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Abstract: Because our civilization has relied on pesticides to fight weeds, insects, and diseases 1

since Antiquity, the use of these chemicals has become natural and exclusive. Unfortunately, the 2

use of pesticides has progressively had alarming effects on water quality, biodiversity, and human 3

health. This paper proposes to improve farming practices by replacing pesticides with a laser-based 4

robotic approach. This study focused on the neutralization of aphids as they are among the most 5

harmful pests for crops and complex to control. With the help of deep learning, we developed 6

a mobile robot that spans crop rows, locates aphids, and neutralizes them with laser beams. We 7

have built a prototype with the only purpose to validate the localization-neutralization loop on a 8

single seedlings row. The experiments performed in our laboratory demonstrate the feasibility of 9

detecting different lines of aphids (50% detected at 3 cm/s) and of neutralizing them (90% mortality) 10

without impacting the growth of their host plants. The results are encouraging since aphids are one 11

of the most challenging crop pests to eradicate. However, enhancements in detection and mainly in 12

targeting are necessary to be useful in a real farming context. Moreover, robustness regarding field 13

conditions should be evaluated. 14

Keywords: Farming; Robotics; Aphid Detection; Laser-based Neutralization; Deep Learning; Image 15

Based Visual Servoing 16

1. Introduction 17

The use of pesticides has become natural and exclusive to us because our civilization 18

has relied on them since Antiquity to fight weeds, insects, and diseases, which would gen- 19

erate a mean 50% production loss [1]. Unfortunately, this has progressively led to alarming 20

consequences on water quality, biodiversity, and human health. Exposure of the European 21

population to endocrine-disrupting pesticides alone cost up to €270B in health expenses 22

in 2017 [2]. Tang et.al [3] concluded that 64% of global agricultural land (25.106km2) is at 23

risk of pesticide pollution, and 31% is at high risk. The class of neonicotinoids, pesticides 24

responsible for the deaths of 300,000 bee colonies annually, has even been recently banned 25

from use [4]. In its “Ecophyto” plan, the French government has decided to reduce by 50% 26

the use of agrochemicals by 2018. Unfortunately, alternatives to chemicals being too scarce, 27

the objective has been postponed to 2025. 28

For ten years, progress in computer science, robotics, and agronomic modes have 29

improved farming practices, provoking two consecutive revolutions: the smart [5] and 30

today, the robotic farming [6]. Spectral analysis solutions are henceforth used for pests 31
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and diseases monitoring on crops [7,8], detection of insect infestations on stored grains, 32

mosquito gender and age evaluation, and taxonomical applications [9], with excellent 33

results. The detection performed with 3D cameras, a computer-based classification, and 34

notably, deep learning algorithms [10–12] has also been investigated. However, very few 35

works are held on laser-based neutralization of insect pests as an alternative to pesticides. 36

Besides, weed processing is now actively commercialized [13]. The destruction is typically 37

targeted-herbicide-spray or mechanically based, sometimes thermal, but laser-based de- 38

struction is also still under study [14]. As soon as 2001, laser-burning could reduce their 39

biomass by 90% with only 20% of the energy usually used for thermal weeding [15]. 40

To date, technologies for automated spraying or mechanical destruction of weeds are 41

appearing on the market either as large and costly farming robots [16] or as small-sized 42

ones, such as Oz (Naïo Tech). Yet, no non-chemical solution exists concerning crop pests. 43

This is why the Greenshield1 objective was to demonstrate the feasibility on aphids of a 44

laser-based Detection-Neutralisation Module (DNM) embedded in a custom mobile robot. 45

It managed to do it in lab conditions in September 2021. It also demonstrated the feasibility 46

on weeds of the DNM embarked on a commercially available robot (Dino, Naio Tech). 47

Detecting aphids in crop fields is a complex task due to their small size and con- 48

founding color. As for numerous other applications, a Deep Learning approach has been 49

envisaged. Indeed, this Artificial Intelligence approach is nowadays widespread for face 50

recognition [17], image segmentation [18], signal analysis and automatic interpretation, or 51

the control of autonomous cars. More particularly, deep learning and image processing are 52

two disciplines whose applications are very varied and encompass areas such as medicine, 53

robotics, security, and surveillance. In the field of image processing, deep learning is very 54

powerful to extract complex information from input images. Such algorithms’ structures 55

are often based on convolutional neural networks that can capture the spatial dependencies 56

at a different scale in an image. They consist of stacking of layers of convolution and math- 57

ematical functions with several adjustable parameters, which seek to identify the presence 58

of particular patterns on the image at different scales. The tuning and the optimization of 59

these parameters are performed during a preliminary training phase, which relies on the 60

availability of a large quantity of data, thanks to specific cost functions (loss). 61

The originality of this project lies in the embedding of various technologies in a single 62

farming robot necessitating a multidisciplinary including pest biology, laser photonics, 63

visual servoing, and mobile robotics. This paper is organized as follows. Next section 64

details materials and methods for detection and neutralization. Experimental results are 65

provided in Section 3 and discussed in Section 4. We then conclude this paper which 66

summarizes the achievements of the Greenshield project, and we evoke future directions. 67

2. Materials and Methods 68

The study focused on the neutralization of aphids as they are among the most harmful 69

pests for crops and complex to control [19]. To do so, we chose three aphid lines different 70

in color and size, providing a diverse database to develop our DNM. Thus, we used two 71

pea aphid lines, Acyrthosiphon pisum LL01 (green) and YR2 (pink), and one bird cherry-oat 72

aphid line Rhopalosiphum adi LR01 (black, 2 to 3 times smaller than A. pisum). A solution 73

able to control their spreading should work more likely on other invertebrates such as 74

cockroaches, mosquitoes, fruit flies, and floor beetles. 75

A trolley-like robot embedding three subsystems is proposed: the RGB-D (Red-Green- 76

Blue plus Depth) acquisition system and light sources, the aphids localization algorithm 77

using deep learning, and the neutralization system based on the laser. Figure 1 illustrates 78

the whole system organization inside the robot. 79

The light sources, the camera, and the seedlings featuring several aphids were collo- 80

cated into a black box. 81

1 See https://anr-greenshield.org

https://anr-greenshield.org
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In the following, we detail each subsystem and start with a global overview of the 82

neutralization process. 83

Figure 1. Greenshield prototype description and working principle: the robot spans a crop row,
detects the aphids on leaves, and targets them using the laser beam positioned by the micro-mirrors.

2.1. Global process 84

The mobile robot spans plant rows one by one. When a plant is detected, the robot 85

stops, and then aphid detection and neutralization tasks start. For the real-time detection 86

of aphids, we use a 3D camera and Artificial Intelligence object recognition techniques 87

(Section 2.3). The coordinates of the aphids visible on each image are transmitted to the 88

neutralization module. 89

The aphid neutralization module is mounted on the robot and consists of a (harmless) 90

laser pointer and a power laser source, taking the same optical path toward a pair of 91

micro-mirrors (see Fig. 2b) that position beams in the robot’s workspace (see Fig. 1). The 92

laser pointer is used to realize a visual servoing (detailed in Section 2.4.1) to target the 93

aphids located in the camera images. Once the pointer spot is stabilized on the target, 94

the power laser emits a pulse carrying a sufficient amount of energy to neutralize the 95

target aphid (by raising its temperature, see Section 2.5). It then moves on to the next 96

targeted aphid in the image. When all detected aphids are treated, the robot moves 97

again until a new plant is detected. Several types of low-power laser sources that can be 98

mounted on a mobile robot have been tested to identify the best beam tracking on the 99

leaves. Experiments were performed allowing us to correlate the energy emitted by the 100

laser beam with the fecundity and mortality rates of aphids and the efficiency of weed 101

destruction. The detection/localization/neutralization software was linked to the robot 102

locomotion to dynamically enable proceeding. ROS middleware was used to manage the 103

communication between modules. 104

(a) ZED mini camera (stereo labs).

(b) 2 degrees of freedom actuated mirrors
for laser positioning (DK-M3-RS-U-2M-20-L,
Newscale Technology).

Figure 2. Camera and laser steering device.
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2.2. Image acquisition 105

To localize aphids, the RGB-D camera ZED mini camera (Stereo labs2 is used (see 106

figure 2a). Its settings were adjusted to limit light reflections and maximize the contrast 107

(maximum contrast and saturation, reduced gain, see table 1) to ensure the best image 108

acquisition in the lighting condition. 109

The light sources used are white LEDs, and, to reduce the impact of the foreign light 110

sources, we added some light protections as can be observed in figure 7. These protections 111

will also serve to limit laser exposure. 112

Table 1. Configuration of various parameters of the ZED camera.

Parameters Values Explanation

Resolution HD1080 (1920x1080) A 2K resolution would consume a lot of resources and therefore
would slow down the detection algorithm.

Capture Speed 30 FPS Maximum available in the HD1080 mode

Brightness 1 Low brightness to limit light reflections on the surface of the
leaves.

Contrast 6 High contrast makes it easier to detect pink aphids on green
leaves.

Hue 0 Default value, that matches the colors perceived by human eyes.
Saturation 8 Maximized to let the aphids appear on green leaves.

Gamma 2 A low gamma level limits the white light in the picture.
Acuity 4 Average value as high values generate noise on the back plane.

White Balance auto To adapt it taking into account fixed other color parameters (hue,
saturation).

Exposition 75% Set to keep the brightness at an acceptable level.

Gain 10 Adjusted to keep the consistency between the other settings with
minimal add noise addition.

2.3. Detection and Localization 113

The objective of this module is to detect aphids on images of crops that the robot scans 114

over, localize them, and send these coordinates to the neutralization module described 115

below. In terms of specifications, it must meet the following three criteria: 116

• detection accuracy: a maximum error of 3 mm between the center of detected aphids 117

and their localization in the image; 118

• detection sensitivity: at least 60% of aphids present in the image3; 119

• real-time operation: the entire program (detection algorithm + laser control) must run 120

at a speed greater than 10 frames per second to permit the robot to cover a 1ha crop 121

field in 24h4. 122

The problem of detecting and localizing aphids of different sizes, colors and positions 123

in natural image sequences of various crops is particularly difficult. From our knowledge, 124

only artificial neural networks based on deep learning detection architectures can perform 125

this task in real-time. Therefore, to detect aphids in each image acquired by the camera 126

located under the robot as the latter proceeds over each crop row, we selected from the cur- 127

rent arsenal of detection architectures (EfficientDet, Yolo, FasterRCNN, Unet+Hausdorff), 128

the YOLO version 4 [20] for its speed and its small size object performance in images. Such 129

approaches are supervised, this means that an important data set with manual annotations 130

is needed for the training phase. When trained, the network is transferred and run on an 131

embedded GPU board (Nvidia Jetson Xavier AGX). 132

2 See https://www.stereolabs.com/zed-mini/
3 This level has been set arbitrarily taking into account that natural predators should finish the work, but it

requires experimental validation.
4 In the case of a field where rows are located every 40cm, the robot will have to travel 25km during 12h,

corresponding to a mean speed of 1km/h or 29cm/s.

https://www.stereolabs.com/zed-mini/
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To do that, we first built an image database featuring aphids on broad bean seedlings. 133

The training set of images was annotated using labelme5 software. Around 700 images 134

were labeled, featuring each one with 20 to 30 aphids. It was necessary to manually draw 135

a bounding box around each aphid as well as to put a dot on the center of each aphid. 136

Since we did not have a sufficient amount of images for training the neural nets, we 137

applied data augmentation on these images to avoid the phenomenon of overfitting and 138

improve the generalization ability of the trained model to new images. The following image 139

transformations were applied randomly to generate modified images during training: 140

• Horizontal or vertical image flip 141

• Rotation of 10° in the positive or negative direction 142

• Brightness modification 143

• Hue and saturation modification 144

• Contrast modification 145

• Grayscale modification 146

We started to develop this localization function with a YOLOv46 as it is very efficient 147

in the detection of objects in real-time, and is broadly used in applications requiring fast 148

detection speed as for drones or autonomous car vision. YOLOv4 is a one-stage detector. 149

Its backbone is CSPDarknet53 [21], a model tuned for image recognition. Darknet has 150

been designed to diminish the issues of gradient loss7, encourage the network to reuse 151

feature maps (with residual layers), and reduce the set of optimization parameters. The 152

secondary part of the network (the neck) features a PANet (Path Aggregation Network) 153

[22] to mix and combine the maps of characteristics generated by the backbone. It is indeed 154

a preparation step for the following detection. The YOLO detector can predict the class 155

of the object, its bounding box, and the probability of its presence in its bounding box. 156

Nevertheless, because of its small characteristic maps, this kind of multi-scale detector 157

struggles to detect small objects in the image. Thus, in practice, it could not detect aphids 158

located at a distance greater than 30cm from the camera. We tested several input image 159

sizes (640x640 and 512x512) knowing that the size of the images acquired by the camera 160

is 2208x1242 pixels, to determine the best choice. We also optimized the network process 161

using batch inference, which was not yet implemented in the original YOLOv4 code. We 162

chose tkDNN8, which is a neural network library specifically designed to work on NVIDIA 163

Jetson boards. It is built with the primitives of cuDNN, a library from NVIDIA regarding 164

neural networks, and TensorRT, an inference platform high performance that enables high 165

throughput and low latency for inference applications related to deep learning. TensorRT 166

engine optimizes models by quantifying all network layer parameters and converting them 167

into formats that occupy less memory space. The tkDNN library allows inference with 168

network parameters in three different formats: FP32, FP16, and INT8. In this project, we 169

chose the FP16 format as it is displayed as the most accurate and efficient format 9. The 170

data degradation caused by format conversion remains meaner than 0.02%. 171

We also studied an approach to detect smaller objects, without a bounding box and 172

based on the weighted distance of Hausdorff10. The chosen architecture was a U-Net 173

optimized with a loss function based on this distance. Rather than taking bounding boxes 174

as references (ground truth), the network seeks to localize objects according to reference 175

points. The issue with this network in our application is that the clustering method requires 176

exact information on the number of aphids present in the image. When the number of 177

aphids or the number of clusters on the image is not well estimated by the output of 178

regression, this risks mislocating centroids and in this case, the detection will have no 179

5 See https://github.com/wkentaro/labelme
6 Whose code is available on https://github.com/AlexeyAB/darknet
7 See Vanishing Gradient Problem and Solutions: https://deepai.org/machine-learning-glossary-and-terms/

vanishing-gradient-problem
8 The source code for tkDNN is available on Github: https://github.com/ceccocats/tkDNN
9 See https://github.com/ceccocats/tkDNN#fps-results

10 Code available on Github: https://github.com/javiribera/locating-objects-without-bboxes

https://github.com/wkentaro/labelme
https://github.com/AlexeyAB/darknet
https://deepai.org/machine-learning-glossary-and-terms/vanishing-gradient-problem
https://deepai.org/machine-learning-glossary-and-terms/vanishing-gradient-problem
https://github.com/ceccocats/tkDNN
https://github.com/ceccocats/tkDNN#fps-results
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interest. We searched for a method that determines the centroids without estimating the 180

number of objects. So, we disabled the regression layers in U-Net and we used the DBScan 181

method instead of the Gaussian Mixture [23] to determine the points of interest. It also 182

reduces the number of parameters of the network, which makes the model more suitable 183

for the limited GPU resources of Nvidia Jetson boards. However, the use of DBScan risked 184

generating many disturbances if the images were not correctly segmented. Post-processing 185

was then relevant to filter noise. Once the points were well located on the image in the form 186

of pixel coordinates, it was then possible to convert these points into a 3D reference using 187

the Software Development Kit of the ZED mini camera. Indeed, the 2D image is taken 188

only by one of the two objectives of the ZED camera, and the other is used to interpret the 189

points in 3 dimensions. As the captured images are in RGBXYZ format (2D image with 190

depth), we could obtain the cloud measurement of neighborhood points in XYZ (3D) from 191

a detected point on the RGB (2D) image. The coordinates of the detected 3D point are 192

therefore calculated as the median of this point cloud. 193

We evaluated the performance of these two convolutional neural networks (Darknet 194

YoloV4 and UNet Hausdorff) using precision and recall criteria. Accuracy is defined 195

by the proportion of correct detection among all the proposed detected aphids. Recall 196

(or sensitivity) is the proportion of correct detection among all the relevant elements. A 197

detection was considered a true positive when the distance between its predicted position 198

and the reference was less than 5 pixels. This tolerance was defined by considering that 199

the average size of aphids on the image was 10x10 pixels. This corresponds to a maximum 200

error of 2mm when the aphids are close to the camera (≈25cm) and 4mm when they are at 201

the camera detection limit (≈50cm). Both algorithms have been evaluated based on data 202

from aphids that we acquired with 400 training images, 200 validation images, and 84 test 203

images. The network was trained with the training, and validation images first. It was then 204

evaluated with the other 84 images in the inference phase. 205

2.4. Laser-based Neutralization 206

2.4.1. Laser-based Targeting 207

Targeting aphids from their localization in acquired images requires visual servoing. 208

Several works have dealt with this issue. The closer ones are analyzed here. In 1996, 209

Hutchinson et al. proposed an IBVS (Image-Based Visual Servo) approach with a PID 210

control law. They could obtain a mean and maximum error of 2 and 3 pixels respectively 211

on flying mosquito targets [24]. In 2016, Andreff et al. used the same IBVS approach in 212

laser micro-surgery, using also a 2DOF piezoelectric mirror to steer the laser ray [25], with 213

a simple proportional gain in the control law, resulting in an exponential convergence of 214

the error. In 2018, Kudryavtsev et al. developed a visual servoing system for a three-tube 215

concentric tube robot, using an adaptive proportional gain approach that was successfully 216

validated in simulation using the visual servoing platform ViSP and then in an experimental 217

setup [26]. The adaptive gain increased the convergence speed while ensuring stability, 218

avoiding overshoot for small errors and limiting the maximum speed. 219

Finally, we based this study on the works described in [27]. In this specific case, the
system consisted of a coarse tracking system using a pair of stereoscopic cameras to identify
the approximate 3D location of a mosquito pest target, to then implement a visual servoing
system using a single high-speed camera and a fast scanning mirror to guide the tracking
laser to the target pest through the minimization of a pixel tracking error. The annihilating
laser dose was then administrated through the same optical path. To orientate the laser
beams towards the targets, we chose a 2-axis system that orientates two micro-mirrors
and permits ±25° of rotation range with a resolution meaner than 5µrad in closed-loop
and repeatability of 100µrad. This system features sensors with a bandwidth of 350 Hz for
rotations meaner than 0.1°. The IBVS approach was chosen because of the properties of the
laser-mirror system and the robot operation. The exact geometric relationship between the
target and the mirrors is not known given the evident variability of the pest locations and
the complicated potential estimation of their 3D position using the camera, in contrast to
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Figure 3. Control scheme with visual servoing.

an industrial application where the target can be fixed. Three control laws were studied,
consisting of two variants of an Adaptive Proportional Gain (AG1 and AG2), and a PID.
These control laws were implemented in the Visual Servoing Controller in Fig. 3. The PID
controller, expressed in z space, was:

CPID(z) = Kp + Ki
T

1 − z−1 + Kd
1 − z−1

T
(1)

where Kp, Ki, and Kd are constant parameters, and T is the sampling period. The AG1
controller was:

CAG1[k] = λ[k] with λ[k] = λ[k − 1] + c1.e−c2.ε[k]2 (2)

where λ[k] is the adaptive gain, c1 and c2 constant parameters, and ε[k] is the error signal
(ε = pd − pl). The AG2 controller was:

CAG2[k] = λ[k] with λ[k] = (λ0 − λ∞).e−
λ̇0

λ0−λ∞
ε[k]2

+ λ∞ (3)

where λ0 (resp. λ∞) is the gain when ε = 0 (resp. ∞), and λ̇0 the slope of λ(ε) when ε = 0 220

[28]. 221

The proposed control scheme runs on the Jetson Xavier board. We tested at first the 222

targeting system with 2D scenes virtual aphids (to isolate the targeting performance from 223

the aphid detection one). We input in real-time the coordinates of virtual aphids randomly 224

located in the images of the camera. We did the same to evaluate the performance of the 225

system with moving targets, with varying coordinates of virtual aphids in the images. 226

The camera was located on top of a 40 cm-radius disk that was explored by the visual 227

servoing system with a low power laser beam (see Fig. 4). During experiments, the system 228

orientated the micro-mirrors to make the laser spot, visible on the plane, travel as fast as 229

possible to each target. 230

2.4.2. Multiple Target Optimization 231

When multiple pest targets are present in the image, optimization is required to 232

minimize the global distance traveled and thus to reduce the time taken to destroy all the 233

targets. An example of a popular algorithm in literature is the Traveling Salesman Problem 234

(TSP). It is a combinatorial optimization algorithm that computes the shortest possible path 235

to reach once a set of objects. However, the TSP literature mainly considers only stationary 236

targets and ignores any time-dependent behavior, which is critical in this application since 237

every target moves relative to the camera. It results in a delayed disappearance from the 238

image and thus their potential miss. Helvig et al. [29] proposed a generalization of a time- 239

dependent TSP, which they called Moving-Target TSP. It was related to several applications 240

where a pursuer must intercept in a minimum time a set of targets moving with constant 241

velocities. The following theorem was developed for a mixture of approaching and receding 242

targets from the origin, which would be analogous to this application where aphids are 243
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Figure 4. Visual-servoing experimental setup

approaching and receding the origin of the image. Two types of optimization algorithms 244

were developed and tested: 245

• Moving-Targets TSP, 246

• Hybrid: Moving-Targets TSP and Nearest Neighbor. 247

The first one consisted in prioritizing the targets in the function of their distance to 248

the image origin, in increasing order. This is equivalent to prioritizing the targets with 249

the greatest Y-coordinate in the image axis (see Fig. 5). An alternative solution was tested 250

where a secondary criterion was applied giving priority to the nearest target from the 251

current position, selected among the lower-most targets. 252

To evaluate the performance of the system with moving targets, we made the virtual 253

aphids translate (towards the bottom of the image) in real-time in the images at a constant 254

velocity of 5 pixels per second. We also performed experiments with blue led stripes located 255

in a 40 cm × 20 cm on a rotating disc, to test the system including some target detection. 256

We could not use alive aphids as they constantly move in such a situation. We either could 257

not use dead ones as they do not keep their initial color for enough time. 258

Figure 5. Representation of the Moving-Target TSP method (left) and the hybrid method with the
added Nearest Neighbor variant.
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2.5. Laser Choice and Dimensioning 259

To select the most effective laser, the correlation between laser energy and aphid 260

mortality was evaluated and published in a previous work [30]. For this purpose, a first 261

experiment to determine the Lethal Dose (LD) necessary to achieve a 90% mortality (LD90) 262

at Day+1 was set up as in [31,32]. Three wavelengths have been used, each one covering a 263

different part of the electromagnetic spectrum: 532nm (visible), 1090nm (Short Wavelength 264

Infrared-SWIR), and 10.6µm (Long Wavelength Infrared-LWIR) known as a CO2 laser, 265

manufactured by CNI Lasers, IPG and Access Laser respectively. Samples of 48 aphids 266

originating from the three lines aforementioned were used. The aphids were random 267

unsynchronized adults, representative of what would be found in a field without an early 268

detection system. The Hosmer-Lemeshow test and the "area under the Receiver Operating 269

Characteristic curve" test were performed on logistical fits to ensure that the retrieved fit 270

was correct and accurate. 271

Then, to analyze the mortality dynamics of aphids during their development, the same 272

experiment was conducted on synchronized one-day-old nymphs (N1) with a mortality 273

counting every day until they reached their adult stage on the 7th day, thus considering 274

an LD90 at Day+7. Given the great results of the previous experiment, we focused on 275

the 10.6µm laser and used the A.pisum line LL01 so we could rely on their well-known 276

life-history traits [33]. 277

Going further, potential transgenerational laser-induced effects have been addressed 278

as well. To do this, we reproduced the previous experiment, but this time using an LD50 279

to have a good balance between the number of survivors and quantifiable laser-induced 280

effects and to ensure a robust statistic. The survivors of irradiated aphids generation (F0) at 281

Day+7 gave birth to nymphs of the second generation (F1) every day for 15 days. For the 282

two generations F0 and F1, mortality was assessed every day during their development, 283

then we measured their mass and developmental delay at Day+7. Finally, we monitored 284

the fecundity for 15 days of F0 aphids and F1 aphids born on the 1st, 5th, 10th and 15th day 285

of the reproduction period of F0 aphids [30]. The mortality rate of the synchronized N1 286

aphids is presented here with a GLM Gaussian test with a 95% confidence interval. 287

Moreover, the laser beam must be innocuous for host plants. Indeed, in case of 288

false-positive detection, the entire laser energy would strike them. Hence, the impact of 289

the energy delivered in our experiments has also been investigated on host plants in our 290

previous work [30]. Vicia Faba and Triticum aestivum host plants, for respectively A. pisum 291

and R.padi lines, were chosen. We shot the host plants 4 times with different values found 292

in each experiment with the 10.6µm laser. First, to ensure no underestimation, we used the 293

highest fluences corresponding to LD90 at Day+1 on A. pisum LL01 and R. padi adult aphids. 294

Then, we also used the fluence that is the most reasonable for in-field use, corresponding to 295

LD90 at Day+7 on N1 LL01 aphids. According to aphids’ location on their host plants, we 296

shot different organs namely the adaxial and abaxial leaf surfaces, the stem, and the apex. 297

Samples of 20 plants were shot by fluence level and by targeted organ. On Day+7, height, 298

fresh mass, and leaf surface were measured. 299

3. Results 300

A prototype has been designed and built with the only purpose to validate the 301

localization-neutralization loop on a single seedlings row (see Fig. 6). The experimental 302

results performed in laboratory with this prototype demonstrate the feasibility of detect- 303

ing different lines of aphids (50% detected at 3 cm/s) and of neutralizing them without 304

impacting the growth of their host plants. 305

3.1. Aphid Detection and Localization 306

3.1.1. Lighting Conditions 307

We could observe that the best results in aphid detection were obtained with the white 308

LEDs. Hence, white LED strips have been installed into the robot to create a homogeneous 309

lighting environment, reducing the sensibility to external conditions (see Fig 7). The camera 310
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Cropped area for detection Mobile robot Bean plants 
with aphids

Figure 6. On the left image, a picture acquired by the camera of the mobile robot, only the area
contained in the blue frame is analyzed. The blue squares indicate the location of the detected aphids.
On the right image, the robot spans a row of broad bean plants featuring aphids (front view).

settings were also adjusted to limit light reflections and maximize the contrast (maximum 311

contrast and saturation, reduced gain, see Table 1). These results were obtained with the 312

robot over an artificial ground reproducing near field conditions. They should be confirmed 313

by real in-field experiments with various natural ambian light conditions. 314

Figure 7. Under the robot: light sources and protections, camera and neutralization systems.

3.1.2. Localization Performance 315

Table 2 summarizes the experimental results obtained with both proposed networks. 316

We manually optimized the UNet-HD architecture and its hyper parameters to obtain the 317

best results in terms of true positive detection (TP). Such optimization was not performed 318

on YOLO. Despite the manual optimization, YOLOv4 outperforms the UNet-HD network 319

considering the speed, precision, and sensibility criteria. Therefore, we worked on the 320

optimization of YOLO. The effect of cropping the camera images and keeping only the 321

relevant area (800x800 pixels) led to a raise of 6% in accuracy and 5% in sensitivity compared 322

to a whole picture. Indeed, the Yolo network has an input dimension of 512x512 pixels. 323

Resizing the entire image (2208x1242 pixels) to 512x512 pixels blurred objects in the image 324

and caused a reduction in precision. 325

To get better accuracy, we also tiled the area of 800x800 pixels into 4 or 16 sub-parts. 326

The inference speed (frames per second) was computed when the network had ended up 327

processing all these areas. We observed an increase in sensitivity when using 400x400 pixel 328

tiles (0.73 versus 0.51 for 800x800 pixel tiles). In the case of very small images (200x200 329

pixels), the sensitivity falls to 0.53. We also noticed that this method greatly reduces the 330

inference speed of the model because of the large number of images to be processed for 331

each capture. We also observed that the code developed in C++ was more efficient than 332
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YOLOv4 UNet-HD

FPS (Nvidia Quadro 400) 10-11 2-3
True Positive (TP) 238 278
False Positive (FP) 490 997

False Negative (FN) 1371 1349
Precision 0.37 0.15

Recall 0.21 0.17

Table 2. Performance comparison between YOLOv4 and UNet with Hausdorff distance (UNet-HD)
for aphid detection. Values in bold indicate the best results for each criterion.

that of API Python (about 1.5 times faster in terms of FPS speed). The averaged results on 333

our test set are visible in table 3. 334

Network input
size

Input image
size

FPS (quadro 400) Precision Recall
Python API C++

640x640 2208x1242 10-11 16 0.35 0.49
512x512 2208x1242 13-14 21 0.34 0.46
512x512 800x600 13-14 21 0.4 0.51

Table 3. Performance comparison for YOLOv4 with smaller images.

We were then able to double the model inference speed using the tkDNN engine, 335

from 9 FPS to 19 FPS: more than our real-time detection expectations.Indeed, the detection 336

module can rotate by itself from 90 to 100 frames per second with this library. Nevertheless, 337

since the acquisition and detection processes are synchronized, the overall detection speed 338

is restricted by the capture speed of the camera. 339

3.2. Laser-based Neutralization 340

3.2.1. Pest neutralization 341

The efficiency of the laser treatment on unsynchronized adult aphids is displayed in 342

Fig. 8. Only results with the 532nm and 10.6µm lasers are introduced. Indeed, the 1090nm 343

laser ended in being too much ineffective; it is not included in this paper’s results for the 344

sake of clarity. LD90 values are derived from the logistic fits in solid lines corresponding to 345

experimental data points. For A. pisum LL01 (green) and YR2 (pink) aphids, the 10.6µm 346

wavelength is more effective than 532nm. For instance, with green aphids, values of 347

53.55J.cm−2 and 12.91J.cm−2 are retrieved at 532nm and 10.6µm respectively. Indeed, going 348

from one laser to another result in an LD90 more than four times lower. Hence, the 10.6µm 349

wavelength has been chosen for the rest of the study. These values are quite the same for 350

the pink aphids. However, this is not the case for R. padi (black) aphids. In this case, both 351

wavelengths exhibit the same efficiency. The smaller size of this specie can explain this 352

difference. 353

By changing the targeted aphid stage and extending the observation period, the LD90 354

can be loweù red again (Fig. 9a.). Consequently, a lower LD90 fluence means faster, more 355

secure, and more energy-saving treatment. Thus, targeting nymphs results in an LD90 356

at Day+1 lowered by four times compared to adults. Moreover, counting the nymphs 357

mortality at Day+7 instead of Day+1 leads to a 2.6 times decreased LD90 value. Globally, 358

targeting nymphs and observing them at Day+7 allows for decreasing the fluence to 359

1.15J.cm−2. This value is ten times lower than the previous while still maintaining a high 360

level of 90% neutralization rate. 361

Moreover, according to Fig. 9b., the mortality dynamics of aphids over 7 days is 362

not linear. Indeed, most aphids are already neutralized after 3 days and then a plateau is 363

reached. This means that the LD90s at Day+7 and Day+3 are almost identical. Consequently, 364
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Figure 8. Mortality rate over the fluence for several aphid lines. Upper left : A.pisum LL01 (green
aphids). Upper right : A.pisum YR2 (pink aphids). Lower left : R.padi LR01 (black aphids). Square and
pink curve : 532nm experiment. Diamond and yellow curve : 10.6µm experiment. Curves represent
logistic fits. Adapted from [30].

the irradiated aphids with a low fluence will already be dead after 3 days, thus reducing 365

the duration of their attack on the plants. 366

Regarding potential transgenerational effects, results show that laser treatment does 367

not induce any significant effect on the mortality of the next F1 generation (Fig. 9c.). Hence, 368

the laser-based strategy must be based on direct laser effects. 369

3.2.2. Targeting 370

The IBVS algorithm featuring a PID controller obtained best results versus the two 371

variants of AG. We could obtain a mean response time t5% = 490 ms (versus 830 and 920 for 372

AG), corresponding to a mean t5% = 490 ms (see Fig 10). With moving virtual targets, the 373

PID control showed slightly better performance with a mean t5% = 420 ms (versus 590 and 374

870 for AG). We also performed experiments with velocities ranging from 5 to 12 pixels/s. 375

We observed that the system did not have the time to travel to all targets at 12 pixels/s and 376

over (corresponding approximately to 1 cm/s at a distance of 30 cm). Experiments with 377

blue LED stripes showed a mean response time t5% that greatly increased to 620 ms. 378

4. Discussion 379

Concerning the detection of aphids, by inferring with 2208x1242 pixel resolution 380

images, we found that the speed of Hausdorff-optimized U-Net detection was not suitable 381

for real-time application. As the images were captured at 15 FPS by the ZED mini camera 382

and this network can process only 2 or 3 per second, many images were not taken into 383

account when the robot was moving. This was due to the too high deepness of this model 384

that was set to increase the ability to detect small objects. This was indeed a gain in precision 385

but a loss in efficiency. Moreover, the accuracy of UNet was not better than that of YOLOv4 386

(accuracy 0.15 against 0.21 of YOLOv4) as it generated much false detection (997 false 387

positives versus 490 false positives for YOLOv4). We then simplified the architecture of 388

UNet by reducing the number of layers and by training it with cropped images of smaller 389

size. However, its accuracy remained poor compared to the model of Darknet YOLOv4. 390

The simplified UNet model failed to achieve 10% accuracy on cropped areas of 400x400 391
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Figure 9. a) Mortality rate over the fluence for A. pisum LL01 (green) N1 aphids at Day+1 (triangle
and brown curve) and Day+7 (square and blue curve). Error bars are plus and minus exact binomial
95% confidence intervals. b) Evolution of the mortality rate for several fluence using the 10.6µm laser
on N1 A.pisum LL01 populations. c) Mortality rates over time for the first (F0) and second (F1) N1
A.pisum LL01 aphid generations. C letter refers to the untreated condition, while L letter refers to the
irradiated one at F0. F1 JX refers to the second generation born the 1st, 5th, 10th and 15th day during
the F0 reproduction period. Letters in the right refer to the results of the 95% confidence interval
GLM Gaussian test. Adapted from [30].

Figure 10. Evolution of t5% and t∞ response times versus initial error magnitudes for PID, AG1, and
AG2 control laws.
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pixels. Taking into account these results, we therefore decided to apply YOLOv4 for the 392

detection of aphids, with aforementioned accuracy and speed optimizations. 393

We could obtain medium performance in 2D scenes with mean travel times of 620 394

ms between two targets. This is quite too low a value, that was obtained in perfect lab 395

conditions with virtual aphids. With blue LED stripes, the bad results were due to some 396

disturbance provided by the LEDs when the laser spot was very close to a LED. The 397

detection algorithm had trouble distinguishing the laser spot from the neighbor LED. Even 398

if we did not meet this issue with real aphids later on the real robot, plants infected with 399

tens of aphids should be treated faster to enable a 1 ha field treatment in 24 h at 29 cm/s. 400

Speed improvement speed should be researched or a robot spanning several rows with 401

several detection/neutralization modules working in parallel. Faster micro-mirrors should 402

be envisaged, taking into account the cost and affordability of such a robot. 403

Also, to perform a precise localization of the laser spot, it was necessary to be in a black 404

ambiance while the aphid detection required a good luminosity. We then had to alternate 405

both detection and synchronize the lighting so that each detection is performed in the best 406

lighting conditions. In the robot, as we employ LED stripes, we could efficiently perform 407

the switching, but these working conditions diminish the operational flow. On-robot 408

experiments showed that the performance decreases as soon as the lighting conditions 409

deteriorate and 3D objects are present in the scene, necessitating stopping the robot. Indeed, 410

in 3D scenes, the spot was sometimes not visible due to the non-alignment of the laser 411

source and the camera axis and the presence of leaves in different depths of field. The 412

algorithm had to work blindly during the time the spot remains invisible. When this period 413

was too long, the system skipped this target and selected the next one. This slowed much 414

the servoing and reduced much the performance. Therefore, during the experiments, to 415

decrease these periods, even if we could detect aphids with the robot moving, we preferred 416

stopping it during the targeting phases. Moreover, performance decreases as soon as the 417

lighting conditions deteriorate (which may be the case during sunny days with external 418

rays of light coming through the entrance for plants) and 3D objects are present in the scene, 419

necessitating stopping the robot. A study enhancing the robustness of visual servoing in 420

the presence of occlusions is mandatory. 421

At last, Newscale micro-mirrors are too fragile for farming conditions. Other stronger 422

solutions have to be studied, knowing that we did not study the impact of vibrations due 423

to the locomotion of the robot on the ground yet. 424

Regrettably, we could not validate (for logistical reasons) the whole chain simulta- 425

neously (from aphid detection to neutralization with the power laser): detection / lo- 426

calization / targeting has been validated independently from targeting / neutralization. 427

Globally, we could make the robot proceed at a velocity of 3cm/s and have it detect 50% 428

of the present aphids, and then target 83% of the detected aphids, on 3 successive broad 429

bean plants featuring each one with 8 aphids. It is clearly far from the requirements but it 430

provides a first proof of concept validating the feasibility of such an approach. 431

Regarding aphid neutralization, we found that the CO2 laser is best suited to neutralize 432

almost all aphids with low fluences by raising their cell water temperature with LWIR at 433

10.6µm. Indeed, the energy needed to have an LD90 after one day in an adult population 434

equal to 12.91J.cm−2 per shot was 4 times lower than the other lasers tested. Additionally, 435

targeting younger aphids as N1 and extending the observation period by a few days can 436

lower 10 times the energy required, resulting in 1.15J.cm−2. These results and our estimates 437

of energy consumed for a field treatment detailed in our previous work [30] show that the 438

laser is not the most power-consuming component in our robot. However, the detection 439

must be very precise to target aphids at the youngest stages and to differentiate them 440

from other insects beneficial to crops. Moreover, because most aphids are localized on the 441

abaxial leaf surface, the optical chain must be adjusted to be able to target aphids on leaves 442

from below. Finally, in case of a false positive detection, we made sure that hitting leaves 443

wouldn’t impact the plant growth [30]. 444
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5. Conclusions 445

The experimental results globally demonstrate, in lab conditions, the feasibility of 446

detecting different lines of aphids (50% detected at 3 cm/s) and of neutralizing them by 447

CO2 laser shots with high efficiency (90% mortality after 3 days with 1.15J.cm−2 for A.pisum 448

LL01 N1) without impacting the growth of their host plants in case of missed shot. Showing 449

the feasibility of this approach is encouraging as aphids are one of the most difficult crop 450

pests to combat. However, aphids neutralization is closely dependent on the quality of the 451

detection, since it is recommended to detect aphids at the nymphal stage and to differentiate 452

them from the beneficial insects that one wishes to preserve on the crops. Other pests 453

such as fall armyworms Spodoptera frugiperda and dark sword grass Agrotis ipsilon larvae 454

that are bigger should pose fewer detection issues. Future directions consist in enhancing 455

the performance of the detection and targeting phases to get characteristics closer to the 456

requirements making it useful in a real farming context. Also, the robustness concerning 457

field conditions is to be studied. The most worrying aspect is the presence of vibrations 458

due to the irregular ground that may decrease the performance of the positioning of the 459

micro-mirrors and so the quality of the pest targeting. 460
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