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Abstract: We propose a novel algorithm for Euclidean shortest path (ESP) from a given point (source)
to another point (destination) inside a tubular space. The method is based on the observation data of
a virtual particle (VP) assumed to move along this path. In the first step, the geometric properties of
the shortest path inside the considered space are presented and proven. Utilizing these properties,
the desired ESP can be segmented into three partitions depending on the visibility of the VP. Our
algorithm will check which partition the VP is belong to and calculate its correct direction of the
movement, thus the shortest path will be traced. The proposed method is then compared to Dijkstra’s
algorithm considering different types of tubular spaces. For all cases, the solution provided by the
proposed algorithm is smoother, shorter, and high accuracy with a faster calculation speed than one
obtained by Dijkstra’s method.

Keywords: Euclidean shortest path; tubular space; reactive algorithm; visibility; oriented drilling
process; Dijkstra’s algorithm

1. Introduction

Finding the shortest path in the presence of obstacles, referred to as the Euclidean
shortest path problem is one of the fundamental problems in path planning [1]. This
problem arises in many industrial ! applications. > “*The idea of using a flying robot such
as an unmanned aerial vehicle (UAV) to navigate through a tunnel-like environment can
be found in the inspection of dam penstocks, [2-4], chimneys [5], ventilation systems [6],
onshore oil and gas industry [7], narrow sewers [8], and other hazardous deep tunnels
[9,10]. In addition, many marine applications also require navigating through underwater
tunnel-like environments with autonomous underwater vehicles (AUVs). For instance,
the inspection of different kinds of underwater structures such as offshore oil platforms
[11], flooded spring tunnels [12,13], water delivery tunnels [14], etc. In these applications,
shortest path planning that minimizes the total distance travelled by the vehicles plays an
important role in optimizing the energy consumption, thus extending the operation time
without recharging their batteries [15,16]. It may also reduce the travelling time and will be
very useful for search & rescue missions during disaster events in underground tunnels
[17,18].

¢ Another example of the studied problem is to determine the location of a non-elastic
chord between to points within a tube. Indeed, this problem can be found in controlling
the deformation of slender tube-like robots actuated with an internal tendon(s) [19,20].
Calculating the tendon load effect on the tube wall requires determining the tendon location.
As it is only attached at the tip, pre-positioned at the base, and the rest freely locates inside
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the innermost tube, its location results in the shortest path connecting two points at the s
base and at the tip. 35

1.1. Related works 36

In general 3D space, the problem of finding the ESP between two given points that does  s7
not intersect given obstacles is known to be NP-hard [21], special cases of the problem have s
been studied afterwards. The author in [22] gave a polynomial time algorithm to calculate o
ESP for cases where the number of obstacles is ‘small’ and all of them are convex. Another 4
algorithm was proposed in [23] with the assumption that all obstacles are vertical buildings 4
with k different heights. More recently, [24] presented algorithms for solving approximate a2
ESPs amid convex obstacles. Other approximation algorithms for ESP calculations are 43
detailed in [25]. These studies share common features that a collection of finite obstacles  as
are given as forbidden zones in space and the ESP will be found in the space surrounding s
these obstacles. 46

In the studied problem, the obstacle is the entire space outside the tube and the ESP 4~
must pass through the inner zone of the tubular space. A similar problem can be found 4
in [26] that compute the minimal path in tubular space. The minimal path is typically 4o
solved based on the Fast Marching method which only considers grid nodes as the possible  so
vertices of the minimal paths. However, paths detected by the Fast Marching method have s
been proven to be not always the exact ESPs [1]. There also exist several approximation s
algorithms for finding ESP between two points in 3D space bounded by a closed surface s
such as a cube-curves [27] or a simple polyhedron [28] using rubberband algorithm. This s
method is suitable for solving various ESPs in 3D space. Even so, there is a non-trivial gap s
in geometric shape between the cube-curve and the tubular space. Polyhedron seems likea  se
better choice to represent a tubular space. However, characteristic geometrical properties sz
of tubular spaces should be considered for a dedicated algorithm. 58

The studies on tubular surface with Bishop frame was proposed in [29]. The authors  se
gave some characterizations about special curves lying on this surface (e.g., geodesic and o
asymptotic curves). However, the problem we study requires considering the interior space &
instead of just the boundary surface. In addition, the geometrical properties of the ESP e
inside the tubular space also need to be investigated. The authors in [30] described a simple &3
geometric structure of ESPs where they consist of curved paths on the obstacles connected s
by straight line segments (see Theorem 1). In this work, we develop the geometric structure s
of ESPs presented in [30] by considering characteristic properties of tubular spaces. 66

In practice, the navigation problem can be classified into planning-based and reactive o
algorithms [31]. Planning-based approaches require a global map representation of the s
environment (e.g., a graph or a network) before searching. The knowledge beforehand of
the tubular space allows generating a weighted graph where the weight of each edge (or 7
arc for the directed graph) associated with its length [25]. Numerous algorithms are used =
for shortest path calculation in graph theory (see Chapter 24 and 25 in [32]). A well-known =
graph-based algorithm among them is Dijkstra’s algorithm [33] where the shortest path 7
connects vertices in the graph. Unlike the planning-based approaches, a reactive method 7
allows directly generating motion decisions during the movement based on observed data s
[31]. The reactive shortest path navigation was presented in [34] for an in-plane problem. 7
Such a problem was also found in 3D space where the obtained path is interpolated with 7~
a spline curve [35]. In this work, we propose an algorithm that based on the observed s
information of a virtual particle and can be used as a reactive method for the shortest path 7
navigation inside the tubular space. 80

1.2. Contributions 81

In this paper, we propose a novel algorithm to find the shortest path within a tubular =
space that connects two points at the tube ends. Our contributions include: 1) the descrip- e
tion of the ESP geometrical structure inside tubular spaces with mathematical proof, 2) the s
proposition of a novel algorithm for finding the shortest path in tubular spaces based on s
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the observed data, and 3) the numerical validation and comparison results with Dijkstra’s
algorithm by considering various types of tubular spaces. As a result, the solution obtained
by using the proposed algorithm is shorter, smoother and faster than one provided by
Dijkstra’s method.

The remainder of this paper is organized as follows. Section 2 formulates the problem.

The basics of Dijkstra’s algorithm is described in Section 3. Then, we present the proposed
algorithm in Section 4. Our computational results is given in Section 5. After that, Section 6
includes some brief discussions. Section 7 concludes the paper.

2. ESP in Tubular Space
2.1. Problem description

Euclidean geometry is the geometry in daily life [1] where the distance between two
points p = (xp, yp, zp)T and g = (x4, y4, z4)T in 3D space is defined as follows:

de(p, 4) = \/ (xp — %2 + (vp — )2 + (2p — 29)? M

From the discrete point of view, a path («) from the source B to the destination Q is a
finite sequence of nodes x;, starting at 8 and ending at Q. We obtain the length of the path
asin Eq. 2:

n—1

L(w) =) de(xi, Xig1), Xo=9P, x, =9 (2)
i=0
Then, the ¢! ESP is the path connecting B and 9, which has the minimum length and has
to be through a given tubular space. The mathematical definition of tubular space is given
as follows [36]:

Definition 1. Let ¢(s) : I — R3 be a smooth, reqular space curve. A tubular surface 9Q)
associated to c(s), of radius p, is, by definition, the envelope of the family of spheres of radius p, with
the center on the curve.

Definition 2. The storage space of the tube () is the 3D space enclosed by the lateral wall (0C))
and the two ending cross-sections of the tube.

Self-overlapping

Regular tube Self-overlapping tube

Figure 1. Regular and self-overlapping tube as defined in [29]. The regular tube ensures the
correctness of the directed graph in the following section.

€2 SSIn Definition 1, s is the arc length parameter of the centerline curve. We consider in this
work the tubular surface 0Q2 to be regular (Fig. 1). The condition underlying the regularity
of a tube is given in details in [29]. By «(s), we denote the curvature of the centerline curve
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¢(s). In order to avoid singularities as well as self-overlapping, the following condition is
required:

k(s) <p 1, ¥s €[0,L] 3)
where L is the length of c(s).

2.2. Directed graph

We discretize () into a series of meshed circular disks corresponding to the cross-
sections perpendicular to ¢(s). By Sy, ..., Sy.+1 we denote the meshed circular disks where
Sp contains the starting point (source) P and Sy 1 includes the destination Q. The distance
between two consecutive disks along the centerline curve is h = 1\#1 As the shortest path
from the source to the destination must obviously pass through each cross-section at only
one point, we have the weighted directed graph G(V, A) as shown in Fig. 2. This directed
graph is defined by a finite set V of vertices and a set A of arcs between those vertices [1].
All vertices of the graph (except P and ) are located at the nodes of the meshed disks
51, ..., Sn- We define that two vertices are called adjacent if they are connected by one arc.
Then, every two adjacent nodes in the graph are located on two consecutive disks. The
source B is connected with all nodes of disk S;. Each node of disk S; is connected by one
arc to every node of disk S; 1 foralli € {1,.., N — 1}. Eventually, every node of disk Sy is
connected directly to the destination .

3. Basics of Dijkstra’s Algorithm

¢! The concept of this method, based on the lemma about the relationship between
global minimum and local minimum, was first presented by E.W. Dijkstra in 1959 (see [33],
Problem 2). “Although also based on Lemma 1, Algorithm 1 “applied for the directed
graph has a run time in O(]A|) instead of O(|V|log|V| + | A|) like the conventional Dijk-
stra’s algorithm used for a weighted graph in general [1].

Lemma 1. (Dijkstra algorithm, 1959) “If r is a node on the minimal path from p to gq,
knowledge of the latter implies the knowledge of the minimal path from p tor”.

This lemma can be proved easily by contradiction. The shortest path from the source
B to the destination 9 will be traced by extending all extendable paths by one edge to
a node not yet visited on this path until 9 is reached. Consequently, extending all the
extendable paths from the source by one arc in the directed graph becomes turning the
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Figure 2. Discrete approach for the ESP problem. (Left): Inner space of the tube transformed into a
series of meshed circular disks and (Right): the directed graph.
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Algorithm 1: Dijkstra’s algorithm
Input: PB,0, and r[l]m,VZ S {1, ey N}, V] S {1, ey M}
Output: L.
// Initialisation
1 D(Q) — o0, D(r[l”]]) < +oo,Vi e {1,..., N},V] € {1,...,M};
// From the source to S
2 forj < 1to Mdo
D(rpyg) < w®B rpp);
Ly Bk
5 end
// Between S; and Sy
6 fori =2to N do
7 forj=1to M do
8 fork=1to M do
9 D(rjigj) < min{D(rjyp;), D(rii—jjig) + W (rii—jge 7(ay)
If D(r((;) is replaced, put a label K* « k.

(%)

10

11 end

12 Lig < {ﬁ[i—lnkﬂf’[inﬂ} ; // add i) to the list Ly gk
13 end

14 end

// From Sy to the destination
15 fork =1to M do
D(Q) «+ min{D(Q),D(r[N”k]) + w(r[NHk],Q)}
If D(Q) is replaced, put a label K* « k.
18 end
19 return L) < [Linjx+), Q]

examined disk into its adjacent disk towards the destination. Once examining a disk, the = 1a
shortest path between the source and every node on the previous disks has been identified, s
so we do not need to revisit these points. 143

Set r((i € {1,...,N},j € {1,..,M}) be the node j on the meshed disk S;. In  1as
addition, we denote D(x) as the minimum length from node ‘P to node x, w(x,y) as the 14
length of the arc connecting two adjacent nodes x and y, and L as the list of the nodes 14
on the shortest path from the source P to node r(;;) (for node 9, we utilize Lig)). We 1
obtain Dijkstra’s algorithm applied for this ESP problem as given in Algorithm 1. 148

!During the operation, all currently visited nodes always belong to the same cross- 1
section. Thus, all possible paths will reach the destination at the same time. When the 1so
destination is reached, there will be no longer extendable paths in the directed graph and = 1s
we can point out the shortest path. For that reason, the algorithm becomes a breadth-first s:
search algorithm [1]. “Thus, the time complexity of ° Algorithm 1 is O(|A|) with | A| is the 153
number of arcs in the directed graph. As a conventional method, the solution by Dijkstra’s  1sa
algorithm is given as a series of vertices of the graph G. Then, the solution path obtained 1ss
is generally a polyline. To increase the accuracy of the result as well as make it smoother, 1ss
the mesh of the discretized cross-section must be finer. However, increasing the number of ~ 1s
nodes on the mesh results in significantly slowing down the calculation speed. We then  1ss
proposed a new method that takes atage of the geometrical properties of tubular spaces to s
improve the searching solution. 160
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2 Text added.
S Remove text: the



Version November 1, 2023 submitted to Algorithms 6 of 20

positive direction line of sight longest length
of sight

Figure 3. (Left): The dashed red rays describe the positive directions. (Right): A can see B and D
because the line segments AB and AD are totally contained by (). Also by this definition, A cannot

see C. The green and blue dashed lines terminating at the boundary d() illustrate the line of sights.

Among them, the blue one is the longest-length-of-sight, an important concept used in the following

method.

Unique and Not continuous Not unique

continuous

Figure 4. The visible area of a cross-section S; is described by the yellow zone(s) which must be
unique and continuous.

4. The ESP Searching Algorithm Based on Visibility

The algorithm we propose hereafter “'is based on a visible tube portion that can be
"seen” by the VP moving along the searching shortest path. The ESP will be gradually
figure our by determining the correct moving direction of the particle from the source B to
the destination . For convenience, we firstly define some concepts used in this section.

4.1. Geometric properties of the ESP in tubular space

Definition 3. For every point X € S; C Q), i # N + 1, the cross-section S; divides () into 2
sub-spaces, a direction from X is said to be positive (+) if it is towards the sub-space containing the
destination.

According to Definition 3, any point in Q) (not belonging to Sy;1) will have an infinite
number of positive directions (see Fig. 3). Obviously, during the movement, the correct
direction of the particle is always a positive direction.

_ Definition 4. Two points X, Y € Q) are said to see each other if the line segment joining them
XY is totally contained by ().

Definition 5. A cross-section S C () is visible from a point X € Q) if there exists a point
Y € S that can be seen by X.

Lemma 2. If a point X inside the tube can see a cross-section S of the tube, the area part in S
that can be seen by X must be a convex set (as illustrated in Fig. 4).

The proof of this lemma is detailed in the Appendix A.1.
Definition 6. From a point X € (), the “length of sight” corresponding to a positive

direction is the distance between X and the farthest point in 0Q) that can be seen by X along the
positive direction. The line segment corresponding to this length is called the line of sight.

<l Text added.
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We then have the geometric structure of the shortest path between two points (not see
each other) in a tubular space.

Theorem 1. By f, we denote the shortest path between two arbitrary points X and Y inside
the tubular space Q). If X cannot see Y, then there exist curved parts of f lying on the inner lateral
wall of the tube 9Q). Outside these parts, f consists of a union of straight line segments which are
tangent to the boundary surface 0C).

Theorem 2. The curved parts of f are geodesic paths on 0Q). Moreover, they are on the surface
of negative curvature.

Proof: The proof of Theorem 1 was presented in [30]. To prove Theorem 2, we employ
Lemma 1. As the curved parts of f are also the shortest paths connecting their ends, they
must be geodesic paths on the boundary surface 0Q2 [37]. Moreover, if there exists a curved
path of f that is outside the surface of negative curvature, we always find on this path two
neighboring points that can see each other (see Fig. 5). As the straight line segment joining
these points is shorter than the geodesic path between them, then f is not the shortest one
connecting X and Y. This contradicts the definition of f (Q.E.D.).

These two theorems lead us to two important corollaries.

Positive curvature

Zero curvature

Figure 5. Curved segments lying on surfaces of positive and zero curvatures where A and B can see
each other.

Corollary 1. Let X be a point on the ESP p(s) that can see a point Y so that the ray XY is
not the direction p(sx) of the ESP at X. Let («) be an arbitrary plane containing XY. If the angle
between p(sx) and (w) is not zero, then the direction p(s) at any point on the ESP segment between
the cross-sections containing X and Y will always point away from («).

Proof: From X, the particle moves away from (a) (the angle between p(sx) and («) is
not zero). Using Theorem 1, we obtain that the particle only changes its direction at points
on the geodesic paths. As these curves must be on surface of negative curvature (Theorem
2) where vector p(s) points out of the tube, thus the p(s) will always point away from the
plane («) (see Fig. 6).

Corollary 2. If X on the ESP can see a cross-section S of the tubular space ) via a positive
direction, the correct direction at X (p(sx)) must be towards a point Y in the visible area of S by X.

Proof: The above corollary can be proved by contradiction. By ox(S), we denote
the visible area of the cross-section S by X. Let Y be the intersection of the straight line
containing p(sx) and the plane containing S (denoted by B(S)). We need to prove that
Y € 0x(S). We consider the following hypothesis of contradiction:

ifY ¢0x(S)=XY ¢ Q (4)

In other words, the ray XY passes through the boundary d(). Let M be the passing point
that is closest to X. In B(S) and through Y, we draw an arbitrary straight line that intersects

225
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P(s)

Figure 6. (Left) Tube portion between the cross-sections containing X and Y which can see each other.
(«) is an arbitrary plane containing XY but not containing p(sx). The ESP p(s) only changes its
direction p(s) on its geodesic segment(s). S is an arbitrary cross-section of the tube where the geodesic
segment crosses. (Right) On the projection view plane that is perpendicular to («) ((«) degenerates
to a straight line), as fi(s) points outside the envelope of S, it also points away from («). As p(sx)
points away from (a), by mathematical induction p(s) will point away from (&), Vs € [sx, sy].

BS)

Figure 7. Point X can see cross-section S. Y be the intersection of the direction of the ESP p(Sx) and
the plane containing S. In A(S) and through Y, we draw an arbitrary straight line that intersects the
visible area 0x (S). Let W be the intersection point that is closest to Y. (Left): W is in the inner zone of
S. (Right): W is on the boundary of S.

the visible area 0x(S). Let W be the intersection point that is closest to Y. Then, W must be
on the boundary of ox(S) (denoted by dox(S)). In addition, there is a total of two relative
positions of W: W € Q) and W ¢ 0Q) (see Fig. 7). In the following, we define a plane («)
and a closed surface (C) for these two mentioned cases:

e (W ¢9Q). (a) is the plane that contains XW and the tangent at W of ox(S). If XW
is not tangent to 9Q), we can always find in B(S) a circle with center W and radius €
small enough so that the entire circle can be seen by X (as there is no obstacle between
X and this circle). Then there exist points outside ox(S) (which is part of the circle)
that can be seen by X. This contradicts the definition of o (S). Thus XW is tangent
to 0Q). Let T be the tangent point that closest to X and Pr(9Q2) be the tangent plane
of 00 at T. If Pr(9Q)) # («), Pr(9Q) will divides ox(S) into two subsets. However,
as the line of sight of a visible point in 0x(S) must pass through the cross-section at
T of the tube, then only one subset of 0x(S) can be observed by X. This contradicts
the definition of ox(S). Thus, Pr(0Q)) = («). We can then define a closed surface (C)
enclosed by («), the cross-section at X, and part of Q) which contains M (see Fig. 7
Left).

e (W €00). (a) is the plane that contains XW and the tangent at W of S. Then, (C) is
the closed surface containing M and enclosed by 9}, («), and the cross-section at X of
the tube (see Fig. 7 Right).
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By using the definition of (C), we obtain that from X, the VP will go into the inner space of  2as
(C). Since the destination 9 is outside (C), the particle must pass the boundary of (C) at 2
somewhere on («). However, by applying Corollary 1, the direction vector p(s) will always  zar
point away from («), thus the particle cannot return to («) for a passing point. Therefore, zas
the hypothesis (4) cannot be true, thenY € 0x(S). (Q.E.D.). 240

Employing the above lemma, theorems and corollaries leads us to an important result  2s.
about the partitions of the ESP inside a tubular space as given in Remark 1. 252

Remark 1. For any type of tubular space, the searching shortest path p(s) can be segmented  zsa
into three partitions: 2855

e Partition 1 (P1) : Includes points that can see the destination Q. The direction p(s) at any  zse
point in this partition is always towards 9. 257
e Partition 2 (P2) : Includes points that can see the ending cross-section S, 4, but cannot see Q.  zss
The direction p(s) at any point X in this partition is always towards a visible point Y in the s
ending cross-section such that the angle between XY and X is the smallest one. 260
e  Partition 3 (P3) : Includes points that cannot see the ending cross-section S,y,z. The direction — zex
of p(s) at any point in this partition is the positive direction corresponding to the longest- 2oz
length-of-sight. 263

Source

Partition 3

Destination

Figure 8. Three partitions of the shortest path corresponding to three sections of the tube. At A
belonging to P3, the VP cannot see the ending cross-section S,,,;. The correct direction corresponds to
the longest-length-of-sight. At B belonging to P2, it can see S,,,4, but not Q. The correct direction is
towards the visible point Y in S,,,; so that the angle 6 between BY and B{) is the smallest one. At C in
P1, the particle can see . The correct direction is towards £.

The three partitions of the searching shortest path inside the tube are described in Fig. zes
8. The proof of this remark is given in the Appendix A.2. It is important to note that a  zes
tube does not necessarily contain all 3 partitions. For instance, a straight tube only contains =zes
partition 1 for any positions of the source and the destination. 267

4.2. The Proposed Algorithm 268

The principle of this method is based on Remark 1. Ensuring two points can see zes
each other in the discrete approach is equivalent to proving that the line segment joining 27
those points must cross all the meshed circular disks between them. In the Algorithm 2, =7
we use C; to denote the intersection point between the searching shortest path and the 2
cross-section S;, i € {0,..., N + 1}. The objective of the Algorithm 2 is then equivalent to 27
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Algorithm 2: Proposed method
Input: PB,0, and r[l]m,VZ S {1, ey N}, V] S {1, ey M}
Output: C;, Vi € {0,.., N +1}.
// Initialisation
1Cop«P,Cni1+—QC—OVie{l,. . N}
2 flag —0; // Marking if the C; 1 can see Sy.j or not
// Loop Process
3 fori<1to N+ 1do

4 if C;_1 can see C 1 then
// Ci_1 is belong to Partition 1

5 C, + C; 1Cni1NS, Yk e{i.., N},

6 flag < 1;

7 break;

8 else

9 0 < 4o0; // Angle between the correct direction and C; 1.9
10 forj < 1toMdo

11 Coistal < T(N+1[j] 7 // Temporary examined vertex of Spyiq
12 if C;_ can see Cpj, then

13 flag +1; // Ci_1 is belong to Partition 2
14 Ctgmp — Ci_1Cuisiar N'S; ; // Possible value for C;
15 Otemp = A”gle(Ci—l-cdistal/cifl"g) ; // Possible value for 0
16 if 0 > Otemp then

17 0 < Otemp;

18 Ci« Ctemp}

19 end

20 end

21 end

2 if flag = 0 then

// Ci_1 is belong to Partition 3

23 C; = Oriented Drilling Process(C;_1);

24 end
25 end
26 end

finding the series of C;. It is important to note that C; is not necessarily a node of G(V, A).
Indeed, the algorithm figures out the correct direction of C;_; thereby determining the
position of C; as the intersection point between this direction and the next cross-section S;.
The correct direction of C;_; is found using Remark 1 by checking which partition C;_ ©!
“belongs to (with precedence from P1 to P3). The value 1 of flag marks that C;_; can see
the ending cross-section Syr;1. The Oriented Drilling Process is an algorithm employed
for Partition 3, which returns to the next value of C; series by the intersection point between
the longest-length-of-sight direction and the next cross-section.

4.3. Oriented Drilling Process

To determine effectively the longest-length-of-sight from an arbitrary point X inside
the tube, we employ Lemma 2. The operation scheme of finding the longest-length-of-sight
direction illustrated in Fig. 9 comprises a series of expanding and deepening processes.
Without loss of generality, we assume that C; 1 can see a point T in a forward section §;.
By employing Lemma 2, we expand discretely the examined direction from the direction
passing through T to others passing through its nearby nodes on the same mesh S; until

<l Remove text: isbelong
2 Text added.
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Figure 9. The oriented drilling process : 1) C;_; can see T in section Sj, 2) expand the examined
direction in the vicinity of T until seeing Ty, in section Si(k > j), 3) update T by Tyew, S i by Sk and
repeat step 2 for the new T and S;, 4) repeat step 3, 5) the expanding process is over and we do not
find any farther section Sy = @, we then compare all the length of sight passing through the visible
area in S; to obtain the direction corresponding to the longest-length-of-sight, and 6) initialize the
next correct point of the shortest path C; as the intersection point between the correct direction and
cross-section S;.

discovering a point T,y in a farther disk Sy (k > j). As a deepening process, we then
update T by T e and also the examined cross-section Sj by Si. The operation is then
repeated until the expanding process is over. The condition to stop the expanding process
is when the boundary of the visited area in S; just comprises the invisible nodes and the
boundary points of S;. Finally, we compare the length of sight corresponding to all visible
points in farthest visible cross-section and find the longest one. The next correct point C; is
the intersection point between this line of sight and the next cross-section S;. One atage of
this method is a significant improvement in computation time as we do not need to visit
all the nodes of the graph. For the expanding process, on the examined disk S;, we just
need to expand the investigated nodes until the current exact point C;_; can see farther,
then we jump further into the more in-depth cross-section. Otherwise, if there is no new
disk observed by C;_;, we stop the process and indicate the next correct point of the ESP
C;. Moreover, as this is an inheritable algorithm, in the next searching process, we can use
directly the previous correct direction as the initial examined orientation. Thus, we skip the
disks that were examined in the previous loop. For several circumstances such as points
on the straight-line segments of the shortest path (the ESP consists of straight-line and
geodesic curve segments, see Theorem 1-2), the next searching process can stop right after
choosing this initial examined orientation. That is also the reason why we call this method
Oriented Drilling. Imagine that every time we find the correct direction for the point C;_;
like we drill a hole in that direction. For the next searching process, as there was already a
hole, the searching is much more comfortable. The whole process becomes adjusting the
direction of the drill so that it can drill deeper. Consequently, the drilling direction will be
oriented closer and closer to the deepest drill hole (the longest-length-of-sight).

5. Computational Results

In this section, we will compare the efficiency of the proposed algorithm with Dijkstra’s
one. There are several criteria for this comparison result: the length of the obtained ESP, the
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—Proposed Method
—Dijkstra"s Method
» Exact Solution

z (cm)

L.P=36.63 (mm), L.D =37.24 (mm), L.E = 36.59 (mm)
T.P =759 (ms), T.D = 4103 (ms)

Figure 10. Tubular space with two curved segments in space. By L.P, and T.P, we denote the tendon
length and the computation time for the solution obtained by the proposed method. Similarly, L.D,
and T.D for Dijkstra’s algorithm. The exact solution is determined by using Dijkstra’s method with
Ny =144 and Ny = 64.

computation speed, the smoothness and the position error of the solution. The experiments
were ran on a machine with an Intel Core i5-8400 CPU @ 2.80 GHz processor. It has a 6-core
CPU and the available RAM was 16 GB. All algorithms were implemented in Matlab.

5.1. Computation Time

We firstly implemented them considering a tube with the centerline in 3D space con-
sisting of a 4 cm straight length and two curved segments belonging to two perpendicular
planes. The radii of both curves are 12 cm and their lengths are 16 cm and 20 cm respectively
as detailed in Fig. 10. The inner diameter of the tube is 3 cm. We chose the discretization
step h = 2 mm (N = 199). Each meshed disk is made by dividing the cross-section into
cl C2§ concentric circles (N, =c3 “4§) whose circumference are divided into 4 equal arcs
(Np = 4).

As shown in Fig. 10, the proposed method allows us to obtain a shorter and smoother
solution than Dijkstra’s method with the same mesh (detailed analysis will be provided
in the next sub-section). Another atage of the proposed algorithm compared to Dijkstra’s
method is the computation speed as a large number of unimportant vertices and arcs can
be ignored in the process (see Fig. 10). As the time complexity of the proposed method has
a huge variation depending on the specific shape of the tubular space, the computation
time (instead of the theoretical time complexity) will be consider for the comparison result.
Table 1 shows how the computation times of the two methods depend on the number
of nodes in the meshed circular disks. As we can see the computation time of Dijkstra’s
method will increase by a factor of 4 if M is doubled (M is the number of nodes in a
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Table 1. Computatiom Time (in Second) Of The Two Mehods

N, = 25, Ny = 4
M =100 T.P =0.76, .D = 4.10
N, =50, Ny = 4 N, =25, Np = 8
M =200 | TP=096,TD=16.66 | T.P =105 T.D=1577
N, = 100, Ny = 4 N, =25, Ny = 16
M =400 | TP=163, TD=6467 | T.P=151, TD=60.19
N, = 200, Ny = 4 N, = 25, Ny = 32
M =800 | TP=3.03, T.D =259.23 | TP =201, T.D = 219.82

meshed disk). This is consistent with the time complexity O(|A|) of Dijkstra’s algorithm
(|A| = 2M + (N — 1) M?). For the proposed method, this increasing rate is less than two.

5.2. Accuracy and smoothness

In the following, we extend the comparison results between the two algorithms for
different types of tubular spaces as shown in Table 2. Depending on the properties of the
centerline, we have two main classes of the tubular spaces: in plane centerline (parabolic,
elliptical, hyperbolic, sinusoidal, and evolvent of a circle) and in space centerline (wave-
shaped torus on a sphere, helical, spiral, and complex shape). “'Each meshed disk is
chosen with N, = 25 and Ny = 4. In all these cases, the proposed algorithm always gives
shorter, smoother and faster results than Dijkstra’s algorithm with the same mesh. Unlike
conventional graph-based methods (e.g. Dijkstra’s searching algorithm) in which the
shortest path is made up of the graph nodes, the proposed method allows finding each
correct point on the ESP by determining the intersection point between the exact moving
direction (line of sight) and the next cross-section. This intersection point is not necessary
a node of the mesh and leads to a smoother and shorter solution than one by Dijkstra’s
algorithm. The smoothness of this path is important, especially in mechanical applications
when the derivatives of the path with respect to the arc length s of the tube is required
such as using the coupled Cosserat rod and string model [38] to find the deformation of a
flexible tendon drive robot in case that the tendon locates freely inside the tube [19].

Besides the length and the smoothness of the obtained ESP, its location inside the tube
is also very important. For example, in the mechanical problem just mentioned above, the
tendon location directly related to the deformation direction of the tube. Thus, the position
error of the obtained ESP to the exact solution need to be investigated. We consider the
ESPs given by Dijkstra’s and the proposed algorithms to be a series of points located on the
cross-sections of the tube. Then, the position error of each point is the distance between
itself and the exact solution within the containing cross-section. Let e” and €’ are the
position errors within cross-section S; of the solution by Dijkstra’s algorithm and by the
proposed method respectively. In this test, we expect to consider the relative errors instead
of the absolute ones. As the obtained paths must be inside the tubular space, to limit the
relative errors by 100%, we compare the absolute position error to the inner diameter of the
tube d. The root mean square error (RMSE) and the maximum error (E;;4x) of Dijkstra’s
solution are given in Eq. 5 and Eq. 6 (the same for the proposed method just by replacing
super index D by P).

©)

(6)

b Text added.
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Table 2. Compare the proposed method and Dijkstra’s method with many tubular surfaces [39].

1. Plane Parabolic Centerline

—Proposed Method
—Dijkstra's Method
- Exact Solution

5

L.P =27.22, L.D = 27.29, L.E = 27.21 (cm)
T.P = 0.68, T.D = 2.57 (s)

2. Plane Elliptical Centerline

—Proposed Method
—Dijkstra's Method
- Exact Solution

L.P = 25.70, L.D = 25.74, L.E = 25.68 (cm)
T.P =1.02, T.D = 2.65 (s)

3. Plane Hyperbolic Centerline

—Proposed Method
—Dijkstra's Method
- Exact Solution

L.P =27.97, L.D =28.10, L.E = 27.96 (cm)
T.P =0.73, T.D = 2.64 (s)

4. Plane Sinusoidal Centerline

—Proposed Method
—Dijkstra's Method
- Exact Solution

odV Ol

BN o

L.P =24.41, L.D = 24.53, L.E = 24.39
T.P = 1.36 (s), T.D = 2.66

5. Plane Evolvent of a Circle

—Proposed Method
—Dijkstra's Method
- Exact Solution

L.P =21.92, L.D = 21.94, L.E = 21.91
T.P = 1.16 (s), T.D = 2.57

6. Wave-Shaped Torus on a Sphere

—Proposed Method
—Dijkstra's Method
- Exact Solution

L.P =22.29, L.D = 25.12, L.E = 21.96
T.P = 1.26 (s), T.D = 2.74

7. Tubular Helical Surface

—Proposed Method
—Dijkstra's Method
- Exact Solution

L.P =20.05, L.D =20.31, L.E = 20.01
T.P =1.00 (s), T.D = 2.74

8. Tubular Spiral Surface

—Proposed Method
—Dijkstra's Method
- Exact Solution

. 6

L.P =18.87, L.D =19.02, L.E = 18.71
T.P=1.17(s), T.D = 2.88

9. Complex Shape Tubular Surface

—Proposed Method
—Dijkstra's Method
= Exact Solution

L.P =110.96, L.D =111.22, L.E = 110.92

T.P = 5.90 (s), T.D = 11.29

Here, we do not consider the two ending cross-sections (Sp and Sy 1) as the position error is
obviously zero at the source and the destination. As shown in Table 3, the proposed method
always provides smaller RMSE and E,;;x than ones obtained by Dijkstra’s algorithm for all
of the tubes. Concretely, the average values among these tubes of RMSE and of E;4y for the
proposed solution are respectively 0.319% and 1.427% and about 6 times smaller than ones
given by Dijkstra’s algorithm (2.133% and 8.753%, respectively). “>As the path obtained
by Dijkstra’s method must pass through nodes of the weighted graph, its position errors

depend a lot on the meshing. These errors can be reduced if we increase the granularity

of the mesh, but it will also increase the computation time. For the proposed method, the

location of the obtained path is not forced to be the nodes of the graph that leads to smaller

position errors.

2 Text added.
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Table 3. Root mean square and maximum position errors of the ESP obtained by the two algorithm.
The tube number is as given in Table 2.

RMSE
Tube 1 2 3 4 5 6 7 8 9 Avg.
Dijkstra’s agorithm 0,506 %  0.032 % 1.922% 0118% 0.007 % 12.487 %  1.655 % 1.334 % 1.140% 2133 %
Proposed agorithm ~ 0.002 %  0.002 % 0.004 % 0.009 %  0.001 % 1.003 %  0.510 % 0.368 % 0974 % 0.319 %

Maximum Error
Tube 1 2 3 4 5 6 7 8 9 Avg.
Dijkstra’s agorithm  4.343 % 0.628 % 11.812% 1.136% 0226 % 28.121% 8556 % 11.942% 12.017% 8.753 %
Proposed agorithm  0.012% 0.016%  0.026 % 0.105% 0.015%  4.774% 2077 %  2039%  3.782% 1427 %

6. Discussion

In this section, the extended application scope of the proposed algorithm and the ability
to apply it as a reactive method for the navigation problem in unknown environments will
be discussed.

6.1. Extended Applications

We can extend the application scope of the proposed method for general tunnels with
convex and variable cross-sections (see Fig. 11). Indeed, with a minor modification on
Remark 1 for points in P3: the correct direction is towards the (only) visible point of the
farthest visible cross-section instead of considering the longest-length-of-sight, one can
confirm that the correctness of Remark 1 will still be preserved (see the Appendix A.2).

convex shape

Figure 11. Canal space with convex and variable cross-sections.

6.2. A Reactive Method

In this work, we used the same directed graph for Dijkstra’s algorithm and the pro-
posed one for the aim of simplify the validation and the comparison results. It is important
to note that the proposed method does not require the knowledge of the entire volume ()
to obtain a weighted graph before searching. In fact, the correct direction of the particle
can be determined based on the observation in front of it. While using Dijkstra’s algorithm,
we cannot figure out which path is the ESP until visiting all nodes and arcs of the graph
and need to store all possible paths during operation, the proposed method allows directly
generating motion decision during the movement there by the ESP is gradually traced.
Thus, it can be applied as a reactive method for robots that need to explore unknown
tubular spaces such as lava tubes on an astronomical object [40] or environments in the
absence of GPS signals [41]. In practice, the proposed algorithm should be run together
with a given safety boundary constraint for collision avoidance of the inspection robots.

7. Conclusion

In this paper, we presented a novel algorithm for solving the ESP problem inside
tubular spaces based on its geometric properties. Computational results were conducted
on various types of tubular spaces. We demonstrated that the achieved efficiency of the

366
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368
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proposed algorithm is <! better than Dijkstra’s one. Concretely, the proposed method
provided smoother and more precise results with a faster calculation speed than one
obtained by Dijkstra’s algorithm with the same grid. The strength of the proposed method
is also reflected in the fact that it can work without knowing the environment in advance
which allows it to process as a reactive method. Even though the algorithm was described
for the tubular space it is also strongly promising for more complex tunnel spaces, to which
it can directly be applied with the mentioned minor modification. A limitation of this
method is that it is only applicable to unbranched tubular spaces. In order to apply this
method for a branched tubular space, additional information will be required to make
decisions at the junctions of branches.

As the ESP may lie on the tubular surface, the requirement of using a collision-free
method together with the proposed algorithm has been left for future research. Our
plans for future work concern some applications such as on-line trajectory generation of
navigation robots in unknown tunnels or determine the deformation of a tendon drive
tube-like robot in medical that is also our domain of interest.
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Appendix A
Appendix A.1 Proof of Lemma 2

By Sx, we denote the cross-section of () that contains X. Let (), and L;, be the sub-
space of () limited between Sy and S, and its length along the centerline curve respectively.
Under a discrete point of view, (), can be considered as a series of (K + 1) cross-sections
perpendicular to the centreline curve: Sx = Sf, ..., S{ = S (K € NT) with the discrete step
Ah = % Let 0x(S) be the visible area of the cross-section S by X, we then have:

VY € 0x(5),Vi € {0,.., K} = 3a; = (XY NS]") £ @

Therefore, Y is the perspective projection of a; (Vi € {0, ...,K}) from the view point X to the

view plane S, hence:
K

ox(S) € () Px(S")
i—0

where P (S) is the perspective projection of S from the view point X to the view plane
S.If K — oo, or Ah — 0, then, the problem becomes continuous:

ox(S) € () Pg(s!") (A1)
i=0
Inversely,
YW € () PL(S!) = (Wms;.”) — b £Q,VieN (A2)

i=0

<l Remove text: much
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When Ah — 0, we then obtain:
XW = U b, CQ
=0
Indeed, if XW ¢ Q, we can always find a value Ak > 0 in order to have a cross-section

S so that S' N XW = @ (conflict with (A2)). Consequently, W can be seen by X, we then
have:

Wcox(S) = ﬁ Pg(S™) C ox(S) (A3)
i=0
From (A1) and (A3), then:
ox(8) = () P(59) (A4)
i=0

As the cross-section of () is convex and the convexity is preserved under perspective
projection and intersection [42], then o (S) is a convex region. (Q.E.D.).

Appendix A.2 Proof of Remark 1
<! ©2We will prove the correctness of the proposed direction of the VP at each partition.
i. Casel: X € P1(X cansee Q)

As the line segment joining X and £ is the shortest path between them. The direction
of the ESP p(s) at X must be towards Q.

ii. Case2: X € P2 (X can see S,,4, but Q)

LetY € 0x(S.nq) be the set of visible points on the ending cross-section such that the
angle between XY and X9 is the smallest one. We define a cone surface (Cy) with the
apex X and the generatrix makes an angle YXQ to the axis X9, thenY € (0x(Senq) N Co)
(see Fig. A1). As 0x(S,nq) is convex, we can easily prove that the existence of Y is unique,
moreover Y € (d0x(Senq) \ 0Q2). Thus, XY must be tangent to dQ) at T. Let («) be the
corresponding tangent plane, we obtain that («) is also the tangent plane of ox(S,,4) (see
the proof of Corollary 2 for a similar case).

Figure A1. X can see the ending cross-section. By defining the cone surface (Cp), we can proof that 9
is coplanar with X, I, Y.

As 'Y is the tangent point between o (S,,) and (Cy N S,,4) (these two convex sets have
only one common point Y), («) is also the tangent plane of (Cp). Let I be the center of the
cross-section at T. As IT L (), IT must intersect the axis X of (Cp). Thus, X, T, I, Y, and
0 are coplanar. We denote this coplanar plane by (P).

Let W be the intersection between the ending cross-section plane (S,,;) and p(sx). Now,
we have to prove that W = Y. Using Corollary 2, we obtain: W € 0x(S,,,4). Let (C7) be the
closed surface enclosed by ox(S,,4) and the set of line segments from X to every point of
00 (Sena)- Thus, X can see every pointin (Cq). f W ¢ dox(S,;,4) (thatis, W is belong to the

<l Remove text:
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inner zone of 0x(S,,4)), then the ESP goes into the inner space of (C;) with the direction
p(sx). As Q is outside (Cy), the ESP must pass the boundary of (C;). We denote H as the
passing point. Since X can see H, the part of the ESP connecting X and H is not the shortest
path (as it is longer than XH). This leads to a contradiction with Lemma 1. Hence:

We aUX(Send) (AS)

In addition, if W £ Y, then W ¢ (a). By using Corollary 1, we can confirm that the particle
will move far away from (P;) so it cannot reach Q on (P). Thus, W =Y. (Q.E.D.)

iii. Case 3: X € P3 (X cannot see Sy,4)

As X cannot see S,,,4, there exists the farthest cross-section S f of the tube that can be
seen by X. We will prove that X can see only one point in this cross-section. In S, if there ex-

ist two different visible points Y; and Y, by X, then X can see the midpoint Yy, of YiYs (using
Lemma 2). As Ym ¢ 0€), we infer that S¢ is not the farthest visible cross-section by X (X can
see farther with the line of sight through Ym). Thus, there is only one visible point Y in S¢
that can be seen by X, and XY is the correct direction of the tendon according to Corollary 2.

Moreover, we can demonstrate that XY is also the longest-length-of-sight from X. One
can easily confirm that XY must be tangent to d() at a point T of the cross-section St. Let
(«) be the corresponding tangent plane. Let (), be the space enclosed by 9Q), («), and
the cross-section containing X as illustrated in Fig. A2. Then, (), contains all the visible
points by X of () located behind the cross-section St. The problem now is to prove that
XY is the longest length of sight in (),. As the tube does not overlap itself, we obtain:
XY > TY > 2R. Thus, one can confirm that (), is totally contained by the sphere () center
X and the radius XY. We then have XY is the longest length of sight from X. <!

Figure A2. X cannot see the ending cross-section. It can see only one point Y on the furthest visible
cross-section Sy.

1t is evident that every point on the ESP must belong to one of the three partitions
(P1: see 9, P2: see S,,,4, but not see £, and P3: not see S,,,;) and as the correct direction is
unique for each position, if the VP follows the proposed correct direction throughout its
journey, its moving path will describe the ESP. (Q.E.D).
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