minimally informative info-gap
model:

U (h) =
{

S(d) : S(d) = φ(d) ∀ d ∈ D,
∣∣∣∣S(d)− φ(d)

φ(d)

∣∣∣∣ ≤ h ∀ d
}

, h ≥ 0 (26)

Each set, U (h), in this info-gap model contains all performance functions, S(d), that take the cal-
culated values at the points in D, and which fractionally deviate from the surrogate, φ(d), by no
more than h throughout the entire design space. This info-gap model allows discontinuous and
non-smooth performance functions, S(d).

There are other info-gap models, such as the slope-bound model, the Fourier ellipsoid-bound
model, or the energy-bound model, that employ different prior knowledge of the performance func-
tion (Ben-Haim, 2006).

The robustness of a proposed design region, ∆, based on N calculations, is the greatest horizon of
uncertainty in the true performance function up to which its performance is acceptable throughout
∆:

ĥ(Sc, N, ∆) = max
{

h :
(

max
d∈∆

max
S(d)∈U (h)

S(d)
)
≤ Sc

}
(27)

Numerical evaluation of this robustness function is described in appendix C. This appendix
also specifies and plots the performance function S(d) whose calculated values determine the
surrogate function φ(d) and which underlies the info-gap model in eq.(26). The surrogate func-
tion, φ(d), is also defined in appendix C.

10.3 Interpreting the Robustness Curves

Fig. 4 shows robustness curves corresponding to surrogates of order N = 4, 8 and 12. The order of
the surrogate equals the number of exact calculations. We see that the robustness increases as the
order of the surrogate increases, portrayed explicitly in fig. 5. However, this is not always true, in
particular at low robustness.

Note also zeroing and trade off of the robustness curves in fig. 4. The predicted values of the
performance occur at the horizontal intercepts and have zero robustness to uncertainty. The trade
off is that ĥ(Sc, N, ∆) increases (which is good) as Sc increases (which is undesirable). One also sees
that the cost of robustness decreases from N = 4 to N = 8 (the latter is steeper than the former),
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Figure 4: Robustness,
ĥ(Sc, N, ∆), vs critical per-
formance, Sc, for N = 4, 8 and
12 calculations.

Figure 5: Robustness,
ĥ(Sc, N, ∆), vs N, for Sc = 3,
4 and 5.

and decreases less from N = 8 to N = 12. This change in the cost of robustness is an expression of
the diminishing marginal benefit of an additional computation, as we now demonstrate explicitly.

Fig. 5 shows the robustness, ĥ(Sc, N, ∆), versus the number, N, of calculations of the perfor-
mance function for the domain ∆. Each curve is evaluated at a different value of the critical perfor-
mance, Sc. These curves are based on robustness curves, ĥ(Sc, N, ∆) vs. Sc, 3 of which are shown in
fig. 4. We note that the robustness increases substantially from 4 to 8 calculations, and increases less
from 8 to 12 calculations, and increases hardly at all from 12 up to 20 calculations. This implies that
the value of an additional calculation is substantially greater after 4 calculations than after 8, and
that after 12 calculations the value of additional calculations is very small. Furthermore, the robust-
ness to uncertainty in the performance function after 4 calculations is quite low for all 3 values of
Sc. After 8 calculations the robustness is becoming substantial, but not overwhelming in any of the
3 values of Sc. By N = 12 calculations the robustness is substantial for Sc = 5, but less so at lower
Sc due to the trade off.

Consider a point (N, ĥ) on any curve in fig. 5. The value of ĥ is the robustness for satisficing
the performance at the corresponding value of Sc given N calculations. Stated differently, N is the
smallest number of calculations that is adequate for satisficing the performance at Sc. When the
condition in fig. 4 holds — robustness increases as the number of calculations increases — we can
understand ĥ in fig. 5 as the greatest horizon of uncertainty at which N calculations are adequate for
satisficing the performance at Sc throughout the region ∆. Thus each curve in fig. 5 can be thought of
as a robustness curve for satisficing the number of calculations at N and satisficing the performance
at the corresponding value of Sc.

11 Conclusion

Engineering design, technological risk assessment, and decisions in many other disciplines entail
learning or discovering new knowledge. For example, the new knowledge may be an innovative de-
sign concept, or assessment of severity of a new failure mechanism. Optimal learning is a procedure
whereby new knowledge is obtained while minimizing some specific measure of effort (e.g. time or
money expended). A paradox is a statement that appears self-contradictory, or contrary to common
sense, or simply wrong, and yet might be true. The paradox of optimal learning is the assertion that
a learning procedure cannot be optimized a priori — when designing the procedure — if the learning
procedure depends on knowledge that the learning itself is intended to obtain. We have referred to
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such a learning procedure as a reflexive learning procedure. The paradox — a priori optimization
of a reflexive learning procedure is not possible — is usually (though not always) true. We have
characterized those situations in which a reflexive learning procedure can be optimized a priori.

We discussed the prevalence of reflexive learning and presented examples of the paradox and
when it is avoided. We discussed a response based on the concept of robustness to uncertainty as
developed in info-gap decision theory. Our examples range from simple and heuristic to a not-so-
simple technological application, and include both static and adaptive learning procedures.

We have considered deep uncertainty about the knowledge that will be sought by the learning
procedure. The uncertainty is not bounded by a worst case or greatest deviation of the true knowl-
edge from prior conceptions about that knowledge. This uncertainty is represented by an info-gap
model of uncertainty that is non-probabilistic and unbounded.

When the paradox of optimal learning holds and the effort of the reflexive learning procedure
cannot be minimized a priori — which is usually the case — we have proposed to satisfice the effort
and to maximize the robustness to the uncertainty, as formulated in info-gap decision theory. The
robustness of a learning procedure is the greatest horizon of uncertainty (about the knowledge) up
to which the effort of the learning procedure is no greater than a specified critical value. We have
observed two universal properties of the robustness function: zeroing and trade off. The robustness
of the predicted effort is zero, and the robustness can be increased (which is good) only by allowing
greater effort (which is undesirable).

Furthermore, we have seen that minimizing the effort (of the learning procedure) and maximiz-
ing the robustness (to the prior uncertainty) are complementary: Reducing the effort will enlarge the
robustness to uncertainty, and maximizing the robustness is obtained by minimizing the sensitivity
of the effort to uncertainty about the knowledge. However, minimizing the effort and maximizing
the robustness are not equivalent: the former is (usually) impossible while the latter is attainable.
Proposition 1 is the precise statement of this complementarity and its limitations.

This specific complementarity is part of a broader complementarity between knowledge and
ignorance. Learning is a procedure by which uncertainty about the truth is reduced. Maximizing
the robustness to uncertainty is a procedure by which the impact of one’s ignorance is reduced.
As John Wheeler (1992) aptly wrote, “We live on an island of knowledge surrounded by a sea of
ignorance. As our island of knowledge grows, so does the shore of our ignorance.” Robustness to
uncertainty is one tool for managing that shoreline.
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A Proof of Proposition 1

The inequality in eq.(8) implies:

max
k∈U (h)

e(k, r) ≤ max
k∈U (h)

e(k, r′) for all k ∈ U (h), h ≥ 0 (28)

Eq.(28) and the definition of the robustness in eq.(6) imply eq.(9).

B Deriving the Robustness in Eq.(15)

Combining eqs.(10) and (13) one finds the following expression for the α quantile:

qα = − ln(1− α)

λ
(29)

Let m(h) denote the inner maximum in the definition of the robustness in eq.(12). From eq.(29)
one sees that this maximum occurs when λ is minimal at horizon of uncertainty h, namely, for

λ =
(

λ̃− wh
)+

. (The superscript ‘+’ is defined as follows. x+ = x if x ≥ 0 and otherwise x+ = 0.)
Hence:

m(h) = − ln(1− α)(
λ̃− wh

)+ ≤ qc (30)

For h < λ̃/w we solve the righthand relation in eq.(30) at equality to obtain eq.(15). This expres-
sion for the robustness is less than λ̃/w for all finite values of qc (assuming that α > 0). Thus we
needn’t consider h ≥ λ̃/w.

C Evaluating the Robustness Function in Eq. (27)

We evaluate the robustness in eq.(27) with a polynomial surrogate function for which the number of
coefficients equals the number, N, of exact computations of S(d). The N locations in the design space
at which the computations are made are specified in the set D = {d1, . . . , dN}. The polynomial
surrogate as a function of location d is:

φ(d) =
N−1

∑
i=0

aidi (31)

23



Denote the N coefficients of the polynomial by the vector a = (a0, a1, . . . , aN−1)
T. These coefficients

are obtained by solving the following N equations:

S(dn) = φ(dn), n = 1, . . . , N (32)

This set of N linear equations in a can be succinctly expressed as follows. Define the N × N matrix
X whose (m, n)th term is Xmn = dn−1

m . Explicitly:

X =


d0

1 d1
1 · · · dN−1

1

d0
2 d1

2 · · · dN−1
2

...
...

...
...

d0
N d1

N · · · dN−1
N

 (33)

Let σ = (S(d1), S(d2), . . . , S(dN))
T denote the vector of N calculated values of the performance

function. Now the N realizations of eq.(32) can be expressed:

Xa = σ (34)

The matrix X can be inverted if the locations in D are all different, so the solution of eq.(34) is:

a = X−1σ (35)

We thus have an explicit analytical expression for the coefficients of the (N− 1)th order polynomial
that passes through N calculated values of the performance function S(d). Define the vector ζ =

(d0, d1, . . . , dN−1)T. The surrogate polynomial that passes through the N calculated points of the
performance function is:

φ(d) = ζTa = ζTX−1σ (36)

We now evaluate the robustness function, defined in eq.(27), with the fractional-error info-gap
model in eq.(26).

Referring to eq.(27), the inner maximum on S is readily seen to be:

max
S(d)∈U (h)

S(d) = φ(d) + h|φ(d)| (37)

The robustness in eq.(27) can now be written:

ĥ(Sc, N, ∆) = max
{

h : max
d∈∆

(
φ(d) + h|φ(d)|

)
≤ Sc

}
(38)

The inner maximum, which is the inverse function of the robustness, can be readily evaluated nu-
merically, employing the representation of φ(d) in eq.(36).

The true (but unknown) performance function is:

S(d) =
de−g1d(1 + g2 + sin g3d)

1 + g4 − d
(39)

where g1, . . . , g4 are positive constants whose values in this example are in the vector:

g = (1, 0.05, 20, 0.5) (40)
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The scalar design variable, d, can take any value in the design space which is the interval [0, 1]. The
subset of design variables whose robustness we will calculate is:

∆ = [0.1837, 0.5918] (41)

Figs. 6–8 show the (unknown) true performance function (solid curve) and the Nth order poly-
nomial surrogate function (dashed curve) for N = 4, 8 and 12, respectively. The N calculated values
of performance are at the end points, d = 0 and d = 1, and at N − 2 evenly spaced intermediate
points. We see that the 4th order surrogate is a poor fit, while the 12th order surrogate is quite
accurate throughout most of the design space.
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Figure 6: S(d) vs d (solid).
φ(d) vs d (dash). N = 4 cal-
culations.

Figure 7: S(d) vs d (solid).
φ(d) vs d (dash). N = 8 cal-
culations.

Figure 8: S(d) vs d (solid).
φ(d) vs d (dash). N = 12 cal-
culations.
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