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ABSTRACT
This work utilizes aWiener process to describe a fluctuating load on a Concentric tube robot (CTR) or
its smooth motion through fixed obstacles leading to a kineto-static piecewise constant strain (KPCS)
model. We then propose an observer based on the KPCS model, represented as a stochastic switched
system, to estimate the externally applied forces by knowing the position of discrete points on the back-
bone. We have demonstrated that the observer describes the behavior of CTRs in unknown constraint
environments and slow movement. The experiments carried out using electromagnetic sensors on the
CTR prototype validate the feasibility of the proposed approach for shape and tip-force estimation.
The average time required for force estimation is about 3.8, 6.2, and 20 ms per sample, respectively,
when the estimated external forces are applied on a three-tube CTR’s tip point and three and fifteen
equally spaced points along its length. The implementation results reveal the estimated force reduces
the error of the robot tip position by half (about 1.5% of the robot length on average) compared to the
known external force.

1. Introduction
Concentric tube robots (CTRs) are an emerging robotic

surgical platform consisting of multiple, pre-curved, com-
pliant elastic tubes arranged in a telescopic manner. Their
small size and flexible design make them ideal for skill-
ful surgical maneuvers, allowing a safer minimally invasive
surgery (MIS) inside delicate and confined environments
[1, 2, 3]. They can be steered in a Follow-The-Leader man-
ner [4] maintaining their performance despite tool-tissue in-
teraction force. It gives the surgeon the ability to perform
many complicated, challenging, and sophisticated surgeries,
such as intracardiac procedures [5] and endonasal skull base
surgery [6]. To achieve such a target, shape deformations
due to unknown loads from collisions with anatomy must be
fully modeled.

The deployment of CTRs in medical procedures requires
position and force control of the distal tip that interacts with
the tissue [7, 8]. Thus the perception of external forces is an
essential prerequisite for their practical use. The structural
flexibility and compactness of CTRs pose a significant chal-
lenge in equipping them with force sensors [9]. Fortunately,
continuum robots can provide a promising solution for indi-
rect force-sensing methods through their compliance struc-
ture. This feature referred to as intrinsic force-sensing capa-
bility, gives us the chance to use the robot itself as a sensor
and estimate external loads reasonably by using backbone
deflection [10] or joint-level information [11, 12]. There-
fore the discrete points along a backbone can be a valuable
source detectable by various sensing methods [13]. Elec-
tromagnetic (EM) trackers are a standard medical sensing
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method [14] adopted for CTRs that directly provide such in-
formation. Another popular approach that could efficiently
integrate with CTRs is fiber Bragg grating (FBG). The shape
reconstruction techniques based on this approach rely on
curvature estimation through strain sensing and provide the
ability to obtain the position data of any arbitrary point of
backbone. [15, 16].

A considerable amount of literature deals with using
backbone position information to estimate external forces
acting on it. However, the majority of them are devoted to
planar continuum robots. The pose measurement of a steer-
able catheter tip has been used in [17] to estimate the applied
external forces when it came into contact with heart tissue
in an ablation operation. A series of piecewise circular arcs
parameterize the catheter backbone curve and create a low-
dimensional model in quasi-static conditions. In [18], the
information gained from a catheter curvature gave the load-
ing status and allowed defining an index for determining the
range of contact forces. Moreover, in [19], a force estima-
tion method based on planar Cosserat modeling and catheter
shape detection has been proposed to reduce the high order
PDEs into a set of linear system equations by making sev-
eral assumptions. A probabilistic approach based on tip pose
measurements and actuation torques has been presented in
[20] for the force estimation of continuum robots.

Nevertheless, contact force estimation is more challeng-
ing for the robots undergoing out-of-plane deformations. A
pseudo rigid body approach has been presented in [21] to
estimate the reaction forces and predict the deformed shape
of a magnetically actuated continuum manipulator in 3D,
while stereo-vision techniques sense its position. The 3D
shape estimation of CTRs based on fluoroscopic images has
been addressed in [22], where an energy minimization ap-
proach based on the Markov random field unified the task
of 2-D tracking and 3-D shape reconstruction. A model-
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based force estimation approach was presented in [23] for
a flexible medical instrument. It employed FBG sensors and
an extended Kalman filter to realize the real-time shape and
force sensing. A recurrent neural network has been used in
[24] to provide a real-time tip contact force estimator for a
tendon-driven continuummanipulator. In [10], a data-driven
approach based on Deep Direct Cascade Learning has been
proposed to create a force-from-shape sensor and estimate
CTRs’ tip contact force in the 3D workspace through back-
bone deflection. Even though data-based approaches share
attractive characteristics like high accuracy and low compu-
tation time, they entirely depend on reliable training data and
have low interpretability. Therefore, model-based shape and
force estimation facilitates the successful control and stabil-
ity assurance [25, 26, 27] of CTRs under loading conditions.

A model-based force estimation approach demands a
suitable model describing the robot’s behavior in confined
spaces and providing low computational cost and high per-
formance. In recent years, efforts have been made to re-
duce the kinematic computation time of continuum and soft
robots, traditionally coupled to Cosserat models [28, 29].
Some of these attempts are based on piecewise constant
strain (PCS) and have led to computationally efficient mod-
els for soft manipulators [30, 31]. They discretize the robot
length into pieces with constant deformation and, despite de-
creasing computational burden, allow including shear and
torsional strains crucial in dealing with out-of-plane defor-
mations.

This paper enables a model-based estimation of exter-
nal loads applied to CTRs. To the best of our knowledge,
this is the first time the Wiener process has been used to de-
scribe the external force on CTR in quasi-static conditions.
We use the PCS kinematic model of CTRs presented in [32]
and further consider external loads acting on the backbone
as a set of point forces described by Wiener processes. A
stochastic observer estimates their mean values, while the
variances have been considered proportional to the distal tor-
sions. The remainder of the paper is organized as follows.
Section 2 presents the basic notations and assumptions. In
the third section, we briefly recall the PCS kinematic model
presented for CTRs. Section 4, based on stochastic modeling
and estimation techniques, offers the kineto-static piecewise
constant strain (KPCS) model of CTR and the external force
estimation approach. Section 5 shows the results of simu-
lation and experiment to validate the proposed method, and
finally, the conclusion appears in section 6.

2. Basics and Assumptions
This paper uses the following notation: s is the arc-

length parameter so that s > 0 is related to the exterior part
of the CTR, and s < 0 corresponds with its actuation part, as
given in Fig. 1. [a]× indicates the skew-symmetric matrix
of vector a. Δx(i,j) represents x(i,j+1) − x(i,j). �̄(.) and ̄�(.)denote the maximum and minimum eigenvalues of a sym-
metric matrix. Moreover, throughout the paper, we make
the following assumptions. A1) Tubes are supposed to bend

Figure 1: Diagram showing actuation and exterior parts of a
two-tube CTR, where actuation variables �i and �i, respec-
tively, denote the proximal base rotation and translation of the
ith tube.

Corner

Figure 2: Schematic of a CTR described by the PCS model
and external forces.

or twist elastically but do not undergo cross-section shear
and axial elongation by respecting the Kirchhoff hypothe-
sis. This assumption is generally reasonable for long thin
rods like the tubes [33]. A2) The stiffness of tubes in bend-
ing and torsion is assumed to be linear elastic. A3) External
loading is exclusive to a set of point forces exerted at the
backbone, and as a result, external moments and distributed
forces are neglected. It also makes sense that friction among
the tubes is assumed quite negligible. A4) Tubes are divided
into pieces with constant strain over which the curvature and
torsion are constant. A5) The position of discrete points on
the CTR, where external forces are applied, is known. A6)
The external forces are assumed to be quasi-static and mod-
eled by a set of Wiener processes, the means of which are
unknown.

3. PCS Kinematic Model of CTRs
This section overviews of the PCS kinematic model [32]

of CTRs. Let i = 1… n denote the number of the not fully
overlapped tubes of a CTR numbered from the innermost to
the outermost, dividing the robot length into n sections. Each
section of the CTR’s exterior part is divided into ℎi helicalpieces. They are arranged in series, indexed from the back-
bone proximal end to the distal one, and connected at the
points of setS known as corners, the position of which is de-
noted by pj(j = 1… |S|). The lengths of tube i and pieces j
are given byLi and lj . The external loading is represented as
force setF =

{

f1 f2 … f
|S|

}, in which fj is the pointforce acting on corner sj ∈ S (see Fig. 2). The input (actu-
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ator) vector is denoted by q = [

�1 �1 … �n �n
], where

�i and �i, as shown in Fig.1, are the rotation and translation
angle of tube i at the base. The internal moments at arc-
length sj are obtained using

[

mx(sj)
my(sj)

]

= RTB(sj)
∑

k>j
([pk]× − [pj]×)fk

|

|

|

|x,y
(1)

and
mzi (sj) = e3

TRTB(sj)
∑

j<k<m1+…mi

([pk]× − [pj]×)fk (2)

in which e3 =
[

0 0 1
], and RB(s) is a rotation matrix

from base to body Bishop frames assigned along the CTR.
Given assumption A1, the constant strain vector of a torsion-
less centerline can be specified by

� j =
[

eT3 − �j sin�j �j cos�j 0
]T (3)

in which �j and �j are the curvature and bending angle at
sj ∈ S obtained from
[

�xj
�yj

]

= 1
∑nj
i=1 EiIi

( nj
∑

i=1
EiIi�

∗
i

[

sin �i,j
cos �i,j

]

+
[

−mx(sj)
my(sj)

])

�j =
√

�2xj + �
2
yj

, �j = tan−1(�xj∕�yj )

(4)
where �∗i is pre- curvature, Ei is Young’s modulus, Ii is thearea moment of inertia of the tube cross-section, and �i,j de-notes the twist angle of the ith tube at the jth corner given
as

�i,j = �i,j−1 + �i,j−1Li,j (5)
As it is shown in Appendix A, the elastic energy stored along
the tubes is minimized if torsion �i,j , for s ≥ 0, fulfills the
following condition

�i,j+1 = �i,j −
EiIi
GiJi

�j�
∗
i,jLi,j sin

(

�j − �i,j
)

+ Δ�∗e(i,j) (6)

where �∗e (i,j) = mzi (sj)∕GiJi + �∗i,j , in which �∗i,j is pre-
torsion, Gi is shear modulus, and Ji denotes the polar mo-
ment of inertia of the ith tube. For s < 0

�i,1 = �i + ∫

0

−�i

(

�i,1 + �∗(�)
)

d� (7)

The PCS forward kinematics map at corner j can be given
by the product of exponential formula as

gj =

{

∏j−1
k=1 e

�̂kLk j = 2,… |S|
I4 j = 1

(8)

According to (2), internal moments mzi (s) are zero at the
tubes’ distal points, and the torsions must also be zero there.
Drawing the robot’s actual shape is only possible by finding
the proximal torsion fulfilling the distal torsion constraint.

Figure 3: Block diagram of the PCS kinematic model for CTRs
in which F , q are the set of external forces and actuator vec-
tor. Output P which includes the position of corner points
feedbacked into the input.

The PCS approximation explained can be summarized in the
following functions

�L = �(q,F ,P , �0) , P = �(q,F ,P , �0) (9)
where P =

{

p1 p2 … p
|S|

} involves the positions of
corners and �0 =

[

�1,1 �2,1… �n,1
]T is the proximal torsion

vector. Moreover, output �L in (9) is a vector containing
distal torsions.

�L =
[

�1,ℎ1 �2,ℎ1+ℎ2… �n,|S|
]T (10)

One can interpret the searching for a proximal torsion (in-
put) satisfying the distal torsion (output) condition as inter-
nal feedback. In this intention, the corners’ position in the
output is fed directly back into the input (see Fig. 3), and the
torsion feedback is obtained from the following theorem to
determine the ultimate shape of the CTR.
Theorem 1 ([32]). Let proximal torsion vector �0 is updated
by

�̇0 = −
J��T�(t)�
T �L

where J���(t) =
)�(.)
)�0

+ � )�(.))�0
, � = )�(.)

)P (I − )�(.)
)P )

−1 and

(I − )�(.)
)P ) is invertible,� is a positive definite matrix, and 


is a positive constant. Then PCS kinematic model converges
to the desired distal torsion condition.

Proof. The proof is given in [32].
Note that in the above theorem, we considerN modes of

operation, each of which involves a set of adjacent configu-
rations, and �(t) ∶ t→ {

1 … N
} denotes the switching

signal that ascertains the linear subsystem associated with
the active mode. Here, we need to propose the following
definition.
Definition 3.1. Adjacent configurations can potentially be
made with slight changes in external force and actuators and
produce a mode.
Definition 3.2. Co-configuration modes contain similar, not
adjacent, configurations with an active mode.
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4. Stochastic Modeling and Contact Force
Estimation
Recalling assumption A6, we consider a quasi-static

condition in this work, which means the CTR deforms very
slowly, and inertia effects are neglected. In this case, actua-
tor q and external forceF , the inputs shown in Fig. 3, will no
longer be constant. Though external force variations depend
entirely on environmental conditions, and a precise determi-
nation is impossible, especially in an unknown environment,
one can expect smooth variation in the force exerted on the
robot under quasi-static conditions. Here, we consider the
force derivative as white noise and, consequently, express
external forces as follows

F (t) = F0 +
F (.)W (t) (11)
where W (t) is a standard Wiener process, and F0 denotesthe static force that is to be estimated. However, in deter-
mining covariance matrix 
F , we should take a look back
at the PCS kinematic model. When the inputs vary, a devia-
tion from the equilibrium occurs, indicated by distal torsion
�L and restored to balance again by the internal feedback
structure. Therefore, one can regard the external force co-
variance matrix as proportional to distal torsion �L, whichcan be given as


F (�L) = !F
|

|

|

J�F�(t)
T �L

|

|

|

(12)
in which J�F �(t) = )�(.)

)F + � )�(.))F and !F is a positive con-
stant.
Theorem 2. Let CTR be in a quasi-static condition, con-
sidering exogenous force F as given in (11), and further,
assume proximal torsion vector �0 is updated as stated in
theorem 1. Then distal torsions are ultimately bounded.

Proof. The proof is given in Appendix B.
As a result, we can describe the motion of a loaded CTR

with the following state-space stochastic differential equa-
tion model.

dx = f�(t)(x, q̇)dt + g�(t)(x) dWt

y = C�(t)x
(13)

where x = [

F T �0T qT
]T denotes the state vector, actu-

ator velocity vector q̇, and y = [

�LT P T
]T are the input

and output vectors. More, nonlinear functions f�(t)(x, q̇)and g�(t)(x), and constant matrix C�(t) are defined as

f�(t)
(

x, q̇
)

=
⎡

⎢

⎢

⎣

0
−
J��T�(t)�

T�(x)
q̇

⎤

⎥

⎥

⎦

g�(t)(x) =
⎡

⎢

⎢

⎣

!FJ�F T�(t)�(x)
0
0

⎤

⎥

⎥

⎦

C�(t) =

[

J�F �(t) J���(t) J�q�(t)
JPF �(t) JP��(t) JPq�(t)

]

(14)

in which

J�q�(t) =
)�
)q

+ �)�
)q

, JPF �(t) = (I −
)�
)P

)−1
)�
)F

JP��(t) = (I −
)�
)P

)−1
)�
)�0

, JP��(t) = (I −
)�
)P

)−1
)�
)q
(15)

Now, we derive an estimation of the external forces ap-
plied on the corner points included in S while their spatial
positions are known. State vector x in (13) is decomposed
into unmeasured (xu) and measured (xm) sub-vectors.

x = Nuxu +Nmxm , xu =
[

F T �0T
]T , xm = q

By linearizing distal torsion function �(x) around operation
point �(t), we can derive a linear form of f�(t) as

A�(t) =
⎡

⎢

⎢

⎣

0 0 0
QJ�F �(t) QJ���(t) QJ�q�(t)

0 0 0

⎤

⎥

⎥

⎦

(16)

where Q = −
J��T�(t)�
T . The maximum possible deviation

of f�(t) from its corresponding linearized form A�(t) in the
operation mode is quantified by
‖

‖

‖

‖

f�(t)
(

Nu(xu + ") +Nmxm, q̇
)

− f�(t)(x, q̇) −A�(t)
[

"
0

]

‖

‖

‖

‖

≤ a2
‖

‖

‖

"‖‖
‖

+a2
(17)

in which a1 and a2 are positive constants, and " denotes thevariation of xu in operation mode �(t). We propose the fol-
lowing full-order observer to estimate the external loads

dx̂u = Nu
Tf �̂(t)(x̂, q̇)dt +L�̂(t)

(

y − C �̂(t)x̂
) (18)

where x̂ = [

x̂u
T xmT

]T and we define the estimation error
as e = x − x̂.
Theorem 3. Let the KPCS system and its observer be in the
same mode (i.e. �(t) = �̂(t)), switching synchronously with
dwell time tD. If L�(t) is chosen such that Re(�i(A0)) < −#
where A0 = A�(t) − L�(t)C�(t) for some # > 0, then the
estimator (18) will have an almost sure and a mean square
exponentially ultimately bounded estimation error if the fol-
lowing condition holds

a11 +
‖LT�(t)‖

�̄()
a21 < 0.5 +

#�()
�̄()

where  is the unique positive-definite solution to

(A0 + #I)T +(A0 + #I) = −2I .

Proof. The similar proof can be found in [34].
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Table 1
Physical Quantities For The Experimental Prototype Tubes

Tube 1 Tube 2
Inner Diameter (mm) 0.385 0.55
Outer Diameter (mm) 0.515 0.76
Curved Length (mm) 125 65
Straight Length (mm) 165 105
Young’s Modulus (E) (Gpa) 70 70
Shear Modulus (J) (Gpa) 26.3 26.3
Pre-curvature (�∗) (m−1) 6.46 6.2

Theorem 3 suggests that if the observer correctly detects
the system’s active mode, it is quite possible to estimate the
external forces acting on the robot. However, when the sys-
tem and observer are in different modes, we first have to de-
tect the actual active mode.

Nevertheless, the configurations’ similarity does not
mean that they are certainly in the same mode. A common
configuration can result from a collection of equivalent and
not necessarily close forces. In complicated situations where
several point forces act on the backbone, the estimated force
set may converge to equivalent force sets rather than the orig-
inal one applied to the robot.

5. Simulation and Experimental Results
To demonstrate the convincing performance of the pro-

posed force estimation approach, we use the exact Cosserat
model [35] for simulations and a two-tube prototype for the
experimental tests. Tables 1 and 2 list the parameters of two-
and three-tube CTRs used in testes.
5.1. Evaluation Criteria and Sensing Conditions

To quantify the accuracy of our method and demon-
strate its merit, we use position and tangent orientation er-
rors as performance metrics. The true position of the mea-
sured points on the backbone is obtained from the Cosserat
model [35] in the simulations and the experiments’ electro-
magnetic sensors. Moreover, criterion Je = ‖pmodel(L1) −
pdata(L1)‖∕L1 is used for the implementation results to eval-
uate the robot shape accuracy independent of its length dur-
ing the tests. We investigate different measured points in
the simulation analysis to examine the effect of extra sens-
ing points on the accuracy of shape and force estimation and
suffice to tip point in the experiments. In all following tests,
the estimation algorithm starts with a force-free assumption,
and the initial shape of the CTR is described by the piece-
wise constant curvature (PCC) model.
5.2. Simulations Results

The simulations have been performed in three load-
ing situations, including distributed force, constant and
variable tip force to investigate the feasibility of the
suggested force estimation method. Since the Cosserat
model’s implementation is time-consuming, we executed
it with a low sampling frequency on the simulation

Table 2
The CTR parameters used for simulation

Tube 1 Tube 2 Tube 3
Inner Diameter (mm) 0.385 0.55 0.8
Outer Diameter (mm) 0.515 0.76 0.9
Curved Length (mm) 100 50 50
Straight Length (mm) 165 105 85
Young’s Modulus (E) (Gpa) 70 70 70
Shear Modulus (G) (Gpa) 26.31 26.31 26.31
Pre-curvature (�∗) (m−1) 6.46 6.2 5

path. We then interpolated the remaining missing ob-
servations (30 samples between two consecutive original
samples) to achieve adequate time resolution for ground
truth data. The switching time in all simulations is
considered 40 times longer than the sampling rate. Dur-
ing the simulation, actuator vector q =

[

q�T q�T
]T

changes from [

�∕4 0 0 0.2 0.12 0.06
]T to

[

�∕3 �∕5 −�∕3 0.21 0.14 0.07
]T at a con-

stant slope, where q� and q� denote the tubes’ base rotationand exterior length vectors.
We compare the ground truth data obtained from the

Cosserat model with the PCC model results, in which ex-
ternal loads are neglected, to demonstrate the effect of the
applied forces on the robot shape. The spatial position error
of the points along the backbone under the different loading
conditions is given in Fig. 4. The results show the tip posi-
tion average errors are about 25−35% of the robot length in
the tip-point loading tests (Fig. 4(a,b)) and 10% in the dis-
tributed loading test (Fig. 4(c)). The performance of the esti-
mation method has been investigated from two aspects. One
is the estimated shape error, and the other is the estimated
force convergence to the true value applied to the backbone.
Fig. 5 and Fig. 6 show the force estimation while the CTR
experiences a constant and variable tip force, respectively,
and the tip point’s position is assumed to be known in both
cases. The dashed lines mark the actual values of the ap-
plied forces in these figures. Moreover, Fig. 7 illustrates
the norm of the spatial position error during the simulations
performed under the twomentioned tip-force conditions. By
looking at Fig. 7(a,b) and comparing it to Fig. 4(a,b), one
can see the effect of the force estimation algorithm on re-
ducing the robot shape error. This reduction in error occurs
more rapidly than the convergence of the estimated forces
into their actual values. This means reaching and switching
among modes with configurations close to the actual one.
Fig. 8 shows the distributed force acting on the backbone in
the last simulation test, and the corresponding discrete one
we expect to estimate. As demonstrated in Fig. 9(a) the es-
timation algorithm decreases the CTR configuration error to
an acceptable level (about 2.5% of the length on average).
Nonetheless, the estimated force does not converge to the
desired value. This may be because more modes can create
configurations close to the robot’s actual shape when multi-
ple point forces apply on it. This is also true in the case of
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Figure 4: The Euclidean distance between the corresponding
points of the PCC and Cosserat models along the CTR. The
significance of the external loads applied in the simulations on
deforming the CTR and the demand for force estimation is
demonstrated. We used the norm of the position error from
comparing the PCC model considering no external load with
the exact Cosserat model under an external a) constant tip
force, b) variable tip force, and c) distributed force. The mean
and standard deviation of the error norms are indicated along
the backbone for different configurations during the simulation
time.

discretizing force distribution with three point forces (Fig.
9(b)). Comparing Fig. 9(a) and (b) shows the robot shape
estimation converges slower in the three-point examination.
5.3. Robot Prototype and Measurement Methods

As shown in Fig. 10, the experimental platform involves
a concentric-tube robot prototype and an Aurora electro-
magnetic tracking system (EMTS) manufactured by North-
ern Digital Inc. The CTR comprises two NiTi tubes, the
physical properties of which are listed in Table 1. All
tubes are of proximal straight lengths on the actuation unit
and are followed by a curved section. They are trans-
lated and rotated independently. So, the actuator vector
qa =

[

�1 �2 �1 �2
], in which �1, �2 ∈

[

−� �
],

�1 ∈
[

0.165 0.225
] and �2 ∈

[

0.105 0.135
], defines

the achievable configuration space of the CTR in free space.
The initial configuration’s outward length of inner and outer
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Figure 5: The distal point force-displacement diagram in the
constant tip loading condition for the Cosserat and KPCS mod-
els
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Figure 6: The distal point force-displacement diagram in the
variable tip loading condition for the Cosserat and KPCS mod-
els

tubes are 0.095 and 0.04, respectively. In our experiments,
the CTR took four different paths in the actuator space that
all started at point qaI =

[

0 0 0.195 0.115
]T . They

ended at point qaE =
[

�1e �2e �1e �2e
]T andwere sam-

pled at a rate of �qa =
[

��1 ��2 ��1 ��2
]T (see Ta-

ble 3). We examined the estimation performance while the
CTR moved along these different paths. As specified in Fig.
10, the EMT system determines the robot’s base-point and
end-point positions. The dimension of the prototype eas-
ily allows keeping its workspace within measurement vol-
ume (a cube with edges of length about 50cm). Sensors are
small coils in which weak currents are induced by the vary-
ing electromagnetic field produced by the field generator. As
depicted in Fig. 10, we used the Aurora 5DOF Flex Tube at
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Figure 7: The Euclidean distance between the corresponding
points of curves obtained from the KPCS (with force estima-
tion) and Cosserat models, along the backbone for different
configurations under constant (a) and variable (b) tip force.
The position of the point depicted by the red star is assumed
to be known.

Figure 8: The distributed force used in the simulation test and
its corresponding concentrated forces in the KPCS model that
is expected to be estimated.

the base because it shows more robustness against the distur-
bance caused by some metallic components of the actuation
unit. We likewise used the Aurora Micro 6DOF at the end-
point, the most miniature 6DOF sensor offered by NDI. The
system control unit (SCU) sends the position and orientation
data to the host computer through a USB connection.
5.4. Experimental Results

This section addresses the evaluation of the estimation
method implemented on a two-tube CTR. As shown in Fig.
10, the experiments were performed with a weight hung
from the tip and repeated with different masses. The motion
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Figure 9: The Euclidean distance between the corresponding
points of curves obtained from the KPCS (with force estima-
tion) and Cosserat models, along the backbone for different
configurations under external distributed force. The position
of the arc-lengths indicated by stars is assumed to be known.

Figure 10: Experimental setup consisting of a concentric tube
robot, an electromagnetic tracker and two coils mounted at
the base and tip of the robot which are used to measure the
position.

of the CTR makes a slight pendulum-like swinging move-
ment to the hung weight and consequently changes the di-
rection of the applied force echoes in distal torsions. More-
over, some neglected details in the model, like clearance and
friction among the tubes or between the outermost tube and
the hole drilled in the base plate, and manufacturing errors
such as tolerance of pre-curvatures and length, can be seen
as disturbance forces that deform the robot shape.

We consider the CTR end-point position and orientation
information to evaluate the robot’s shape accuracy (see Fig.
11). Fig. 12 and Fig. 13 demonstrate the position and Euler
angle error of the end-effector of the CTR. They represent
the performance of the proposed approach in estimating the
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Table 3
Paths of the CTR in the Actuator Space

Translation (mm) Rotation (deg)
�1e �2e ��1 ��2 �1E �2E ��1 ��2

1 165 110 0.2 0.2 180 45 0.5 0.15
2 165 105 0.2 0.1 180 0 0.5 0
3 175 130 0.6 -0.3 90 -90 0.8 -0.8
4 175 130 0.08 -0.1 -270 90 -0.8 0.4

Figure 11: The configurations of the two-tube CTR carrying
a 20gr weight and on the path defined in Table 3. The KPCS
model with external force estimation describes it. The radius
of the red spheres indicates reduced tip position error due to
force estimation. The arrows show the measured direction of
the endpoint

CTR shape while it was traversing path 1 in actuator space
and carrying a 20 gr weight. Since, at the starting point, the
robot and the force acting on it both were on the x-z plane,
the position error y was initially zero, and the Euler angle
error was only for the y component.

Furthermore, along this path, the estimated force on the
robot tip is shown in Fig 14. As was expected, the tip force in
the x-direction eventually attained −0.2N caused due to the
hung weight. It seems the unexpected forces estimated in the
y and z directions compensate for some of the uncertainties
in the PCS kinematic model.

To investigate the effect of force estimation on the un-
certainty and shape error reduction, we have repeated the
experiment with the actual value of the weight and without
the estimation algorithm. In Fig. 15, we compared the end-
point position error in these two cases while the CTRmoved
along the four paths given in Table 3. Moreover, the first 15
samples of the data obtained from each path are omitted to
lessen the transition effect on the results and provide a more
careful examination of the estimated force. It can be seen the
force estimation reduced the average end-point error to less
than half, confirming its effect on the uncertainty reduction.
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Figure 12: The end-effector position error of the two-tube
CTR carrying a 20gr weight. The actuators take the first path
in Table 3. The CTR is described by the KPCS model with
external force estimation.
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Figure 13: The Euler angle error of the two-tube CTR end-
effector carrying a 20gr weight and its actuators take the first
path in Table 3. The KPCS model with external force estima-
tion describes the CTR.

5.5. Discussion
The inherent flexibility of robots makes the robot not

only a function of its actuators but also external forces.
Therefore, the unpredictable nature of external forces com-
plicates analyzing the robot shape and motion doubtlessly.
We have presented in this work a stochastic model for the
external force applied on CTRs, assuming the quasi-static
constraint. We considered the external force covariance ma-
trix dependent on the distal torsion because its deviation
from the equilibrium condition means a change in the in-
puts and potentially an unexpected change in external force.
Such a stochastic external forcemodel transforms the robotic
kineto-static model into a stochastic differential equation. A
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Figure 14: The estimated force of the two-tube CTR carrying a
20gr weight while the actuators move on the first path given in
Table 3. The force in the x direction is correctly estimated but
doesn’t fit the expectations in the y and z direction. The reason
is to compensate for some of the prototype’s uncertainties and
get a better shape estimation, as shown in Fig 15.

Figure 15: The comparison of evaluation criteria Je (normal-
ized tip error) when 1) the external force is considered known,
and 2) external force is unknown and estimated. Since it initi-
ates in an unloaded condition, the estimation algorithm causes
a wider range of errors, increasing with the load. However,
the estimation provides a significantly lower mean error for all
loading conditions.

stochastic observer has been proposed to estimate the forces
using the position data of the distinct points on the backbone.

The issue is that for a CTR, there is not necessarily a one-
to-one correspondence between the configuration set and the
applied force set. So, one can consider a subset of forces
called equivalent forces that may be entirely dissimilar but
exert a shared influence on the robot shape and create identi-
cal deformations. Consequently, the observer may converge

to one of those equivalent forces corresponding to the co-
configuration modes. As was depicted in Fig. 5 and Fig.
6, the convergence of estimated force to the actual value
occurred in the tip-concentrated force cases. However, it
failed in the distributed one, where we expected it to con-
verge into the corresponding discretized force (Fig. 8). One
can only be sure that the observer has reached one of the
co-configuration modes. The computation time of the pro-
posed force estimation method depends on the number of
points measured. The average time for each sample is about
3.8 ms for tip loading and 6.2 and 20 ms for distributed loads
with three and fifteen measuring points, respectively. A rel-
atively long dwell time guarantees the stability of the ob-
server. However, one can expect to achieve less conserva-
tive results and faster convergence using state-based switch-
ing methods. The implementation results show differences
between the estimated external force and the actual force
applied to the robot, especially in the y- and z-axes (Fig.
14). These differences are mainly due to the uncertainties
of the robot model. To show this matter, we compare the
robot shape error (normalized tip error) in two assumptions
of the known applied force (a known hung weight) and the
unknown one, obtained from estimating based on position
data (Fig. 15).

Overall, the proposed method has successfully estimated
the robot’s shape (Fig. 7 and Fig. 9) and has efficiently as-
sessed the applied force in the tip-point loading case (Fig.
5 and Fig. 6). However, estimating the distributed force or
multiple point forces solely through the backbone position
data was not satisfactory. In this case, the estimation algo-
rithm can only guarantee convergence to the set of forces
equivalent to the one applied to the robot.

6. Conclusion
This study presented a model-based force estimation

method for CTRs using position sensing techniques. It
helps the robot sense the applied force while navigating
through the patient’s anatomy and perform planned ma-
neuvers successfully in a confined space. Following the
previously developed PCS kinematics [32], we proposed a
kineto-static model using the Wiener process to character-
ize unpredictable external forces. The resultant stochastic
switched system describes the behavior of CTRs when they
move slowly in unknown constraint environments. A linear
stochastic observer has been proposed for each system mode
to estimate external force by measuring distinct points’ posi-
tion data along the backbone. The findings confirm that the
estimated forces can considerably reduce the position error
along CTRs (see Fig. 7, Fig. 9 and Fig. 12). However, when
the shape error converges to zero, the observer operates not
necessarily in the active mode but in the co-configuration
ones. Thus, the estimated force tends to the actual value
only in simple loading conditions, such as tip-concentrated
force. In more complex situations, such as distributed force,
it converges to the equivalent forces associated with the con-
figuration. The implementation results also show the capa-
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bility of the proposed method in compensating the uncer-
tainties to achieve a more accurate shape approximation of
the CTR prototype. Further studies should investigate the
development of the method to non-positional data (such as
measuring strains) to estimate the external moments exerted
on CTRs, or mode detection of the switched system needed
to escape the trap of equivalent forces. In addition, we need
to examine whether merely knowing the robot’s shape, esti-
mating the equivalent forces rather than the real one in the
distributed load provides secure control of CTRs in these sit-
uations.

A. Proof of Equation (6)
Discretizing the x-y curvatures and keeping the torsion

continuous along the CTR, the angular vector in the stressed
an unstressed conditions can be given as

ūi,j =
[

−�j sin(�j) �j cos(�j) �i(s)
]T

ū∗i,j =
[

−�∗i,j sin(�i(s)) �∗i,j cos(�i(s)) �∗ei (s)
]T (19)

where �∗ei (s) is the torsion produced from pre-torsion and ap-
plied external load. So, the stored strain energy of the ith
tube ca be given in

J = 1
2 ∫

Li

−�i
(ūi,j − ū∗i,j)

TKi(ūi,j − ū∗i,j)ds (20)

where Ki is stiffness matrix defined as
Ki = diag(EiIi, EiIi, GiJi) (21)

From (19), (20) and (21), we can rewrite energy function J
as

J = 1
2 ∫

Li

−�i
f
(

�i(s), �i(s)
)

ds (22)
where
f
(

�i(s), �i(s)
)

= EiIi
(

�2j + �
∗
i,j
2 − �j�∗i,j cos(�j − �i(s))

)

+ GiJi(�i(s) − �∗i (s))
2

Suppose that �i(s) = �̄i(s) + ��̃i(s) is perturbed from equi-
librium value �̄i(s), and � is small. So, knowing that �i(s) =
d�(s)∕ds, we find the minimum energy after small perturba-
tion by

dJ
d�

= 1
2 ∫

Li

−�i

)f (.)
)�i(s)

�̃i(s) +
)f (.)
)�i(s)

�̃i(s)ds (23)

Using integration by parts on the first term, we have
dJ
d�

= 1
2 ∫

Li

−�i

( )f (.)
)�i(s)

− d
ds

)f (.)
)�i(s)

)

�̃i(s)ds+ �̃i(s)
)f (.)
)�i(s)

|

|

|

|

Li

−�i

By imposing the following boundary conditions

�̃i(−�i) = 0,
)f (.)
)�i(s)

|

|

|

|s=Li
= 0 (24)

The minimum energy found by
)f (.)
)�i(s)

− d
ds

)f (.)
)�i(s)

= 0 (25)
So, from (25) and by discretizing torsion along the backbone,
one can get (6).

B. Proof of Theorem 2
Proof. Let V (�L) = 1

2�
T
LΠ�L be a Lyapunov function meet-

ing the CTR model validity in static conditions. Differenti-
ating from (9), we have

d�l = J�F�(t)dF + J�q�(t)dq + J���(t)d�0 (26)
in which
J���(t) =

)�(x)
)�0

+ Γ
)�(x)
)�0

, J�F�(t) =
)�(x)
)F

+ Γ
)�(x)
)F

J�q�(t) =
)�(x)
)q

+ Γ
)�(x)
)q

andΓ = )�(x)
)P (I− )�(x)

)P )−1. Substituting �̇0 = −
JT���(t)ΠT �Land the t-derivative of (11), into (26) gives
d�L = f� (�L, q̇)dt +
F (�L)dW (27)

where
f� (�L, q̇) = (−
J���(t)J

T
���(t)

ΠT �L + J�q�(t) q̇) (28)
We define the differential operator  as follows
V = )V

)�L
f� (�L, q̇) +

1
2
Tr{
F (�L)T )

2V
)x2


F (�L)
} (29)

So, from (12) and (28)
V = −�TLΠ(
J���(t)J

T
���(t)

ΠT �L + J�q�(t) q̇)

+ 1
2
!2FTr

{

�TLJ�F�(t)ΠJ�F�(t)
T �L

}

(30)

Assuming Π = Π′TΠ′ and Θ1+Θ1 < 1 in which Θ1 and Θ2are positive scalars, yields
V ≤ −
(1 − Θ1 − Θ2)�TLΠJ��� (t)J

T
��� (t)

ΠT �L

− 
Θ1�(ΠJ��� (t)J
T
��� (t)

ΠT )‖�L‖2

− 
Θ2�(ΠJ��� (t)J
T
��� (t)

ΠT )‖�L‖2

+ |�̄(ΠJ�q� (t))| ‖�L‖q̇ + !
2
F ‖Π

′J�F� (t)‖
2
F ‖�L‖

2

(31)

Then for 
 > !2F ‖Π
′J�F�(t)‖

2
F

Θ2�(ΠJ���(t)JT���(t)Π
T )

V ≤ −
(1 − Θ1 − Θ2)�TLΠJ��� (t)J
T
��� (t)

ΠT �L
∀ q̇ ≤ �‖�L‖

(32)

where
� =


Θ1�(ΠJ��� (t)J
T
��� (t)

ΠT )

|�̄(ΠJ�F� (t))|
Since all individual subsystems are stochastic asymptotically
stable for V (�L), there is a dwell-time tD that allows the tran-
sient effect to dissipate after each switch.
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