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Abstract: We propose a novel algorithm for Euclidean shortest path (ESP) from a given point (source) 1

to another point (destination) inside a tubular space. The method is based on the observation data of 2

a virtual particle (VP) assumed to move along this path. In the first step, the geometric properties of 3

the shortest path inside the considered space are presented and proven. Utilizing these properties, 4

the desired ESP can be segmented into three partitions depending on the visibility of the VP. Our 5

algorithm will check which partition the VP is belong to and calculate its correct direction of the 6

movement, thus the shortest path will be traced. The proposed method is then compared to Dijkstra’s 7

algorithm considering different types of tubular spaces. For all cases, the solution provided by the 8

proposed algorithm is smoother, shorter, and high accuracy with a faster calculation speed than one 9

obtained by Dijkstra’s method. 10

Keywords: Euclidean shortest path; tubular space; reactive algorithm; visibility; oriented drilling 11

process; Dijkstra’s algorithm 12

1. Introduction 13

Finding the shortest path in the presence of obstacles, referred to as the Euclidean 14

shortest path problem is one of the fundamental problems in path planning [1]. This 15

problem arises in many industrial c1 applications. c2 c3The idea of using a flying robot such 16

as an unmanned aerial vehicle (UAV) to navigate through a tunnel-like environment can 17

be found in the inspection of dam penstocks, [2–4], chimneys [5], ventilation systems [6], 18

onshore oil and gas industry [7], narrow sewers [8], and other hazardous deep tunnels 19

[9,10]. In addition, many marine applications also require navigating through underwater 20

tunnel-like environments with autonomous underwater vehicles (AUVs). For instance, 21

the inspection of different kinds of underwater structures such as offshore oil platforms 22

[11], flooded spring tunnels [12,13], water delivery tunnels [14], etc. In these applications, 23

shortest path planning that minimizes the total distance travelled by the vehicles plays an 24

important role in optimizing the energy consumption, thus extending the operation time 25

without recharging their batteries [15,16]. It may also reduce the travelling time and will be 26

very useful for search & rescue missions during disaster events in underground tunnels 27

[17,18]. 28

c4Another example of the studied problem is to determine the location of a non-elastic 29

chord between to points within a tube. Indeed, this problem can be found in controlling 30

the deformation of slender tube-like robots actuated with an internal tendon(s) [19,20]. 31

Calculating the tendon load effect on the tube wall requires determining the tendon location. 32

As it is only attached at the tip, pre-positioned at the base, and the rest freely locates inside 33

c1 Removed text: and medical
c2 Removed text: In the industry, the
c3 Text added.
c4 Text added.
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the innermost tube, its location results in the shortest path connecting two points at the 34

base and at the tip. 35

1.1. Related works 36

In general 3D space, the problem of finding the ESP between two given points that does 37

not intersect given obstacles is known to be NP-hard [21], special cases of the problem have 38

been studied afterwards. The author in [22] gave a polynomial time algorithm to calculate 39

ESP for cases where the number of obstacles is ‘small’ and all of them are convex. Another 40

algorithm was proposed in [23] with the assumption that all obstacles are vertical buildings 41

with k different heights. More recently, [24] presented algorithms for solving approximate 42

ESPs amid convex obstacles. Other approximation algorithms for ESP calculations are 43

detailed in [25]. These studies share common features that a collection of finite obstacles 44

are given as forbidden zones in space and the ESP will be found in the space surrounding 45

these obstacles. 46

In the studied problem, the obstacle is the entire space outside the tube and the ESP 47

must pass through the inner zone of the tubular space. A similar problem can be found 48

in [26] that compute the minimal path in tubular space. The minimal path is typically 49

solved based on the Fast Marching method which only considers grid nodes as the possible 50

vertices of the minimal paths. However, paths detected by the Fast Marching method have 51

been proven to be not always the exact ESPs [1]. There also exist several approximation 52

algorithms for finding ESP between two points in 3D space bounded by a closed surface 53

such as a cube-curves [27] or a simple polyhedron [28] using rubberband algorithm. This 54

method is suitable for solving various ESPs in 3D space. Even so, there is a non-trivial gap 55

in geometric shape between the cube-curve and the tubular space. Polyhedron seems like a 56

better choice to represent a tubular space. However, characteristic geometrical properties 57

of tubular spaces should be considered for a dedicated algorithm. 58

The studies on tubular surface with Bishop frame was proposed in [29]. The authors 59

gave some characterizations about special curves lying on this surface (e.g., geodesic and 60

asymptotic curves). However, the problem we study requires considering the interior space 61

instead of just the boundary surface. In addition, the geometrical properties of the ESP 62

inside the tubular space also need to be investigated. The authors in [30] described a simple 63

geometric structure of ESPs where they consist of curved paths on the obstacles connected 64

by straight line segments (see Theorem 1). In this work, we develop the geometric structure 65

of ESPs presented in [30] by considering characteristic properties of tubular spaces. 66

In practice, the navigation problem can be classified into planning-based and reactive 67

algorithms [31]. Planning-based approaches require a global map representation of the 68

environment (e.g., a graph or a network) before searching. The knowledge beforehand of 69

the tubular space allows generating a weighted graph where the weight of each edge (or 70

arc for the directed graph) associated with its length [25]. Numerous algorithms are used 71

for shortest path calculation in graph theory (see Chapter 24 and 25 in [32]). A well-known 72

graph-based algorithm among them is Dijkstra’s algorithm [33] where the shortest path 73

connects vertices in the graph. Unlike the planning-based approaches, a reactive method 74

allows directly generating motion decisions during the movement based on observed data 75

[31]. The reactive shortest path navigation was presented in [34] for an in-plane problem. 76

Such a problem was also found in 3D space where the obtained path is interpolated with 77

a spline curve [35]. In this work, we propose an algorithm that based on the observed 78

information of a virtual particle and can be used as a reactive method for the shortest path 79

navigation inside the tubular space. 80

1.2. Contributions 81

In this paper, we propose a novel algorithm to find the shortest path within a tubular 82

space that connects two points at the tube ends. Our contributions include: 1) the descrip- 83

tion of the ESP geometrical structure inside tubular spaces with mathematical proof, 2) the 84

proposition of a novel algorithm for finding the shortest path in tubular spaces based on 85
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the observed data, and 3) the numerical validation and comparison results with Dijkstra’s 86

algorithm by considering various types of tubular spaces. As a result, the solution obtained 87

by using the proposed algorithm is shorter, smoother and faster than one provided by 88

Dijkstra’s method. 89

The remainder of this paper is organized as follows. Section 2 formulates the problem. 90

The basics of Dijkstra’s algorithm is described in Section 3. Then, we present the proposed 91

algorithm in Section 4. Our computational results is given in Section 5. After that, Section 6 92

includes some brief discussions. Section 7 concludes the paper. 93

2. ESP in Tubular Space 94

2.1. Problem description 95

Euclidean geometry is the geometry in daily life [1] where the distance between two
points ppp = (xp, yp, zp)T and qqq = (xq, yq, zq)T in 3D space is defined as follows:

de(ppp, qqq) =
√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2 (1)

From the discrete point of view, a path (α) from the source PPP to the destination QQQ is a
finite sequence of nodes xxxi, starting at PPP and ending at QQQ. We obtain the length of the path
as in Eq. 2:

L(α) =
n−1

∑
i=0

de(xixixi, xi+1xi+1xi+1), xxx0 =PPP, xxxn =QQQ (2)

Then, the c1 ESP is the path connecting PPP and QQQ, which has the minimum length and has 96

to be through a given tubular space. The mathematical definition of tubular space is given 97

as follows [36]: 98

99

Definition 1. Let ccc(s) : I → R3 be a smooth, regular space curve. A tubular surface ∂Ω 100

associated to ccc(s), of radius ρ, is, by definition, the envelope of the family of spheres of radius ρ, with 101

the center on the curve. 102

103

Definition 2. The storage space of the tube Ω is the 3D space enclosed by the lateral wall (∂Ω) 104

and the two ending cross-sections of the tube. 105

106

Self-overlapping tubeRegular tube

Self-overlapping

Figure 1. Regular and self-overlapping tube as defined in [29]. The regular tube ensures the
correctness of the directed graph in the following section.

c2 c3In Definition 1, s is the arc length parameter of the centerline curve. We consider in this 107

work the tubular surface ∂Ω to be regular (Fig. 1). The condition underlying the regularity 108

of a tube is given in details in [29]. By κ(s), we denote the curvature of the centerline curve 109

c1 Removed text: searching
c2 Removed text: where
c3 Text added.
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ccc(s). In order to avoid singularities as well as self-overlapping, the following condition is 110

required: 111

κ(s) < ρ−1, ∀s ∈ [0, L] (3)

where L is the length of ccc(s). 112

2.2. Directed graph 113

We discretize Ω into a series of meshed circular disks corresponding to the cross- 114

sections perpendicular to ccc(s). By S0, ..., SN+1 we denote the meshed circular disks where 115

S0 contains the starting point (source) PPP and SN+1 includes the destination QQQ. The distance 116

between two consecutive disks along the centerline curve is h = L
N+1 . As the shortest path 117

from the source to the destination must obviously pass through each cross-section at only 118

one point, we have the weighted directed graph G(V, A) as shown in Fig. 2. This directed 119

graph is defined by a finite set V of vertices and a set A of arcs between those vertices [1]. 120

All vertices of the graph (except PPP and QQQ) are located at the nodes of the meshed disks 121

S1, ..., SN . We define that two vertices are called adjacent if they are connected by one arc. 122

Then, every two adjacent nodes in the graph are located on two consecutive disks. The 123

source PPP is connected with all nodes of disk S1. Each node of disk Si is connected by one 124

arc to every node of disk Si+1 for all i ∈ {1, ..., N − 1}. Eventually, every node of disk SN is 125

connected directly to the destination QQQ. 126

3. Basics of Dijkstra’s Algorithm 127

c1 The concept of this method, based on the lemma about the relationship between 128

global minimum and local minimum, was first presented by E.W. Dijkstra in 1959 (see [33], 129

Problem 2). c2Although also based on Lemma 1, Algorithm 1 c3applied for the directed 130

graph has a run time in O(|A|) instead of O(|V|log|V|+ |A|) like the conventional Dijk- 131

stra’s algorithm used for a weighted graph in general [1]. 132

133

Lemma 1. (Dijkstra algorithm, 1959) “If rrr is a node on the minimal path from ppp to qqq, 134

knowledge of the latter implies the knowledge of the minimal path from ppp to rrr”. 135

136

This lemma can be proved easily by contradiction. The shortest path from the source 137

PPP to the destination QQQ will be traced by extending all extendable paths by one edge to 138

a node not yet visited on this path until QQQ is reached. Consequently, extending all the 139

extendable paths from the source by one arc in the directed graph becomes turning the 140

c1 Remove text: Dijkstra’s algorithm solves the problem of finding the shortest path between a point (source) and
any other point (destination) in a given graph.

c2 Text added.
c3 Text added.

S0

S2

S3

...

Sn-2

Sn-1
Sn

Sn+1

...

...

S1 MESHED
CIRCULAR
DISK

TENDON

BASE

TIP

SOURCE

DESTINATION

S1 S2 SN-1 SN

... ... ... ...

Figure 2. Discrete approach for the ESP problem. (Left): Inner space of the tube transformed into a
series of meshed circular disks and (Right): the directed graph.



Version November 1, 2023 submitted to Algorithms 5 of 20

Algorithm 1: Dijkstra’s algorithm

Input: PPP,QQQ, and rrr[i][j], ∀i ∈ {1, ..., N}, ∀j ∈ {1, ..., M}.
Output: L[QQQ].
// Initialisation

1 D(QQQ)← +∞, D(rrr[i][j])← +∞, ∀i ∈ {1, ..., N}, ∀j ∈ {1, ..., M};
// From the source to S1

2 for j← 1 to M do
3 D(rrr[1][j])← w(PPP, rrr[1][j]);
4 L[1][j] ← {PPP, rrr[1][j]};
5 end
// Between S1 and SN

6 for i = 2 to N do
7 for j = 1 to M do
8 for k = 1 to M do
9 D(rrr[i][j])← min{D(rrr[i][j]), D(rrr[i−1][k]) + w(rrr[i−1][k], rrr[i][j])}

10 If D(rrr[i][j]) is replaced, put a label K∗ ← k.
11 end

12 L[i][j] ←
[
L[i−1][K∗ ], rrr[i][j]

]
; // add rrr[i][j] to the list L[i−1][K∗ ]

13 end
14 end

// From SN to the destination
15 for k = 1 to M do
16 D(QQQ)← min{D(QQQ), D(rrr[N][k]) + w(rrr[N][k],QQQ)}.
17 If D(QQQ) is replaced, put a label K∗ ← k.
18 end
19 return L[QQQ] ← [L[N][K∗ ], QQQ]

examined disk into its adjacent disk towards the destination. Once examining a disk, the 141

shortest path between the source and every node on the previous disks has been identified, 142

so we do not need to revisit these points. 143

Set rrr[i][j](i ∈ {1, ..., N}, j ∈ {1, ..., M}) be the node jth on the meshed disk Si. In 144

addition, we denote D(xxx) as the minimum length from node PPP to node xxx, w(xxx, yyy) as the 145

length of the arc connecting two adjacent nodes xxx and yyy, and L[i][j] as the list of the nodes 146

on the shortest path from the source PPP to node rrr[i][j] (for node QQQ, we utilize L[QQQ]). We 147

obtain Dijkstra’s algorithm applied for this ESP problem as given in Algorithm 1. 148

c1During the operation, all currently visited nodes always belong to the same cross- 149

section. Thus, all possible paths will reach the destination at the same time. When the 150

destination is reached, there will be no longer extendable paths in the directed graph and 151

we can point out the shortest path. For that reason, the algorithm becomes a breadth-first 152

search algorithm [1]. c2Thus, the time complexity of c3 Algorithm 1 is O(|A|) with |A| is the 153

number of arcs in the directed graph. As a conventional method, the solution by Dijkstra’s 154

algorithm is given as a series of vertices of the graph G. Then, the solution path obtained 155

is generally a polyline. To increase the accuracy of the result as well as make it smoother, 156

the mesh of the discretized cross-section must be finer. However, increasing the number of 157

nodes on the mesh results in significantly slowing down the calculation speed. We then 158

proposed a new method that takes atage of the geometrical properties of tubular spaces to 159

improve the searching solution. 160

c1 Text added.
c2 Text added.
c3 Remove text: the
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positive direction line of sight longest length
of sight

A

B

C

D

X

Figure 3. (Left): The dashed red rays describe the positive directions. (Right): AAA can see BBB and DDD
because the line segments ABABAB and ADADAD are totally contained by Ω. Also by this definition, AAA cannot
see CCC. The green and blue dashed lines terminating at the boundary ∂Ω illustrate the line of sights.
Among them, the blue one is the longest-length-of-sight, an important concept used in the following
method.

Not continuousUnique and
continuous

Not unique

Figure 4. The visible area of a cross-section Si is described by the yellow zone(s) which must be
unique and continuous.

4. The ESP Searching Algorithm Based on Visibility 161

The algorithm we propose hereafter c1is based on a visible tube portion that can be 162

"seen" by the VP moving along the searching shortest path. The ESP will be gradually 163

figure our by determining the correct moving direction of the particle from the source PPP to 164

the destination QQQ. For convenience, we firstly define some concepts used in this section. 165

4.1. Geometric properties of the ESP in tubular space 166

Definition 3. For every point XXX ∈ Si ⊂ Ω, i ̸= N + 1, the cross-section Si divides Ω into 2 167

sub-spaces, a direction from XXX is said to be positive (+) if it is towards the sub-space containing the 168

destination. 169

170

According to Definition 3, any point in Ω (not belonging to SN+1) will have an infinite 171

number of positive directions (see Fig. 3). Obviously, during the movement, the correct 172

direction of the particle is always a positive direction. 173

174

Definition 4. Two points XXX, YYY ∈ Ω are said to see each other if the line segment joining them 175

XYXYXY is totally contained by Ω. 176

177

Definition 5. A cross-section S ⊂ Ω is visible from a point XXX ∈ Ω if there exists a point 178

YYY ∈ S that can be seen by XXX. 179

180

Lemma 2. If a point XXX inside the tube can see a cross-section S of the tube, the area part in S 181

that can be seen by XXX must be a convex set (as illustrated in Fig. 4). 182

183

The proof of this lemma is detailed in the Appendix A.1. 184

185

Definition 6. From a point XXX ∈ Ω, the “length of sight” corresponding to a positive 186

direction is the distance between XXX and the farthest point in ∂Ω that can be seen by XXX along the 187

positive direction. The line segment corresponding to this length is called the line of sight. 188

189

c1 Text added.
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We then have the geometric structure of the shortest path between two points (not see 190

each other) in a tubular space. 191

192

Theorem 1. By fff , we denote the shortest path between two arbitrary points XXX and YYY inside 193

the tubular space Ω. If XXX cannot see YYY, then there exist curved parts of fff lying on the inner lateral 194

wall of the tube ∂Ω. Outside these parts, fff consists of a union of straight line segments which are 195

tangent to the boundary surface ∂Ω. 196

197

Theorem 2. The curved parts of fff are geodesic paths on ∂Ω. Moreover, they are on the surface 198

of negative curvature. 199

200

Proof: The proof of Theorem 1 was presented in [30]. To prove Theorem 2, we employ 201

Lemma 1. As the curved parts of fff are also the shortest paths connecting their ends, they 202

must be geodesic paths on the boundary surface ∂Ω [37]. Moreover, if there exists a curved 203

path of fff that is outside the surface of negative curvature, we always find on this path two 204

neighboring points that can see each other (see Fig. 5). As the straight line segment joining 205

these points is shorter than the geodesic path between them, then fff is not the shortest one 206

connecting XXX and YYY. This contradicts the definition of fff (Q.E.D.). 207

These two theorems lead us to two important corollaries. 208

209

A B

Negative curvature

Positive curvature

Zero curvature

A B

Figure 5. Curved segments lying on surfaces of positive and zero curvatures where A and B can see
each other.

Corollary 1. Let XXX be a point on the ESP ppp(s) that can see a point YYY so that the ray XYXYXY is 210

not the direction ṗpp(sX) of the ESP at XXX. Let (α) be an arbitrary plane containing XYXYXY. If the angle 211

between ṗpp(sX) and (α) is not zero, then the direction ṗpp(s) at any point on the ESP segment between 212

the cross-sections containing XXX and YYY will always point away from (α). 213

214

Proof: From XXX, the particle moves away from (α) (the angle between ṗpp(sX) and (α) is 215

not zero). Using Theorem 1, we obtain that the particle only changes its direction at points 216

on the geodesic paths. As these curves must be on surface of negative curvature (Theorem 217

2) where vector p̈pp(s) points out of the tube, thus the ṗpp(s) will always point away from the 218

plane (α) (see Fig. 6). 219

220

Corollary 2. If XXX on the ESP can see a cross-section S of the tubular space Ω via a positive 221

direction, the correct direction at XXX (ṗpp(sX)) must be towards a point YYY in the visible area of S by XXX. 222

223

Proof: The above corollary can be proved by contradiction. By σX(S), we denote
the visible area of the cross-section S by XXX. Let YYY be the intersection of the straight line
containing ṗpp(sX) and the plane containing S (denoted by β(S)). We need to prove that
YYY ∈ σX(S). We consider the following hypothesis of contradiction:

i f YYY ̸∈ σX(S)⇒ XYXYXY ̸⊂ Ω (4)

In other words, the ray XYXYXY passes through the boundary ∂Ω. Let MMM be the passing point 224

that is closest to XXX. In β(S) and through YYY, we draw an arbitrary straight line that intersects 225
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S

p(s)

(α)

p(s) geodesic segmentX
Y

(α) S

Figure 6. (Left) Tube portion between the cross-sections containing XXX and YYY which can see each other.
(α) is an arbitrary plane containing XYXYXY but not containing ṗ̇ṗp(sX). The ESP ppp(s) only changes its
direction ṗpp(s) on its geodesic segment(s). S is an arbitrary cross-section of the tube where the geodesic
segment crosses. (Right) On the projection view plane that is perpendicular to (α) ((α) degenerates
to a straight line), as p̈̈p̈p(s) points outside the envelope of S, it also points away from (α). As ṗpp(sX)

points away from (α), by mathematical induction ṗpp(s) will point away from (α), ∀s ∈ [sX , sY ].

X

Y

W
T

β(S)
σ (S)
X

M
X

Y

W

β(S)

σ (S)
X

M

(α)

(C)

(C)

(α)

Figure 7. Point XXX can see cross-section S. YYY be the intersection of the direction of the ESP ṗ̇ṗp(SX) and
the plane containing S. In β(S) and through YYY, we draw an arbitrary straight line that intersects the
visible area σX(S). Let WWW be the intersection point that is closest to YYY. (Left): WWW is in the inner zone of
S. (Right): WWW is on the boundary of S.

the visible area σX(S). Let WWW be the intersection point that is closest to YYY. Then, WWW must be 226

on the boundary of σX(S) (denoted by ∂σX(S)). In addition, there is a total of two relative 227

positions of WWW: WWW ∈ ∂Ω and WWW ̸∈ ∂Ω (see Fig. 7). In the following, we define a plane (α) 228

and a closed surface (C) for these two mentioned cases: 229

• (WWW ̸∈ ∂Ω). (α) is the plane that contains XWXWXW and the tangent at WWW of σX(S). If XWXWXW 230

is not tangent to ∂Ω, we can always find in β(S) a circle with center WWW and radius ϵ 231

small enough so that the entire circle can be seen by XXX (as there is no obstacle between 232

XXX and this circle). Then there exist points outside σX(S) (which is part of the circle) 233

that can be seen by XXX. This contradicts the definition of σX(S). Thus XWXWXW is tangent 234

to ∂Ω. Let TTT be the tangent point that closest to XXX and PT(∂Ω) be the tangent plane 235

of ∂Ω at TTT. If PT(∂Ω) ̸≡ (α), PT(∂Ω) will divides σX(S) into two subsets. However, 236

as the line of sight of a visible point in σX(S) must pass through the cross-section at 237

TTT of the tube, then only one subset of σX(S) can be observed by XXX. This contradicts 238

the definition of σX(S). Thus, PT(∂Ω) ≡ (α). We can then define a closed surface (C) 239

enclosed by (α), the cross-section at XXX, and part of ∂Ω which contains MMM (see Fig. 7 240

Left). 241

• (WWW ∈ ∂Ω). (α) is the plane that contains XWXWXW and the tangent at WWW of S. Then, (C) is 242

the closed surface containing MMM and enclosed by ∂Ω, (α), and the cross-section at XXX of 243

the tube (see Fig. 7 Right). 244
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By using the definition of (C), we obtain that from XXX, the VP will go into the inner space of 245

(C). Since the destination Q is outside (C), the particle must pass the boundary of (C) at 246

somewhere on (α). However, by applying Corollary 1, the direction vector ṗpp(s) will always 247

point away from (α), thus the particle cannot return to (α) for a passing point. Therefore, 248

the hypothesis (4) cannot be true, then YYY ∈ σX(S). (Q.E.D.). 249

250

Employing the above lemma, theorems and corollaries leads us to an important result 251

about the partitions of the ESP inside a tubular space as given in Remark 1. 252

253

Remark 1. For any type of tubular space, the searching shortest path ppp(s) can be segmented 254

into three partitions: 255

• Partition 1 (P1) : Includes points that can see the destination QQQ. The direction ṗpp(s) at any 256

point in this partition is always towards QQQ. 257

• Partition 2 (P2) : Includes points that can see the ending cross-section Send, but cannot see QQQ. 258

The direction ṗpp(s) at any point XXX in this partition is always towards a visible point YYY in the 259

ending cross-section such that the angle between XYXYXY and XXXQQQ is the smallest one. 260

• Partition 3 (P3) : Includes points that cannot see the ending cross-section Send. The direction 261

of ṗpp(s) at any point in this partition is the positive direction corresponding to the longest- 262

length-of-sight. 263

θ

A

B

C

Partition 3

Partition 2

Partition 1

Source

Base

Tip
Destination

Figure 8. Three partitions of the shortest path corresponding to three sections of the tube. At AAA
belonging to P3, the VP cannot see the ending cross-section Send. The correct direction corresponds to
the longest-length-of-sight. At BBB belonging to P2, it can see Send, but not QQQ. The correct direction is
towards the visible point YYY in Send so that the angle θ between BYBYBY and BQBQBQ is the smallest one. At CCC in
P1, the particle can see QQQ. The correct direction is towards QQQ.

The three partitions of the searching shortest path inside the tube are described in Fig. 264

8. The proof of this remark is given in the Appendix A.2. It is important to note that a 265

tube does not necessarily contain all 3 partitions. For instance, a straight tube only contains 266

partition 1 for any positions of the source and the destination. 267

4.2. The Proposed Algorithm 268

The principle of this method is based on Remark 1. Ensuring two points can see 269

each other in the discrete approach is equivalent to proving that the line segment joining 270

those points must cross all the meshed circular disks between them. In the Algorithm 2, 271

we use CCCi to denote the intersection point between the searching shortest path and the 272

cross-section Si, i ∈ {0, ..., N + 1}. The objective of the Algorithm 2 is then equivalent to 273
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Algorithm 2: Proposed method

Input: PPP,QQQ, and rrr[i][j], ∀i ∈ {1, ..., N}, ∀j ∈ {1, ..., M}.
Output: CCCi, ∀i ∈ {0, ..., N + 1}.
// Initialisation

1 CCC0 ←PPP, CCCN+1 ←QQQ, CCCi ← ∅, ∀i ∈ {1, ..., N};
2 f lag← 0 ; // Marking if the CCCi−1 can see SN+1 or not
// Loop Process

3 for i← 1 to N + 1 do
4 if CCCi−1 can see CCCN+1 then

// CCCi−1 is belong to Partition 1

5 CCCk ← CCCi−1CCCN+1 ∩ Sk, ∀k ∈ {i, ..., N};
6 f lag← 1;
7 break;
8 else
9 θ ← +∞ ; // Angle between the correct direction and

−−−−→
CCCi−1.QQQ

10 for j← 1 to M do
11 CCCdistal ← rrr[N+1][j] ; // Temporary examined vertex of SN+1

12 if CCCi−1 can see CCCDistal then
13 f lag← 1 ; // CCCi−1 is belong to Partition 2

14 CCCtemp ← CCCi−1CCCdistal ∩ Si ; // Possible value for Ci

15 θtemp = Angle
(−−−−−−−→

CCCi−1.CCCdistal ,
−−−−→
CCCi−1.QQQ

)
; // Possible value for θ

16 if θ > θtemp then
17 θ ← θtemp;
18 CCCi ← CCCtemp;
19 end
20 end
21 end
22 if f lag = 0 then

// CCCi−1 is belong to Partition 3
23 Ci = Oriented Drilling Process(Ci−1);
24 end
25 end
26 end

finding the series of CCCi. It is important to note that CCCi is not necessarily a node of G(V, A). 274

Indeed, the algorithm figures out the correct direction of CCCi−1 thereby determining the 275

position of CCCi as the intersection point between this direction and the next cross-section Si. 276

The correct direction of CCCi−1 is found using Remark 1 by checking which partition CCCi−1
c1

277

c2belongs to (with precedence from P1 to P3). The value 1 of f lag marks that CCCi−1 can see 278

the ending cross-section SN+1. The Oriented Drilling Process is an algorithm employed 279

for Partition 3, which returns to the next value of CCCi series by the intersection point between 280

the longest-length-of-sight direction and the next cross-section. 281

4.3. Oriented Drilling Process 282

To determine effectively the longest-length-of-sight from an arbitrary point XXX inside 283

the tube, we employ Lemma 2. The operation scheme of finding the longest-length-of-sight 284

direction illustrated in Fig. 9 comprises a series of expanding and deepening processes. 285

Without loss of generality, we assume that CCCi−1 can see a point TTT in a forward section Sj. 286

By employing Lemma 2, we expand discretely the examined direction from the direction 287

passing through TTT to others passing through its nearby nodes on the same mesh Sj until 288

c1 Remove text: is belong
c2 Text added.
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Figure 9. The oriented drilling process : 1) CCCi−1 can see TTT in section Sj, 2) expand the examined
direction in the vicinity of TTT until seeing TTTnew in section Sk(k > j), 3) update TTT by TTTnew, Sj by Sk and
repeat step 2 for the new TTT and Sj, 4) repeat step 3, 5) the expanding process is over and we do not
find any farther section Sk = ∅, we then compare all the length of sight passing through the visible
area in Sj to obtain the direction corresponding to the longest-length-of-sight, and 6) initialize the
next correct point of the shortest path CCCi as the intersection point between the correct direction and
cross-section Si.

discovering a point TTTnew in a farther disk Sk (k > j). As a deepening process, we then 289

update TTT by TTTnew and also the examined cross-section Sj by Sk. The operation is then 290

repeated until the expanding process is over. The condition to stop the expanding process 291

is when the boundary of the visited area in Sj just comprises the invisible nodes and the 292

boundary points of Sj. Finally, we compare the length of sight corresponding to all visible 293

points in farthest visible cross-section and find the longest one. The next correct point CCCi is 294

the intersection point between this line of sight and the next cross-section Si. One atage of 295

this method is a significant improvement in computation time as we do not need to visit 296

all the nodes of the graph. For the expanding process, on the examined disk Sj, we just 297

need to expand the investigated nodes until the current exact point CCCi−1 can see farther, 298

then we jump further into the more in-depth cross-section. Otherwise, if there is no new 299

disk observed by CCCi−1, we stop the process and indicate the next correct point of the ESP 300

CCCi. Moreover, as this is an inheritable algorithm, in the next searching process, we can use 301

directly the previous correct direction as the initial examined orientation. Thus, we skip the 302

disks that were examined in the previous loop. For several circumstances such as points 303

on the straight-line segments of the shortest path (the ESP consists of straight-line and 304

geodesic curve segments, see Theorem 1-2), the next searching process can stop right after 305

choosing this initial examined orientation. That is also the reason why we call this method 306

Oriented Drilling. Imagine that every time we find the correct direction for the point CCCi−1 307

like we drill a hole in that direction. For the next searching process, as there was already a 308

hole, the searching is much more comfortable. The whole process becomes adjusting the 309

direction of the drill so that it can drill deeper. Consequently, the drilling direction will be 310

oriented closer and closer to the deepest drill hole (the longest-length-of-sight). 311

5. Computational Results 312

In this section, we will compare the efficiency of the proposed algorithm with Dijkstra’s 313

one. There are several criteria for this comparison result: the length of the obtained ESP, the 314
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L.P = 36.63 (mm), L.D = 37.24 (mm), L.E = 36.59 (mm)

T.P = 759 (ms), T.D = 4103 (ms)

Figure 10. Tubular space with two curved segments in space. By L.P, and T.P, we denote the tendon
length and the computation time for the solution obtained by the proposed method. Similarly, L.D,
and T.D for Dijkstra’s algorithm. The exact solution is determined by using Dijkstra’s method with
Nρ = 144 and Nθ = 64.

computation speed, the smoothness and the position error of the solution. The experiments 315

were ran on a machine with an Intel Core i5-8400 CPU @ 2.80 GHz processor. It has a 6-core 316

CPU and the available RAM was 16 GB. All algorithms were implemented in Matlab. 317

5.1. Computation Time 318

We firstly implemented them considering a tube with the centerline in 3D space con- 319

sisting of a 4 cm straight length and two curved segments belonging to two perpendicular 320

planes. The radii of both curves are 12 cm and their lengths are 16 cm and 20 cm respectively 321

as detailed in Fig. 10. The inner diameter of the tube is 3 cm. We chose the discretization 322

step h = 2 mm (N = 199). Each meshed disk is made by dividing the cross-section into 323

c1 c225 concentric circles (Nρ =c3 c425) whose circumference are divided into 4 equal arcs 324

(Nθ = 4). 325

As shown in Fig. 10, the proposed method allows us to obtain a shorter and smoother 326

solution than Dijkstra’s method with the same mesh (detailed analysis will be provided 327

in the next sub-section). Another atage of the proposed algorithm compared to Dijkstra’s 328

method is the computation speed as a large number of unimportant vertices and arcs can 329

be ignored in the process (see Fig. 10). As the time complexity of the proposed method has 330

a huge variation depending on the specific shape of the tubular space, the computation 331

time (instead of the theoretical time complexity) will be consider for the comparison result. 332

Table 1 shows how the computation times of the two methods depend on the number 333

of nodes in the meshed circular disks. As we can see the computation time of Dijkstra’s 334

method will increase by a factor of 4 if M is doubled (M is the number of nodes in a 335

c1 Remove text: 20
c2 Text added.
c3 Remove text: 20
c4 Text added.
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Table 1. Computatiom Time (in Second) Of The Two Mehods

M = 100
Nρ = 25, Nθ = 4

T.P = 0.76, T.D = 4.10

M = 200
Nρ = 50, Nθ = 4 Nρ = 25, Nθ = 8

T.P = 0.96, T.D = 16.66 T.P = 1.05, T.D = 15.77

M = 400
Nρ = 100, Nθ = 4 Nρ = 25, Nθ = 16

T.P = 1.63, T.D = 64.67 T.P = 1.51, T.D = 60.19

M = 800
Nρ = 200, Nθ = 4 Nρ = 25, Nθ = 32

T.P = 3.03, T.D = 259.23 T.P = 2.01, T.D = 219.82

meshed disk). This is consistent with the time complexity O(|A|) of Dijkstra’s algorithm 336

(|A| = 2M + (N − 1)M2). For the proposed method, this increasing rate is less than two. 337

5.2. Accuracy and smoothness 338

In the following, we extend the comparison results between the two algorithms for 339

different types of tubular spaces as shown in Table 2. Depending on the properties of the 340

centerline, we have two main classes of the tubular spaces: in plane centerline (parabolic, 341

elliptical, hyperbolic, sinusoidal, and evolvent of a circle) and in space centerline (wave- 342

shaped torus on a sphere, helical, spiral, and complex shape). c1Each meshed disk is 343

chosen with Nρ = 25 and Nθ = 4. In all these cases, the proposed algorithm always gives 344

shorter, smoother and faster results than Dijkstra’s algorithm with the same mesh. Unlike 345

conventional graph-based methods (e.g. Dijkstra’s searching algorithm) in which the 346

shortest path is made up of the graph nodes, the proposed method allows finding each 347

correct point on the ESP by determining the intersection point between the exact moving 348

direction (line of sight) and the next cross-section. This intersection point is not necessary 349

a node of the mesh and leads to a smoother and shorter solution than one by Dijkstra’s 350

algorithm. The smoothness of this path is important, especially in mechanical applications 351

when the derivatives of the path with respect to the arc length s of the tube is required 352

such as using the coupled Cosserat rod and string model [38] to find the deformation of a 353

flexible tendon drive robot in case that the tendon locates freely inside the tube [19]. 354

Besides the length and the smoothness of the obtained ESP, its location inside the tube
is also very important. For example, in the mechanical problem just mentioned above, the
tendon location directly related to the deformation direction of the tube. Thus, the position
error of the obtained ESP to the exact solution need to be investigated. We consider the
ESPs given by Dijkstra’s and the proposed algorithms to be a series of points located on the
cross-sections of the tube. Then, the position error of each point is the distance between
itself and the exact solution within the containing cross-section. Let ϵD

i and ϵP
i are the

position errors within cross-section Si of the solution by Dijkstra’s algorithm and by the
proposed method respectively. In this test, we expect to consider the relative errors instead
of the absolute ones. As the obtained paths must be inside the tubular space, to limit the
relative errors by 100%, we compare the absolute position error to the inner diameter of the
tube d. The root mean square error (RMSE) and the maximum error (Emax) of Dijkstra’s
solution are given in Eq. 5 and Eq. 6 (the same for the proposed method just by replacing
super index D by P).

RMSE =
1
d

√√√√ 1
N

N

∑
i=1

(ϵi)
2 (5)

Emax = min
i∈{1,...,N}

( ϵi
d

)
(6)

c1 Text added.
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Table 2. Compare the proposed method and Dijkstra’s method with many tubular surfaces [39].

1. Plane Parabolic Centerline 2. Plane Elliptical Centerline 3. Plane Hyperbolic Centerline

L.P = 27.22, L.D = 27.29, L.E = 27.21 (cm) L.P = 25.70, L.D = 25.74, L.E = 25.68 (cm) L.P = 27.97, L.D = 28.10, L.E = 27.96 (cm)
T.P = 0.68, T.D = 2.57 (s) T.P = 1.02, T.D = 2.65 (s) T.P = 0.73, T.D = 2.64 (s)

4. Plane Sinusoidal Centerline 5. Plane Evolvent of a Circle 6. Wave-Shaped Torus on a Sphere

L.P = 24.41, L.D = 24.53, L.E = 24.39 L.P = 21.92, L.D = 21.94, L.E = 21.91 L.P = 22.29, L.D = 25.12, L.E = 21.96
T.P = 1.36 (s), T.D = 2.66 T.P = 1.16 (s), T.D = 2.57 T.P = 1.26 (s), T.D = 2.74

7. Tubular Helical Surface 8. Tubular Spiral Surface 9. Complex Shape Tubular Surface

L.P = 20.05, L.D = 20.31, L.E = 20.01 L.P = 18.87, L.D = 19.02, L.E = 18.71 L.P = 110.96, L.D = 111.22, L.E = 110.92
T.P = 1.00 (s), T.D = 2.74 T.P = 1.17 (s), T.D = 2.88 T.P = 5.90 (s), T.D = 11.29

Here, we do not consider the two ending cross-sections (S0 and SN+1) as the position error is 355

obviously zero at the source and the destination. As shown in Table 3, the proposed method 356

always provides smaller RMSE and Emax than ones obtained by Dijkstra’s algorithm for all 357

of the tubes. Concretely, the average values among these tubes of RMSE and of Emax for the 358

proposed solution are respectively 0.319% and 1.427% and about 6 times smaller than ones 359

given by Dijkstra’s algorithm (2.133% and 8.753%, respectively). c2As the path obtained 360

by Dijkstra’s method must pass through nodes of the weighted graph, its position errors 361

depend a lot on the meshing. These errors can be reduced if we increase the granularity 362

of the mesh, but it will also increase the computation time. For the proposed method, the 363

location of the obtained path is not forced to be the nodes of the graph that leads to smaller 364

position errors. 365

c2 Text added.
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Table 3. Root mean square and maximum position errors of the ESP obtained by the two algorithm.
The tube number is as given in Table 2.

RMSE

Tube 1 2 3 4 5 6 7 8 9 Avg.

Dijkstra’s agorithm 0,506 % 0.032 % 1.922 % 0.118 % 0.007 % 12.487 % 1.655 % 1.334 % 1.140 % 2.133 %

Proposed agorithm 0.002 % 0.002 % 0.004 % 0.009 % 0.001 % 1.003 % 0.510 % 0.368 % 0.974 % 0.319 %

Maximum Error

Tube 1 2 3 4 5 6 7 8 9 Avg.

Dijkstra’s agorithm 4.343 % 0.628 % 11.812 % 1.136 % 0.226 % 28.121 % 8.556 % 11.942 % 12.017 % 8.753 %

Proposed agorithm 0.012 % 0.016 % 0.026 % 0.105 % 0.015 % 4.774 % 2.077 % 2.039 % 3.782 % 1.427 %

6. Discussion 366

In this section, the extended application scope of the proposed algorithm and the ability 367

to apply it as a reactive method for the navigation problem in unknown environments will 368

be discussed. 369

6.1. Extended Applications 370

We can extend the application scope of the proposed method for general tunnels with 371

convex and variable cross-sections (see Fig. 11). Indeed, with a minor modification on 372

Remark 1 for points in P3: the correct direction is towards the (only) visible point of the 373

farthest visible cross-section instead of considering the longest-length-of-sight, one can 374

confirm that the correctness of Remark 1 will still be preserved (see the Appendix A.2). 375

convex shape

Figure 11. Canal space with convex and variable cross-sections.

6.2. A Reactive Method 376

In this work, we used the same directed graph for Dijkstra’s algorithm and the pro- 377

posed one for the aim of simplify the validation and the comparison results. It is important 378

to note that the proposed method does not require the knowledge of the entire volume Ω 379

to obtain a weighted graph before searching. In fact, the correct direction of the particle 380

can be determined based on the observation in front of it. While using Dijkstra’s algorithm, 381

we cannot figure out which path is the ESP until visiting all nodes and arcs of the graph 382

and need to store all possible paths during operation, the proposed method allows directly 383

generating motion decision during the movement there by the ESP is gradually traced. 384

Thus, it can be applied as a reactive method for robots that need to explore unknown 385

tubular spaces such as lava tubes on an astronomical object [40] or environments in the 386

absence of GPS signals [41]. In practice, the proposed algorithm should be run together 387

with a given safety boundary constraint for collision avoidance of the inspection robots. 388

7. Conclusion 389

In this paper, we presented a novel algorithm for solving the ESP problem inside 390

tubular spaces based on its geometric properties. Computational results were conducted 391

on various types of tubular spaces. We demonstrated that the achieved efficiency of the 392
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proposed algorithm is c1 better than Dijkstra’s one. Concretely, the proposed method 393

provided smoother and more precise results with a faster calculation speed than one 394

obtained by Dijkstra’s algorithm with the same grid. The strength of the proposed method 395

is also reflected in the fact that it can work without knowing the environment in advance 396

which allows it to process as a reactive method. Even though the algorithm was described 397

for the tubular space it is also strongly promising for more complex tunnel spaces, to which 398

it can directly be applied with the mentioned minor modification. c2A limitation of this 399

method is that it is only applicable to unbranched tubular spaces. In order to apply this 400

method for a branched tubular space, additional information will be required to make 401

decisions at the junctions of branches. 402

As the ESP may lie on the tubular surface, the requirement of using a collision-free 403

method together with the proposed algorithm has been left for future research. Our 404

plans for future work concern some applications such as on-line trajectory generation of 405

navigation robots in unknown tunnels or determine the deformation of a tendon drive 406

tube-like robot in medical that is also our domain of interest. 407
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Appendix A 417

Appendix A.1 Proof of Lemma 2 418

By SX, we denote the cross-section of Ω that contains XXX. Let Ωm and Lm be the sub-
space of Ω limited between SX and S, and its length along the centerline curve respectively.
Under a discrete point of view, Ωm can be considered as a series of (K + 1) cross-sections
perpendicular to the centreline curve: SX = Sm

0 , ..., Sm
K = S (K ∈ N+) with the discrete step

∆h = L
K . Let σX(S) be the visible area of the cross-section S by XXX, we then have:

∀YYY ∈ σX(S), ∀i ∈ {0, ..., K} ⇒ ∃aaai =
(

XYXYXY ∩ Sm
i

)
̸= ∅

Therefore, YYY is the perspective projection of aaai (∀i ∈ {0, ..., K}) from the view point XXX to the
view plane S, hence:

σX(S) ⊂
K⋂

i=0

PS
X(S

m
i )

where PS
X
(
Sm

i
)

is the perspective projection of Sm
i from the view point XXX to the view plane

S. If K → ∞, or ∆h→ 0, then, the problem becomes continuous:

σX(S) ⊂
∞⋂

i=0

PS
X(S

m
i ) (A1)

Inversely,

∀WWW ∈
∞⋂

i=0

PS
X(S

m
i )⇒

(
XWXWXW ∩ Sm

i

)
= bbbi ̸= ∅, ∀i ∈ N (A2)

c1 Remove text: much
c2 Text added.
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When ∆h→ 0, we then obtain:

XWXWXW =
∞⋃

i=0

bbbi ⊂ Ω

Indeed, if XWXWXW ̸⊂ Ω, we can always find a value ∆h > 0 in order to have a cross-section
Sm

i so that Sm
i ∩XWXWXW = ∅ (conflict with (A2)). Consequently, WWW can be seen by XXX, we then

have:

WWW ∈ σX(S)⇒
∞⋂

i=0

PS
X(S

m
i ) ⊂ σX(S) (A3)

From (A1) and (A3), then:

σX(S) =
∞⋂

i=0

PS
X(S

o
i ) (A4)

As the cross-section of Ω is convex and the convexity is preserved under perspective 419

projection and intersection [42], then σX(S) is a convex region. (Q.E.D.). 420

Appendix A.2 Proof of Remark 1 421

c1 c2We will prove the correctness of the proposed direction of the VP at each partition. 422

i. Case 1: XXX ∈ P1 (XXX can see Q) 423

As the line segment joining XXX and QQQ is the shortest path between them. The direction 424

of the ESP ṗpp(s) at XXX must be towards QQQ. 425

ii. Case 2: XXX ∈ P2 (XXX can see Send, but Q) 426

Let YYY ∈ σX(Send) be the set of visible points on the ending cross-section such that the 427

angle between XYXYXY and XXXQQQ is the smallest one. We define a cone surface (C0) with the 428

apex XXX and the generatrix makes an angle ŶXQYXQYXQ to the axis XXXQQQ, then YYY ∈ (σX(Send) ∩ C0) 429

(see Fig. A1). As σX(Send) is convex, we can easily prove that the existence of YYY is unique, 430

moreover YYY ∈ (∂σX(Send) \ ∂Ω). Thus, XYXYXY must be tangent to ∂Ω at TTT. Let (α) be the 431

corresponding tangent plane, we obtain that (α) is also the tangent plane of σX(Send) (see 432

the proof of Corollary 2 for a similar case). 433

X

σ (S
X

(α)

end
)

I

T
Y

Destination
(C )0

Figure A1. XXX can see the ending cross-section. By defining the cone surface (C0), we can proof that Q
is coplanar with X, I, YX, I, YX, I, Y.

As YYY is the tangent point between σX(Send) and (C0 ∩ Send) (these two convex sets have 434

only one common point YYY), (α) is also the tangent plane of (C0). Let III be the center of the 435

cross-section at TTT. As ITITIT ⊥ (α), ITITIT must intersect the axis XQXQXQ of (C0). Thus, X, T, I, YX, T, I, YX, T, I, Y, and 436

Q are coplanar. We denote this coplanar plane by (Pc). 437

438

Let WWW be the intersection between the ending cross-section plane β(Send) and ṗpp(sX). Now,
we have to prove that WWW ≡ YYY. Using Corollary 2, we obtain: WWW ∈ σX(Send). Let (C1) be the
closed surface enclosed by σX(Send) and the set of line segments from XXX to every point of
∂σX(Send). Thus, XXX can see every point in (C1). If WWW ̸∈ ∂σX(Send) (that is, WWW is belong to the

c1 Remove text: It is evident that every point on the ESP must belong to one of the three partitions (P1: see QQQ, P2:
see Send, but not see QQQ, and P3: not see Send). Then, we need to

c2 Text added.
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inner zone of σX(Send)), then the ESP goes into the inner space of (C1) with the direction
ṗ̇ṗp(sX). As Q is outside (C1), the ESP must pass the boundary of (C1). We denote HHH as the
passing point. Since XXX can see HHH, the part of the ESP connecting XXX and HHH is not the shortest
path (as it is longer than XHXHXH). This leads to a contradiction with Lemma 1. Hence:

WWW ∈ ∂σX(Send) (A5)

In addition, if WWW ̸≡ YYY, then WWW ̸∈ (α). By using Corollary 1, we can confirm that the particle 439

will move far away from (Pc) so it cannot reach QQQ on (Pc). Thus, WWW ≡ YYY. (Q.E.D.) 440

iii. Case 3: XXX ∈ P3 (XXX cannot see Send) 441

As XXX cannot see Send, there exists the farthest cross-section S f of the tube that can be 442

seen by XXX. We will prove that XXX can see only one point in this cross-section. In S f , if there ex- 443

ist two different visible points Y1Y1Y1 and Y2Y2Y2 by XXX, then XXX can see the midpoint YmYmYm of Y1Y2Y1Y2Y1Y2 (using 444

Lemma 2). As YmYmYm ̸∈ ∂Ω, we infer that S f is not the farthest visible cross-section by XXX (XXX can 445

see farther with the line of sight through YmYmYm). Thus, there is only one visible point YYY in S f 446

that can be seen by XXX, and XYXYXY is the correct direction of the tendon according to Corollary 2. 447

448

Moreover, we can demonstrate that XYXYXY is also the longest-length-of-sight from XXX. One 449

can easily confirm that XYXYXY must be tangent to ∂Ω at a point TTT of the cross-section ST . Let 450

(α) be the corresponding tangent plane. Let Ωv be the space enclosed by ∂Ω, (α), and 451

the cross-section containing XXX as illustrated in Fig. A2. Then, Ωv contains all the visible 452

points by XXX of Ω located behind the cross-section ST . The problem now is to prove that 453

XY is the longest length of sight in Ωv. As the tube does not overlap itself, we obtain: 454

XYXYXY ≥ TYTYTY ≥ 2R. Thus, one can confirm that Ωv is totally contained by the sphere (χ) center 455

XXX and the radius XYXYXY. We then have XY is the longest length of sight from XXX. c1

X

Y

T

(χ)

Sf

ST
Ωm

Figure A2. XXX cannot see the ending cross-section. It can see only one point YYY on the furthest visible
cross-section S f .

456
c2It is evident that every point on the ESP must belong to one of the three partitions 457

(P1: see QQQ, P2: see Send, but not see QQQ, and P3: not see Send) and as the correct direction is 458

unique for each position, if the VP follows the proposed correct direction throughout its 459

journey, its moving path will describe the ESP. (Q.E.D). 460
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