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Concentric tube robots (CTRs) have a great potential for use
in medical applications. Coupled with a follow-the-leader
(FTL) deployment, they allow navigation in constrained en-
vironments. However, they are subject to instabilities if one
makes use of high curvatures for the tubes, long overlap-
ping lengths of their curved sections, or long transmission
lengths. One approach to improve their stability is to pattern
the tubes of which they are composed, by local removals of
material along their lengths. Applying patterns on tubes was
proved to be of interest for given deployed lengths of a CTR.
In this paper, we present a method to enlarge the applica-
tion field of CTRs that deploy in a follow-the-leader manner,
by integrating tube patterning in the design process, with a
stability criterion. Our method allows the designer to deter-
mine a custom pattern geometry to theoretically ensure the
stability of CTRs made of any number of constant-curvature
tubes, for a complete FTL deployment sequence, and while
respecting a desired shape during deployment.

1 Introduction
Concentric tube robots (CTRs) have been largely con-

sidered for minimally invasive medical interventions, es-
pecially for difficult-to-access organs located in confined
spaces [1]. Derived from needle steering, CTRs are tele-
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scopic assemblies of precurved elastic tubes usually made
of Nitinol [2, 3]. The CTR backbone location is changed
through rotation and translation of the individual tubes.
These motions are achieved using a mechanism named the
actuation unit, in which the tube bases are attached to their
respective actuators. Thanks to this remote actuation, the de-
ployed part of the CTR can achieve a very low diameter, usu-
ally about 1 mm. FTL motion was introduced by Choset and
Henning [4] for serpentine robot motion planning. This kind
of motion constrains the robot body to follow the path traced
out by its tip. FTL motions has garnered research interest and
was investigated for different robot paradigms: snake-like
robots [4, 5], a binary actuated hyper-redundant robot [6],
the MemoSlide based on the alternating memory method for
controlling the motion of the flexible shaft [7], a magnetic ex-
tensible tendon-driven continuum robot (METABot) [8], an
interlaced continuum robot with intrinsic FTL behavior [9],
a soft pneumatic robot that grows from its tip [10], and
CTRs [11, 12, 13]. Inspection of the olfactory cells is a good
example of applied FTL motion [14]. These cells are located
in the upper part of the nasal cavity, which makes the inter-
vention site very difficult to access. Only a FTL deployment
allows access to the inspection site.

The current state-of-the-art highlights three different
cases to allow a FTL deployment of CTRs: n tubes with
planar constant curvatures arranged in a plane, n tubes with
the same helical torsion but not necessarily the same curva-
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tures [12], and more recently a last case where tubes have the
shape of deformed helices with exponentially varying cur-
vature magnitudes [13]. The first case is of interest for its
ease of implementation and the range of applications that it
addresses. Gilbert et al. [12] have introduced the study of
the two-tube case for planar and helical precurvature. They
have pointed out the conditions that ensure FTL deployment
from the mechanics-based models of CTRs. Such deploy-
ment also requires a stable robot, with tubes that should not
be subject to internal material torsion, as it may make the
robot snap to configurations that do not allow a FTL deploy-
ment. The CTR stability was initially described in [15], then
studied more deeply in [16, 17] and in [18] with a focus on
FTL deployment.

Tube patterning is a design approach where local re-
moval of material from the tubes modifies their bending
to torsional stiffness ratio. Such structural modifications
were introduced to overcome stability issues, with multi-
layer helical tubes [19], patterned tubes (also called cellu-
lar tubes) with patterns defined arbitrarily [19, 20, 21] and
lately defined using topology optimization approaches [22].
Their impact was evaluated theoretically and experimen-
tally [19, 20, 21, 22], but only in the limited case of 2 tubes,
and for fixed deployed lengths. Also, only trial-and-error
analysis guided the pattern selection. Tube patterning has
proved to enhance the stability of CTRs and eliminate the
multiplicity of solutions to the kinematic model. Therefore,
it is possible to get rid of the snapping phenomenon observed
when several stable equilibriums are observed for the robot,
and when the tubes are moving quickly from one stable equi-
librium configuration to another.

Preliminary work on stable FTL deployment with a 3-
tube CTR was recently presented in [14] with use of tube pat-
terning. However, the effect of the patterning was only con-
sidered when analyzing the torsional stiffness of the tubes.
This assumption does not hold, as the patterning also weak-
ens their bending stiffnesses, thus modifying the equilibrium
of the robot sections, and consequently the planar shape of
the robot if the tube curvatures are not updated. To the best
of our knowledge, no method exists for pattern selection
during CTR design that ensures a stable FTL deployment.
This paper presents such a method, by defining the patterns
on each tube, while also taking into account their transmis-
sion lengths, and respecting a desired shape. The proposed

method is applicable in the case of a planar robot that follows
the leader. It is possible to manage any number of constant-
curvature tubes during the design, which makes the method
of practical interest for CTR design.

The paper is organized as follows. Section 2 presents
background information on CTR kinematics and stability cri-
terion. A FEA-based model of tube stiffnesses is derived and
analyzed in Section 3. The design method of CTRs with tube
patterning is then introduced in Section 4. Each section is il-
lustrated with the application consisting in the inspection the
olfactory cells, initially considered in [14]. The conclusion
of the paper is presented in Section 5.

2 Concentric Tube Robot Kinematics and Stability
In this section, background information on CTRs is de-

scribed, along with the kinematic model and stability crite-
rion.

2.1 Kinematics
In the case of planar tubes with constant curvatures, the

kinematic model from [23, 24], that takes bending and tor-
sion equilibrium of the tubes into account, is written as in
Eq. (1), with n the number of tubes, κi the curvature of tube
i, kib and kit its bending and torsional stiffness respectively,
kb =∑n

i=1 kib, ψi(βi) the actuator angle, Li its total length (see
Figure 1(a)), and ψi its angle relative to the backbone Bishop
frame (see Figure 1(b)).

ψ̈i =
kib

kbkit

n

∑
j=1

k jbκiκ j sin(ψi−ψ j) (1)

The boundary conditions are the tube angles at their in-
sertion points related to their actuator angles and transmis-
sion lengths ψi(0) = ψi(βi)−βiψ̇i(0), and their derivatives
with respect to the curvilinear abscissa s that are null at their
free distal ends ψ̇i(Li + βi) = 0. Bishop frames are com-
monly used in CTR kinematics, and differ from Frenet-Serret
frames in the fact that they do not experience any instanta-
neous rotation about their axis tangent to the curve they fol-
low. Consequently, they don’t have one of their axes laying
in the local curvature plane of a curve.

(a)
β1 β2 β3

ψ1(β1) ψ1(β2) ψ1(β3)

L3 +β3 L2 +β2 L1 +β1

l1 l1 + l2 l1 + l2 + l3

s = 0
(b)

ψ1

ψ2

xB

x1

x2

yBy1
y2

Fig. 1: (a) 3-tube CTR straightened for ease of understanding, with βi the transmission length of tube i, Li its total length,
ψi(βi) its base angle, and (b) axial view of link 2 of the CTR with the orientation of the material base frames of tubes 1 and
2 relatively to the Bishop frame.
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Considering tube 1, that is present along the entire CTR
body, is enough to compute the entire CTR shape. The fi-
nal shape of the robot is obtained by integration of

{
ṗB = RBe3
ṘB = RBû, (2)

where pB is the position of the backbone Bishop frame of the
CTR that coincides with the fixed global frame at s = 0, RB
is the rotation matrix of the Bishop frame, e3 is the vector of
the Bishop frame which is tangent to the robot backbone, and
û is the deformed curvature vector of the CTR. Eq. (2) has
the associated boundary conditions pB(0) = 0 and RB(0) =
Rz(ψ1(0)).

2.2 Stability and FTL deployment
For a CTR made of planar constant-curvature tubes to

follow the leader, a specific deployment sequence must be
followed [12]. For the case of three tubes, as is considered
in this paper, all three tubes first deploy together with their
tips aligned, followed by the two inner tubes in the same
manner, and finally the innermost tube deploys alone (see
Figure 2). In this particular FTL case, a CTR made of n
tubes follows a path made of n section. The robot stability
can be evaluated during its deployment sequence thanks to
recent works [25, 16]. They allow stability computation for
CTRs made of any number of constant curvature tubes. In
these approaches, Eq. (1) is linearized around an equilibrium
configuration, where tubes have either aligned or opposite
curvatures. Part of the result of this linearization is visible in
Eq. (3), where Kt = diag(k1t · · ·knt).

(Ktψ̇)(L1 +β1) = W2(Ktψ̇)(0) (3)

  

Path to be
followed - Tube 1 -

Tubes
1, 2 -

Tubes
1, 2 -

Tubes 1,
2 and 3 -

Tubes 1,
2 and 3-

Tubes 1,
2 and 3-

Fig. 2: FTL deployment sequence along a path to follow in
the case of 3 tubes, with the three deployment steps detailed
from left to right.

Tube index 1 2 3

Young’s modulus (GPa) 80 80 80

Shear modulus (GPa) 30 30 30

Inner diameter (mm) 0.880 1.296 1.760

Outer diameter (mm) 1.200 1.524 2.184

Length (mm) 45.8 31.6 17.3

Bending stiffness (GPa.mm4) 5.788 10.105 51.665

Torsional stiffness (GPa.mm4) 4.352 7.598 31.846

Table 1: Characteristics of the set of tubes selected for the
inspection of the olfactory cells.

W2 is a matrix which depends on the tube curvatures, de-
ployed lengths, transmission lengths, bending and torsional
stiffnesses. If |W2| < 0, non-trivial solutions that solve the
linearized boundary value problem can be found.

For illustration purpose, the inspection of the olfactory
cleft is considered in the following as it is an attractive ap-

1

2

3

Actuation
unit -

Fig. 3: Illustration of the CTR with transmission lengths,
identified in [14] for the olfactory cells exploration, which is
unstable in (1) and bifurcates to the stable equilibriums in (2)
and (3).
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plication, which requires FTL deployment [14]. The tube
characteristics of the adequate CTR as identified previously
are presented in Table 1. The CTR is represented during de-
ployment in Figure 3. As illustrated, it is unstable, and thus
does not fulfill the requirement |W2|> 0 during deployment.
In order to stabilize this robot, we are thus interested in iden-
tifying the aspect ratio of patterns that maintain |W2| > 0
during the FTL deployment.

3 Stiffness Model of Patterned Tubes
To design the patterns of the tubes, we propose to com-

pute their bending and torsional stiffnesses by means of finite
element analysis (FEA), to be capable of assessing the im-
pact of patterning on the stability. The pattern proposed pre-
viously in [21] is chosen for this study (see Figure 4). In [21],
its aspect ratio was varied, and the corresponding values of
bending and torsional stiffnesses evaluated theoretically and
experimentally. More particularly, it was shown that the as-
pect ratio defined as λA = Wp/Hp, with Wp and Hp corre-
sponding to the pattern width and height respectively (Fig-
ure 4) has a high impact on the values of λ, the ratio of the
bending to the torsional stiffness of the tubes. This geometry
is thus implemented and the sensitivity of λ to λA assessed.
For our study, we choose n = 3, where p is the number of
patterns for a given section of a tube that has some.

3.1 Hypotheses
The modeling hypotheses are as follows: the stiff-

ness is assessed on straight tubes, as it is classically per-
formed [19, 20, 21, 22]. We consider the tube material to be
homogeneous and isotropic, and we stay within the linear
elasticity theory, hence the tube is subject only to small dis-
placements and strains. In order to compute the bending and
torsional stiffnesses from our FEA, we first ensure that our
tube geometry verifies the beam theory assumptions. First,
we naturally have a slender design with a high aspect ratio

(a) (b)

Wp

HpHp/2

Ws

Hs

Ws for
p = 3

120◦

Fig. 4: (a) Parameters of the pattern adopted in this work, as
presented in [21], and (b) illustration of patterned tubes with
λA =Wp/Hp = 1, 15 and 30 from left to right.

regarding length versus diameter [26]. Furthermore, to al-
low the use of bending and torsional stiffnesses computation
formulas (Eq. (4)-(5)), following the Euler-Bernoulli beam
theory is required.

kb =
FL3

3δ
(4)

kt =
T L
θ

(5)

It is verified if condition of Eq. (6) is satisfied [27]:

EI
KL2AG

� 1, (6)

with L the length of the beam, A its cross section area, E
its elastic modulus, G its shear modulus, I the second mo-
ment of area, and K the Timoshenko shear coefficient, that
depends on the geometry of the beam. In the case of a hol-
low circular cross section, K is given in [28] and expressed
as

K =
6(a2 +b2)(1+ν)2

7a4 +34a2b2 +7b4 +ν(12a4 +48a2b2 +12b4)
+ν2(4a4 +16a2b2 +4b4)

,

(7)
with a and b respectively the inner and outer radius of the
tube and ν its Poisson’s ratio. For ease of comprehension,
let δa be the wall thickness of the tube, such that b = a+δa.
For a given tube material, Eq. (6) is thus a function of a, δa
and L. It is a decreasing function of L, and an increasing
function of a and δa. For a worst case where the inner tube
radius is a = 2 mm, the tube wall thickness δa = 1 mm and
the tube length L = 20 mm, it evaluates to 0.46, which still
remains lower than 1. Thus, Eq. (4)-(5) can be used for tubes
generally considered for CTRs.

3.2 Finite element procedure
The FEA is implemented in COMSOL Multiphysics

(COMSOL, Inc., Burlington, USA), and parameterized with
λA =Wp/Hp. The ratios λW =WP/WS and λH = HP/HS are
kept to the default values specified in [21], which are 0.7 and
0.25 respectively. The value of λA is then varied. Its orig-
inal range is comprised between 8 and 12 in [21]. In this
work, we consider a wider range comprised between 1 and
30, to potentially extend the values of λ, and allow to solve
for a wider range of designs that have stability issues. For
each aspect ratio from 1 to 30 with a step of 1, we follow the
same procedure. The tube has clamped-free boundary con-
ditions. We perform a first computation with a fixed radial
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force F applied at the free end to obtain a bending displace-
ment. As patterns are only local, the tubes do not show axis
symmetry about their axis. Thus, the evaluated displacement
may vary depending on the direction of application of the ra-
dial force F . A preliminary evaluation of this variation was
made by changing the direction of the applied radial force F .
The obtained displacements, and thus the computed bending
stiffnesses, are numerically very close. Thus, the direction of
application of F is chosen arbitrary. A second independent
study is realized with a fixed torque T resulting in a rotation
of the tube about its axis. By measuring the resulting de-
flection δ and angle θ for both studies, we can compute the
bending and torsional stiffnesses, kb and kt respectively, us-
ing Eq. (4)-(5). They are then interpolated, and expressed as
a function of λA.

3.3 Application
We consider the set of tubes visible in Table 1, and apply

the method described above. The bending and torsional stiff-
nesses are computed using the FEA. A curve-fitting is made
on the points of measurement for the bending and torsional
stiffnesses, with the interpolant expressed in Eq. (8).

kib,kit =
p1λA + p2

λ2
A +q1λA +q2

(8)

The coefficients of the interpolant are reported in Table 2
for the three tubes. The points of measurement and the cor-
responding interpolant curves for the bending and torsional
stiffnesses of each tube are visible in Figure 5. The values
can be compared to the default values for unpatterned tubes,
reported in Table 1. Figure 6 also represents the values of λ
as a function of λA.

It is interesting to observe the range of accessible values
of λ for the tubes, as illustrated in Figure 6. While the min-
imal computed value of λ was equal to 0.344 in the initial
study [21], values as low as 0.03 are observed for high val-
ues of λA, which corresponds to patterns that have the shape
of thin transverse openings. Values of λ higher than the de-

Coefficient p1 p2 q1 q2

k1b -2.138 88.2 4.086 19.38

k1t 2.849 425.9 0.883 212.4

k2b -5.471 191.7 10.2 21.31

k2t 10.04 476.1 3.888 146.6

k3t -22.57 851.5 6.562 19.77

k3t 34.71 3202 2.555 184.3

Table 2: Coefficients of the interpolant curve for the bending
and torsional stiffness of tubes 1, 2 and 3, with kib and kit in
GPa.mm4.

0 5 10 15 20 25 30
0

2

4

λA

k 1
b,

k 1
t

(G
Pa

.m
m

4 ) k1b
k1t

(a)

0 5 10 15 20 25 30
0

2

4

6

8

λA
k 2

b,
k 2

t
(G

Pa
.m

m
4 ) k2b

k2t

(b)

0 5 10 15 20 25 30
0

10

20

30

40

λA

k 3
b,

k 3
t

(G
Pa

.m
m

4 ) k3b
k3t

(c)

Fig. 5: Plot of the bending and torsional stiffnesses kb and
kt with patterning for: (a) tube 1, (b) tube 2 and (c) tube 3,
against λA.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

λA

λ

λ1

λ2

λ3

Fig. 6: Ratio of the bending to torsional stiffness for each
tube as a function of λA.
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fault value of 1.33 for unpatterned tubes are also observed for
low values of λA, with patterns that tend to have the shape of
longitudinal openings along the tubes. Indeed, extending the
values of λA, originally considered between 8 and 12, to val-
ues between 1 and 30 (see corresponding pattern shapes in
Figure 4 (b)), could allow to solve stability issues for a wider
range of design cases. This is observed thanks to the intro-
duction of the pattern design selection method, introduced in
the following section.

4 CTR Design Method for FTL Deployment
4.1 Method

The first step of the proposed method consists in the
computation of the initial tube geometries without any pat-
tern, from the path to follow. In the case of a FTL deploy-
ment, the length Li and curvature κi of the tubes can be deter-
mined using the curvature γ j, the length l j of the path to fol-
low, with j = 1 the index of the most proximal path segment,
and j = n the most distal one [14]. Then, additional transmis-
sion lengths βi can be added to each individual tube. Their
values are negative as they are in the region where s < 0.
As the tube synthesis is considered at full deployment of the
CTR, the transmission lengths of each tube is the shortest,
i.e. βi = βimax. Thus, the lengths and curvatures can be com-
puted using Eq. (9) and Eq. (10) (see [14] for more details):

Li +βimax =
n

∑
j=i

ln− j+1 (9)

κ1 = γ1 and κ j, j>1 =
1

kib

(
j

∑
i=1

kibγ j−
j−1

∑
i=1

kibκi

)
(10)

This is illustrated in Figure 1(a). The resulting values of κi
can be positive or negative depending on the direction of cur-
vature. Therefore, the absolute value is used, and it is associ-
ated to an equilibrium angle of 0 or π in Eq. (11) depending
on its initial sign. Thus, the vector e defined by Eq. (11) can
represent the equilibrium to assess.

e(i) =

{
0 if κi > 0
π if κi < 0

(11)

Then, the robot stability is evaluated by computing
|W2|. As it is a function of the deployed and transmission
lengths, it is possible to compute it for the deployment se-
quence ds to follow. As described in Algorithm 1, the design
of the robot is completed if it is stable. However, if it is not
stable, the FEA of the tubes is computed, with the values of
kkb and kkt expressed as functions of λA (Eq. (8)). Thus, the
FEA is only performed one time for the synthesis of a given

tube set, and the functional approximations of the stiffnesses
are then used in the main optimization loop. Initialization of
our algorithm is performed by selecting λ = 1.33, which is
the default value for Nitinol tubes. As λ equals the ratio of
kkb to kkt , it allows to solve for λAk, as both are a function
of the latter variable. Once λAk defined, the tube stiffnesses
kkb and kkt are then computed. The new values of κi are then
updated using Eq. (10), to allow the robot to have the same
shape despite different bending stiffnesses. The absolute val-
ues of the tube curvatures κi are then used, and e defining the
tube orientations, as visible in Eq. (11). |W2| is finally com-
puted for ds and the robot equilibrium considered e, and its
minimum is used to update λ with a step size α as expressed
in Eq. (12):

λk+1 = λk−α(minOfDet−min
ds
|W2|) (12)

Algorithm 1 Pattern search algorithm for a stable CTR de-
ployment.

Input: Path parameters l j, γ j, j ∈ [1,n]
Tube materials and diameters
Index of tubes to pattern k ∈ [1,n]
FTL deployment sequence ds
Additional transmission lengths for the tubes βimax
Targeted value for minOfDet, the minimum of |W2| for ds
Tolerance to the targeted value ε
Step size α
Output: λ, κi

1: kib,kit ← Ei,Gi, Ii,Ji
2: Li← using Eq. (9)
3: κi← using Eq. (10)
4: e← using Eq. (11)
5: κi = |κi|
6: |W2| ← using Eq. (3) for e and ds
7: error = minOfDet−minds |W2|
8: if (|error|> ε) then
9: kkb,kkt = f (λAk)← using FEA results or expressions

from an analytical model
10: λ = 1.33
11: while (|error|> ε) do
12: λAk← using λ and kkb/kkt
13: kkb,kkt ← using λAk and Eq. (8)
14: κi← using Eq. (10)
15: e← using Eq. (11)
16: κi = |κi|
17: |W2| ← using Eq. (3) for e and ds
18: error = minOfDet−minds |W2|
19: λ← λ−α∗ error
20: end while
21: end if
22: return λ, κi

6 Copyright c© by ASME



A value initially close to 0 can be chosen for α, and then in-
creased after trials to speed up the convergence of λ to its fi-
nal value, while keeping the latter in the admissible range for
the considered tubes (see Figure 6). In the algorithm, repeti-
tion of theses steps is performed until the minimum of |W2|
over ds converges to minOfDet, within a given tolerance ε.
The corresponding shape of the CTR can be observed at any
step of the algorithm using the kinematic model presented
in Section 2. All steps of the proposed design method are
summed up in Algorithm 1.

4.2 Application
4.2.1 Design with no additional transmission lengths

In this section, we consider the special case where
βimax = 0, which corresponds to no transmission lengths for
the tubes after full deployment. For the 3-tube FTL deploy-
ment under evaluation, we consider the case of the struc-
tural modification of all tube combinations, with the pattern-
ing of one, two or three tubes, to explore the range of sta-
ble cases. Algorithm 1 is applied to our set of tubes. We
choose for the minimum of |W2| minOfDet a target value

0 10 20 30 40

−4

−2

0

Deployed length (mm)

|W
2|

Without pattern
0.260 < λ < 1.33
λ = 0.261

(a)

0 10 20 30 40

−4

−2

0

Deployed length (mm)

|W
2|

Without pattern
0.239 < λ < 1.33
λ = 0.239

(b)

Fig. 7: Evolution of |W2| against the deployed length of the
CTR as algorithm 1 converges, in the case of the patterning
of (a) tubes 1 and 2, and (b) tubes 1, 2 and 3.

Tube 1 Tube 2 Tube 3

Patterned tubes x x

λ 0.260 0.260 1.333

λA 11.049 11.485 -

κ (mm-1) 0.059 0.155 0.037

kb (GPa.mm4) 0.346 0.477 51.665

kt (GPa.mm4) 1.329 1.830 38.749

Patterned tubes x x x

λ 0.239 0.239 0.239

λA 11.852 12.392 11.956

κ (mm-1) 0.059 0.156 0.065

kb (GPa.mm4) 0.302 0.411 2.412

kt (GPa.mm4) 1.265 1.724 10.109

Table 3: Stiffness ratio obtained for the combinations of pat-
terned tubes, with the corresponding values of λA, tube cur-
vatures and stiffnesses.

of 1e− 3, and ε = 1e− 4, which ensures that |W2| will be
positive during the entire CTR deployment. A larger mar-
gin from zero could be maintained by choosing a greater
value for minOfDet. We also choose a step size α = 0.15,
that allows |W2| to smoothly yet quickly converge to the
desired value. Stable solutions are obtained with the pat-
terning tubes 1 and 2 after 19 iterations, and for the set of
tubes 1, 2 and 3 after 18 iterations of Algorithm 1 (see ani-
mations in the video https://cgirerd.github.io/
assets/papers/girerd19jmr.mp4). For the corre-
sponding sets of tubes, the values of λ, λA, the tube curva-
tures and stiffnesses, are reported in Table 3. The tube cur-
vatures also remain in their domain of superelasticity when
combined to form the robot. For each of these two cases,
the curves of stability during deployment are represented in
Figure 7, as λ converges to its final value. The obtained
robot shapes, computed with the kinematic model presented
in Section 2, remain perfectly in the plane during deployment
with the final values computed, which validates the proposed
method.

4.2.2 Impact of additional transmission lengths
The results presented in Section 4.2.1 are for the case

where the transmission lengths of each tube equal zero at
the end of the deployment. This is not realistic for physical
prototypes, as tubes need to be uncovered to be seized by
actuators at any time, even when fully deployed. In this case,
Algorithm 1 can be followed with values of βimax such that
β1max < β2max < β3max < 0. FTL deployment sequence then
ensures that inequalities β1 < β2 < β3 < 0 are respected at
any time during deployment [14].
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λ

(b)

Fig. 8: λ as a function of βmax. Values are computed follow-
ing Algorithm 1, in the case of the structural modification
of (a) tubes 1 and 2, and (b) tubes 1, 2 and 3.

In this study, we propose to assess the impact of trans-
mission lengths on the required value for λ, using Algo-
rithm 1. We choose to use transmission lengths that are
patterned like the deployed lengths for simplicity, to ana-
lyze the impact of additional lengths, even though unpat-
terned tubes and potentially other materials could be used
as well [16]. The arbitrary yet realistic relationships β3max =
βmax, β2max = 2×βmax and β1max = 3×βmax are introduced
to constrain the problem. This also allows for the tube ends
to be spread along the actuation unit, which could ease their
attachment to actuators. Algorithm 1 is used to conduct the
study with minOfDet = 1e− 3 and ε = 1e− 4 as in Sec-
tion 4.2.1. βmax is varied with a step of 1 mm, and the value
of λ is determined for each of them.

The curve in Figure 8 (a) represents λ as a function of
βmax in the case of the patterning of tubes 1 and 2, and the
curve in Figure 8 (b) represents λ as a function of βmax in
the case of the patterning of tubes 1, 2 and 3. It is inter-
esting to remark that for the range of λA considered in Sec-
tion 3.2, the patterning of tubes 1 and 2 allows values of βmax
as low as −47 mm, while the patterning of the three tubes
allows value of −34 mm, corresponding to shorter transmis-
sion lengths. Thus, the patterning of tubes 1 and 2 appears
as more interesting for actuation units requiring long trans-
mission lengths. Additionally, the blue areas represent sta-
ble designs for the CTR, where using shorter transmission
lengths than the ones identified when minOfDet = 1e− 3

and ε = 1e−4 lead to a higher value for mins |W2| (see ani-
mations in the video https://cgirerd.github.io/
assets/papers/girerd19jmr.mp4 for a better in-
sight on this phenomenon). Also, the tubes patterned with
the values of λ visible on Figures 8 (a) and 8 (b) remain in
their superelasticity range, which validates their synthesis.

4.2.3 Impact of manufacturing errors
Different manufacturing techniques have been consid-

ered up to now for the patterning of Nitinol tubes, with
milling [29], laser cutting [21], electro discharge machin-
ing [30] and femtosecond laser machining [31]. Achievable
accuracy varies with the process, which may result in pat-
tern geometry errors. Accidental heat treatment of the ma-
terial [31] may for instance also happen, that would modify
the bending and torsional stiffness of the tubes, and thus the
shape and stability of the robot.

In the case of a manufacturing process based on laser
cutting of the considered pattern geometries, errors between
the FEA estimation of stiffness and experimental evaluations
are available [21]. For the range of tubes and patterns evalu-
ated, the bending and torsional stiffness of the manufactured
tubes were both approximately 5 to 15% lower than the ones
estimated by FEA. We thus analyze the impact of such er-
rors on the stability of the CTR with the patterning of tubes

−40 −30 −20 −10 0

−0.2
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0.2

βmax (mm)

m
in
|W

2|

(a)

−30 −25 −20 −15 −10 −5 0
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m
in
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Fig. 9: Fluctuations of min |W2| after introduction of tube
stiffness errors as a function of βmax in the case of the struc-
tural modification of (a) tubes 1 and 2, and (b) tubes 1, 2 and
3. The blue areas represent the range of computed values of
min |W2|, with the targeted values in magenta.
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1 and 2, and 1, 2 and 3, in the case of additional transmis-
sion lengths. We consider the bending and torsional stiff-
nesses errors to be independent from each other and from the
pattern ratio λA as a first approximation. A random set of
100 bending and torsional stiffnesses errors are added to the
one obtained in Section 4.2.2 for the patterned tubes. For
each combination, new tube curvatures are computed to al-
low the CTR to have the desired planar shape, and their sta-
bility are then evaluated. Figure 9 represents the range of
min |W2| obtained as a function of βmax. As visible in this
figure, the CTR stability varies significantly in the presence
of stiffness errors, with some fluctuations around the targeted
value of stability, which was set to 1e−3, with a tolerance of
ε = 1e− 4. Tube stiffness errors can either lead to stable or
unstable robots, with the values of min |W2| comprised be-
tween 0.1 and −0.1. CTR designers should thus take man-
ufacturing uncertainties into account by adding a stability
margin during the design process in Algorithm 1, depend-
ing of the manufacturing technique they use. The method
adopted here can be replicated for the tubes of interest, tak-
ing into account the specific process under consideration.

5 Conclusions
In this paper, we have proposed a method for the design

of stable CTRs with FTL deployment, that takes advantage
of tube patterning. It is based on a FEA of patterned tubes,
in order to determine their bending and torsional stiffnesses,
and makes use of the identified models in an analytical cri-
terion of stability. The obtained FEA results lead to a wider
range of bending to torsional stiffness ratios compared to the
state of the art. This shows the interest of patterning tubes
with high ratios. Also, using the proposed algorithm, pat-
terning a set of 2 or 3 tubes ensures theoretical stability of a
robot with transmission lengths for the proposed application.
Future work will be focused on tube patterning with different
values of λ for the tubes, and on deepening technical devel-
opment of tubes patterned with high values of λ, given the
observed very positive impact. The impact of non-linear ma-
terial behavior, tube clearance and friction in the kinematics
and stability of CTRs will also be investigated, to better esti-
mate the stability of physical prototypes.
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