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ABSTRACT
This paper presents a piecewise constant strain kinematic model for concentric tube robots (CTR) in
externally loaded conditions. It discretizes the pre-curved tubes comprising the robot into a finite num-
ber of pieces and involves external effects as a set of wrench vectors exerted along the robot backbone.
Constant strain lets us describe the pieces with helices in which shear deformation and elongation are
neglected. The resulting piecewise helix is the simplest curve that can catch the torsion of tubes that
play a crucial role in kinematic behavior. This approximation transforms the conventional boundary
value problem (BVP) of CTRs models into a set of nonlinear equations that drastically decreases the
model resolution time. The present method uses a Lyapunov function and torsional Jacobian to en-
sure the distal torsion constraint consistently and, as a result, the solution’s convergence. The paper’s
primary purpose is to present a fast, numerically stable, and relatively accurate kinematic model not
reliant on measurement data. Experimental results on a two-tube prototype and provided for different
tip loading conditions reveal maintaining a balance between adequate accuracy and reasonable run-
ning time, about 7 ms for five pieces per section, for real-time applications in the presence of external
load.

1. Introduction
Concentric tube robots (CTRs), as an emerging surgi-

cal platform [5] have attracted widespread interest in the
past decade. Multiple, pre-curved, elastic tubes assembled
in a telescopic manner form these thin continuum robots.
The tubes, typically made from Nitinol (NiTi), can rotate
and translate independently and create diverse shapes of the
robot due to their elastic interaction. The intrinsic flexibility
and small dimension of CTRs are vital enablers to extend the
use of this kind of continuum robots into delicate environ-
ments such as the human body, where safe interactions with
the anatomy are imperative [2, 1]. Besides, the structural
compliance serving infinite degrees of freedom enhances
these continuous shape robots’ dexterity to perform complex
tasks in confined space, particularly in minimally invasive
surgery [8, 4]. However, since CTRs rely on the equilib-
rium of force and moment to establish their ultimate shape,
their modeling is more complicated than conventional rigid-
link manipulators. They call for fast and accurate enough
kinematics to obtain reliable motion control in an unknown
environment, which is vital for their further expansion.
Piecewise constant curvature (PCC) is the most widely used
kinematic model for the different kinds of continuum robots,
including CTRs, in which segments are considered circular
arcs [42, 6]. This simplified kinematic model defines an in-
termediate called configuration space to relate actuator and
task spaces. Accordingly, the kinematics is decomposed into
two mappings, one from the actuator to configuration space
and the other from the configuration to task space. Despite
being handy, the simplifying constant curvature assumption
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is not always valid for CTRs. In reality, the curvature may
be variable along their length for a variety of reasons such as
fabrication errors, unmodeled phenomena (such as frictions
[23] and torsional deformation [9]), and external load. Fur-
thermore, recently, there has also been an increasing interest
in designing non-circular shape manipulators [14, 28, 12].

Characterizing the kinematics of continuum robots with
variable curvature has been the subject of a large part of lit-
erature in the first years of this decade [36, 34]. They de-
parted from the constant curvature assumption and inves-
tigated the kinematic behavior of continuum robots in the
presence of external load and by taking into account more
details like friction [23] and clearance [19] on the subject
of CTRs kinematics. Consequently, significant infinite DoF
models using Cosserat rod (and its particular case Kirchhoff
rod theory) [34] and energy consideration [37] have been de-
veloped to describe the kinematic behavior of CTR. The re-
sultant equilibrium equations governing elastic deformation
form a boundary value problem (BVP) with split boundary
conditions. The shooting method has been the most widely
used approach to solve CTRmodels numerically, but no con-
sensus has emerged in the best way [15]. In [22], different
CTR models based on the Cosserat rod theory are compared
in computational efficiency. However, the results show that
the models derived cannot be acceptable for real-time appli-
cations. Different approaches have been developed recently
to decrease computation time, giving a reasonably accurate
shape of externally loaded continuum robots.

Data-driven methods have been highlighted in the last
five years of research to present kinematic models with a
lower computational cost. They exploited the truncated
Fourier series [20], modal approach [7], locally weighted
projection regression [11], and neural networks [21, 47, 16,
13, 17] to bring out a kinematic model executable in real-
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time applications [20]. Regression methods and neural net-
works, because of their universal approximation property,
are an effective means to put forward alternative curves for
simple constant curvature ones in the configuration space to
capture more deformation modes.

In parallel with developing data-driven approaches,
much attention in the past few years has been devoted to
reducing the theoretically possible redundancy of a soft or
continuum manipulator to a few degrees of freedom by dis-
cretizing it along its backbone. In [41], a piecewise kinemat-
ics of CTRs proposed in which tubes are assumed torsion-
ally compliant only in their transmission sections. Gener-
ally, employing constant-curvature subsegments has been a
conventional method for discretizing torsionally stiff contin-
uum robots [24, 33, 32]. Recent works in soft robots mod-
eling [29], [30] has been focused on developing a discrete
model by discretizing continuous Cosserat based approaches
that take into account shear and torsional deformations. This
kind of model, called piecewise constant strain (PCS), is in
line with the PCC idea and conceptually pursues reducing
the dimension of the configuration space by assuming the
deformation is piece-wisely constant along the robot length.
Consequently, a finite set of strain vectors describes the soft
manipulator and plays the same role as the joint vector for
traditional robotics.

Reducing the computation cost of models-based kine-
matics of CTRs is possible by decreasing the number of iter-
ation cycles or the time taken to complete one of them. Sens-
ing the unknown proximal boundary conditions with torque
sensors at the tube bases eliminates the need for multiple it-
eration cycles and concerns about kinematics convergence
[45, 44]. However, employing torque sensors, despite offer-
ing a rapid and stable solution, complicates actuation mech-
anism design, and also, the found solution does not necessar-
ily fulfill distal conditions. Simplifications such as piecewise
linearization is an effective way to enhance the speed of the
solution [15] by decreasing the average time of iterations.

The importance of considering torsion effects in CTR’s
kinematicmodels was reflected in [43], while the shear strain
is often considered negligible. Due to this simplifying as-
sumption, the pieces of a PCS model can be relaxed into he-
lices, and piecewise helix curves can describe tube shapes.
A curve is called a piecewise helix if it comprises a finite
number of segments, each of them is a helix. Furthermore,
a point where two consecutive segments meet will be called
a corner of a piecewise helix [39]. By extending the robot-
independent map of the PCC model, a map between helical
configuration and task space was presented in [18]. Torsions
of tubes can be sensed online by helically-wrapped FBG in
[46]. However, unfortunately, it decreases measurable cur-
vature range and requires to engrave slots on the surface of
tubes that seems impractical for more narrow tubes.

Previous studies on model-based kinematic approaches
of CTRs have failed to achieve a fast and numerically sta-
ble solution not dependent on measurement data (Table 1).
To the best of our knowledge, a PCS kinematic model for
CTRs with concentrated force and moment has never been

presented. This proposed method enables to speed up the
computation of forward kinematic of CTRs in the presence
of external loads. The discretized structure allows us to ob-
tain the torsional Jacobian of tubes with a less computa-
tional cost. It transforms the BVP resolution into a closed-
loop switched system under a dwell time constraint, where
multiple Lyapunov functions prove the stability of subsys-
tems. A lasting shape of CTR must satisfy two basic con-
straints: 1) the potential elastic energy stored along a tube
length should be minimum, and 2) the last piece of each
tube should meet the distal torsional condition imposed by
the external tip moment. The remainder of the paper is orga-
nized as follows. The second section presents a fast and sta-
ble solution of CTR kinematics by approximating the shapes
of the tubes comprising a CTR. The suggested kinematics
accuracy is demonstrated through simulation by comparing
it with a Cosserat exact model and experimental validation
with a two-tube prototype proposed in section III. The con-
clusion appears in the final section.

2. Helical Kinematics of Concentric tube
Robots
In this section, we put forward a simplified kinematic

model to facilitate real-time applications. Indeed, we exploit
the idea of piecewise constant strain [29], which has been
extended to Kirchhoff and other beams [31], to depict the
tube shapes of a CTR. Before discussing the details, we need
to make some assumptions and definitions.
2.1. Assumptions

Throughout the paper, we make a set of simplifying as-
sumptions significantly decrease computation cost and help
to develop an efficient kinematic model A1) Tubes are sup-
posed to bend or twist elastically, but not undergo cross-
section shear and axial elongation. It is the Kirchhoff as-
sumption generally regarded as reasonable assumptions for
long thin rods like the tubes [37]. A2) The stiffness of tubes
in bending and torsion is assumed to be linear elastic. A3)
External loading is exclusive to a set of point wrenches ex-
erted at the backbone. It is also noteworthy that some details
such as clearance and friction among the tubes are assumed
quite negligible. A4) Tubes are divided into pieces with the
constant strain (helices) over which the curvature and torsion
of the tubes are considered constant.

Mathematically, under the Kirchhoff assumption, a
tube’s centerline curve can fully describe its shape in a de-
formed and undeformed state, as shown in Fig 1. This curve
can be considered as a regular curve, with nonzero curva-
ture at each point. The following theorem shows that a curve,
consisting of a series of helical arcs, can reconstruct the con-
tinuous shape of tube centerline Γ and remain inside a tubu-
lar region surrounding it.
Theorem 1 ([39]). Let Γ ∶ r(s), 0 ≤ s ≤ L be a regular
curve whose curvature �(s) is nowhere zero. Then for any
given � > 0 there exist a piecewise circular helix Γ̄ ∶ r̄(s),
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Table 1
Comparing previous kinematic models developed of CTRs in terms of computation time, accuracy, need of precomputation,
dependence to measured data and easiness to derive robot control.

Method Computation time Model accuracy a Disadvantage
Easiness to

derive robot control

Piecewise constant
curvature [38] <1ms

Highly depends on
external load

External load effects
are not included High

Cosserat rod [34] 15.2 s - 51.2 s (see [22]) 1.5%–3%
High computation cost and

lack of convergence guarantee Low

Derivative Propagation [35] 40 ms Not reported lack of convergence guarantee Medium
Truncated Fourier series[10, 20] <1ms 1.1% -3.1% Need for precomputation High

Piecewise linearization and
Proximal torque sensor [45, 44] <1ms 1% -3% Dependence to measured data High

Neural network [17] Not reported 1% Need for precomputation High
a. The tip errors divide by the length of robot

CornerPiecewise Helical Curve

Centerline of Tube
Helix

x

y

z

x

y
z

Figure 1: Deformed elastic tube whose center-line curve (Γ) is
approximated by piecewise curve (Γ̄) composed from a set of
serially connected helices, each two adjacent of which meet at
the corners.

such that

|r(s) − r̄(s)| < "

Proof. The proof is given in [39].
In the above theorem, " has been proved to be inversely

related to the number of pieces.
2.2. Helical Approximation of a CTR

Let i = 1… n denotes the number of the not fully
overlapped tubes of a CTR numbered from the innermost
to the outermost. Accordingly, the robot length is divided
into n sections indexed form the proximal end to the dis-
tal one. We use Bishop frame CB(s) to define the reference
local coordinates along the CTR length, and Frenet frame
Ci(s)(i = 1… n) to describe the tube curves at an arbitrary
arc-length s. Notice that z-axis vectors zB(s) and zi(s) aretangent to the centerline curve of the robot. Now, suppose a
set of distinct points along the backbone, known as corners,
on which external point wrenches act.

S =
{

0 s1 s2 … L
}

, S ⊂ [0, L] (1)
This set can be split into n subsets denoted by Si(i = 1… n),
which contains the corners placed in section i of the CTR.
Moreover, we define subset Se as follow

Se(s) = {sj ∈ S|sj ≥ s} (2)

Constant Curvature 

Configuration Space

Helical Configuration Space

Actuator Space

Wrench Space

Task Space

Figure 2: The spaces and mappings that define helical kine-
matics of CTRs. The configuration space of helical kinematics
is indeed a broader version of well-known constant curvature
configuration space. When a CTR meets the assumption of
constant curvature, its configuration is limited to subspace Qc .

Moreover, the spatial position of and the wrenches acting on
sj ∈ S are denoted as pj and wj . The definition of spaces
in this model structure, as depicted in Fig 2, is almost in
line with what is defined in the piecewise constant curvature
model [42], but it appends a new space, called wrench space,
to import external load. Also, configuration space Qℎ, pre-sented here, is a broader version of constant curvature con-
figuration space Qc and includes more complex shapes ac-
cessible by a CTR but out of reach by its PCC model. Now,
Let g ∶ (Qa, Qw)→ SE(3) be the helical forward kinematic
map of an n-section CTR, the inputs of which are defined as

(q,w) ∈ (Qa, Qw)

where q = [

�1 �1 … �n �n
] is a vector in actuator space

Qa, (in which �i and −Δ�i denotes rotation at the base and
translation of tube i) and w =

{

w1 w2 … w
|S|

} is a
set of wrench vectors in space Qw, each of which is applied
at corresponding corner sj ∈ S along the backbone, and is
defined as follow

wj =
[

fTj lTj
]T

, j = 1,… |S| (3)
where fj and lj denote, respectively, force and moment ap-
plied on corner j. If the variables move along a path in QaandQw, the configuration and pose variables of the CTR tra-
verses corresponding ones in helical configuration spaceQℎ
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Innermost tubeOutter tube

Actuation Part Exterior Part

Pinhole

Figure 3: Diagram showing actuation and exterior parts of a
CTR, where actuation variables �i and �i, respectively, denote
the proximal base rotation and translation of the ith tube.

and, consequently, in task space.
Tubes are actuated independently at the arc-length s = −�i,where �i is the transmission length of tube i followed by the
curved exterior part Li (see Figure 3).As is evident from the structure of CTRs, different con-
figurations are the outcome of the equilibrium situation
among the elastic pre-curved tubes concentrated and com-
posing the robot. The centerline curves of the deformed
tubes are equal and can be nominated by r(s). The deformed
shape of a tube obeys the elastic interplay in x and y axes,
while the torsional deformation of a tube occurs indepen-
dently about the z-axis. Consequently, they experience a
common curvature and different torsions. Therefore, as il-
lustrated in Figure 4, at any arc length s, reference coordi-
nate frame CB(s) can be transformed to tube frame Ci(s) bya rotation with twist angle �i(s) about zB . The change rateof coordinate frame Ci(s) to arc length s or, in other words,
the strain vector experienced by ith deformed tube at cross-
section s, in reference frame CB(s) is expressed as

�i(s) =
[

eT3 ui(s)T
]T (4)

where, given the assumption A1, e3 =
[

0 0 1
]T and an-

gular strains is of the following form
ui(s) =

[

−�(s) sin�(s) �(s) cos�(s) �i(s)
]T (5)

in which �(s) and �(s) are the curvature and bending angle
of the CTR, and �i is the torsion of tube i.To compute the deformations, we need the equations that
relate internal moment to external wrench, then a constitu-
tive model that relates cross-section angular strain ui(s) tobending moment. Finally, we can make the shape of CTR
by obtaining the angular strains of tubes.
The two first components of the internal moment vector
which the material of [s, l] exerts on that of [0, s) are

[

mx(s)
my(s)

]

= RTB(s)
∑

{k|sk∈Se(s)}

(

(p̂k− r̂(s))fk+ lk
)|

|

|

|x,y
(6)

whereRB(s) is a rotationmatrix from base to body frame co-
ordinate. The third component of the internal moment vec-
tor of ith tube is also related to subset Si because there is no

Tube 1
Tube i Bending Direction

 of Tube 1

Bending Direction
 of Tube i

Bending Direction
 of the Robot

y

x
Reference 
Coordinate

Figure 4: The scheme of a CTR on which applied forces are
depicted. The yellow spots indicates the element of corner set
S and f

|Sw| is the force applied to the distal point. The cross
section at arc length sj ∈ S is demonstrated where angles �1,
�i and �j express the bending directions of the innermost tube,
ith tube (as a general outer tube) and the CTR in Bishop frame
CB(s).

torsional interaction among tubes. So, it is defined as
mzi (s) = e

T
3R

T
B(s)

∑

{k|sk∈Se(s)∩Si}

(

(p̂k− r̂(s))fk+ lk
) (7)

Considering the elastic interaction in x-y axes, one can de-
fine the bending and torsional moment of CTR in terms of
tube moments given in (6) and (7).

[

mx(s)
my(s)

]

=
∑

i
mi(s)

|

|

|

|x,y
, mzi (s) = mi(s)

|

|

|

|z
(8)

The bending moment acting on tube i makes an elastic de-
formation from initial strain u∗i (s) to new strain ui(s). Givenassumption A2, this relation can be described by a linear
constitutive model

mi(s) = Ki
(

ui(s) − u∗i (s)
) (9)

in which Ki is stiffness matrix (for bending and twisting)
defined as

Ki = diag(EiIi, EiIi, GiJi) (10)
where Ei is Young’s modulus, Ii is the area moment of in-
ertia, Gi is the shear modulus, and Ji is the polar moment of
inertia of ith tube cross section.
In constitutive equation (9), initial strain u∗i (s) denotes theangular strain of tube i in its unstressed condition and can be
given in reference frame CB(s) as
u∗i (s) =

[

−�∗i (s) sin �i(s) �∗i (s) cos �i(s) �∗i (s)
]T (11)

where �∗i (s) and �∗i (s) are pre- curvature and torsion, and
�i(s) denotes the twist angle of ith tube given as

�i(s) = �i + ∫

s

−�i
(�i)(�)d� (12)

At this point, we go on to find angular strain ui(s). To sim-
plify the calculation, we discretize the backbone into pieces

First Author et al.: Preprint submitted to Elsevier Page 4 of 13



PCS Kinematic Model of Externally Loaded CTRs

on which strains are constant. So, each of n sections, in the
exterior part of CTR, is divided into mi helical pieces. Butin first step, we perform discretization only on curvature pa-
rameters as

�j = �(sj) , �j = �(sj) , �∗i,j = �
∗
i (sj) (13)

So, angular stain vectors ui(s) and u∗i (s) can be turned into
the following forms

ūi,j(s) =
[

−�j sin�j �j cos�j �i(s)
]T

u∗i,j(s) =
[

−�∗i,j sin �i(s) �∗i,j cos �i(s) �∗i (s)
]

(14)

in which j = 1… |S| − 1, and �j , �j and �∗i,j are constant.Let us focus again on the deformation of a concentric tube
and what makes it complicated to model. In such a structure,
tubes conform to a common shape determined by elastic in-
teraction while they experience bending and torsional mo-
ments and are allowed to twist independently. This twisting
behavior is a barrier to being able to predict the shapes of de-
formed tubes. Torsional deformation can be divided into two
categories, the deformation due to external wrenches and the
self-deformation that naturally minimizes the elastic energy
stored along their lengths. So, we can write torsion �i(s) asfollow

�i(s) = �si(s) + �ei(s) (15)
where �ei(s) denotes the torsion caused directly by an exter-nal load, and �is(s) is the torsion created to minimize the
following energy function.

Ei,j(s) =
1
2
(

ūi,j(s) − u∗i,j(s)
)TKi

(

ūi,j(s) − u∗i,j(s)
) (16)

Taking a derivative of (16) with respect to s, and setting it
equal to zero, we get the following condition, for s ≥ 0, that
ensures the energy minimization (see Appendix A)

�
′

si(s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
�i(s)
�̃i(s)

EiIi
GiJi

�j�
∗
i,j sin

(

�j − �i(s)
)

+ �∗i
′
(s) − �ei

′
(s)

‖�̃i(s)‖ ≥ ��

�∗i
′
(s) − �ei

′ (s) ‖�̃i(s)‖ < ��
(17)

in which �̃i(s) = �i(s) − �∗i (s) and �� is a small positive
constant. Finally, by discretizing torsional parameters, we
terminate the discretization task.

�i,j = �i(sj) , �i,j = �i(sj)
�s(i,j) = �si(sj) , �e(i,j) = �ei(sj)

(18)

Then, (12) and (17) can be converted to
�i,j = �i,j−1 + �i,j−1Li,j (19)

and

�s(i,j+1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
�i,j
�̃i,j

EiIi
GiJi

�j�
∗
i,jLi,j sin

(

�j − �i,j
)

+ �s(i,j) + Δ�∗i,j − Δ�e(i,j)
‖�̃ij‖ ≥ ��

�s(i,j) + Δ�∗i,j − Δ�e(i,j) ‖�̃ij‖ < ��

(20)
where Li,j denotes the length of helix j. Consequently, the
constant strain vector of tube i, for s ≥ 0, can be given as

�i,j =
[

e3 −�j sin�j �j cos�j �i,j
] (21)

Note that for s < 0, the ultimate curvature is considered
zero. So, from (17), we find that pre-torsion is the only rea-
son to change torsion in the transmission part.

�i,1 = �i + ∫

0

−�i

(

�i,1 + �∗(�)
)

d� (22)

For now, we assume proximal torsion �i,1 and the position ofcorners in (6) and (7) are available and focus on completing
the approximation of CTR by obtaining�j , �j and �e(i,j). So,by using the constructive law (9), angular strain vectors (5)
and (11), and the discretized parameters given in (13) and
(18), we can obtain curvature �j and bending angle �j as

[

�xj
�yj

]

= K−1|
|

|

|x,y

( nj
∑

i=1
EiIi�

∗
i

[

sin �i,j
cos �i,j

]

+
[

−mx(sj)
my(sj)

])

�j =
√

�2xj + �
2
yj

, �j = tan−1(�xj∕�yj )

(23)
where nj is the number of the tubes overlapping at piece j.
Also, we can get torsion �e(i,j) as

�e(i,j) =
mzi (sj)
GiJi

(24)

Knowing that �i,j = �s(i,j) + �e(i,j), strain vector �i,j is deter-mined. For drawing the torsion-less centerline of the CTR,
we can use constant strain vector �j as

�j =
[

eT3 − �j sin�j �j cos�j 0
]T (25)

Consequently, helical forward kinematics map gj determin-
ing position and orientation of the centerline at corner j can
be given by the product of exponential formula [26] as

gj =

{

∏j−1
k=1 e

�̂kLk j = 2,… |S|
I4 j = 1

(26)

2.3. Closed Internal Loop
As can be seen in the previous section, we can obtain

torsion �i,j and the position of corner sj by (26) if proximal
torsion �i,1, (i = 1… n) and position pk, (k > j) are known.
Referring to (7), (9), and angular strains (5) and (11), one can
find that the distal torsion of a CTR is constrained and de-
termined by the external moment applied on the distal point.
This characteristic makes the distal boundary condition. So,
we must find the proximal torsion which satisfied the distal
boundary condition specified by tip external moment.
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Helical Approximation
 of a CTR

τL

τ0

w

q

P

Helical Kinematics

ΛT T
Π

T ∫

G

τw

−

Figure 5: Block diagram of the helical kinematic model pro-
posed for CTRs in which w, q are the set of external point
wrench and actuator vectors. Output P contains the position
vectors of point-set S feedbacked into the input, and G is a
set of transformation matrices involving all corner nodes’ po-
sitions and orientations.Distal torsion constriant �w is the set
value for the internal torsional feedback.

Conventional continuous kinematics proposed for CTRs
often use shooting methods to solve the split boundary value
problem. They find a nominal solution curve consistent with
the boundary condition at one end and iteratively update it
to satisfy the other end condition. Such a procedure depends
on the Jacobian matrix’s behavior associated with the differ-
ential system under consideration (refer to [25]).

Here, thanks to the solution curve’s discretization, we
can quickly calculate the Jacobian matrix in each iteration.
Using internal feedback, we can offer a fast estimation of
proximal torsion and ensure convergence. Now, let us go
back to the helical approximation explained in the previous
section. External wrenches and actuators are the known in-
puts, and proximal torsions and the position of corners are
the unknown inputs necessary to draw the shape of CTR.
Moreover, distal torsion and the position of corners can be
considered as outputs. So, the helical approximation can be
summarized in the following functions

�L = �(q,w, P , �0) , P = �(q,w, P , �0) (27)
where P =

{

p1 p2 … p
|S|

} denotes the position of
corners and �0 =

[

�1,1 �2,1… �n,1
]T is proximal torsion

vector. Moreover, output �L in (27) is a vector containing
distal torsions.

�L =
[

�1,|S1| �2,|S1∪S2|… �n,|S1∪…Sn|
]T (28)

The search for a proximal torsion (input) satisfying the
distal torsion (output) condition can be interpreted as inter-
nal feedback. In this sense, the position of corners in the out-
put is fed directly back into the input (5), and distal torsion
constraint imposed by the external wrenches can be seen as
a desired value for output �L defined by

�w =
[

�w1,|S1| �w2,|S1∪S2|… �wn,|S1∪…Sn|
]T (29)

where �wi,|S1∪…Si| is the torsion we expect from the applied
moment at the endpoint of tube i. Since the first two inputs
in (27) are known and constant in static conditions, we can
use the following theorem to determine the ultimate shape
of the CTR.

Theorem 2. Let proximal torsion vector �0 is updated by

�̇0 = −ΛT �(t)TΠT (�L − �w)

where T �(t) =
)�
)�0

+ )�
)P (I −

)�
)P )

−1 )�
)�0

and (I − )�
)P ) is in-

vertible, Π and Λ are positive definite and diagonal position
definite matrices. Then helical kinematic model converges
to the desired distal torsion condition.

Proof. Let V = (�L − �w)TΠ(�L − �w) be a Lyapunov func-tion for (27), we form the differential as V̇ = (�L−�w)TΠ�̇L.So, to prove satisfying the desired distal condition, we must
have

V̇ < −(�L − �w)TQ(�L − �w) , Q > 0 (30)
By differentiating from (27), recalling that q and w are con-
stant, we have

d�L =
)�
)�0

d�0 +
)�
)P

dP (31)

and
dP =

)�
)�0

d�0 +
)�
)P

dP (32)

we can rewrite it as
dP = (I −

)�
)P
)−1

)�
)�0

d�0 (33)

From (31) and (33), torsional Jacobian T �(t) is obtained

T �(t) =
)�l
)�0

=
)�
)�0

+
)�
)P
(I −

)�
)P
)−1

)�
)�0

(34)

Note that we consider N modes of operation, each
of which involving a set of close configurations and
�(t) ∶ t →

{

1 … N
} denotes the switching signal that

ascertains the linear subsystem (torsional Jacobian) associ-
ated with the activated mode. Matrix (I − )�

)P ) is invertibleas long as corner position P ∈ S is affected by proximal
torsion vector �0. So, proximal and distal torsion vectors are
updated by

�̇0 = −ΛT T�(t)Π
T (�L − �w), �̇L = T�(t)�̇0 (35)

where Λ is a diagonal position definite matrix. Substituting
�̇L and �̇0 into V̇ yields

V̇ = −(�TL − �w)ΠT�(t)ΛT
T
�(t)Π

T (�TL − �w) (36)

Considering Q = ΠT�(t)ΛT T�(t)Π
T , condition (30) is satis-

fied. Switching signal �(t) is said to have dwell time tD > 0if tk+1 − tk ≥ tD, where tk and tk+1 are consecutive switch-ing instants. When all individual subsystems are asymptoti-
cally stable, there exists a dwell-time tD that allows the tran-
sient effect to dissipate after each switch (see Theorem 3.1
of [27])
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3. Simulation and Experimental Results
To evaluate the precision of the helical kinematics and

resolution method developed in section 2, a set of simula-
tions and experimental implementations were carried out for
a CTR in various configurations and under different loading
conditions.
3.1. Evaluation Criteria

Like in many previous studies on CTRs or other contin-
uum robots, we still use tip error as a metric to evaluate our
simulation and experiment results. Nevertheless, we divide
it by arc length to normalize the outcomes of the experiments
on which the robot has different lengths. So, one can offer
the following evaluation criteria

Je =
‖rmodel(L1) − rdata(L1)‖

L1
(37)

where ‖.‖ denotes Euclidean norm, L1 is the innermost tube
length, rmodel(L1) is the predicted position and rdata(L1) de-notes tip position derived from an exact geometric model
in simulations and pose sensors in experiments. This er-
ror is usually expressed in % of robot length (as proposed
in [34, 37]).
3.2. Simulation of CTRs Kinematics

The geometrically exact models based on Cosserat rod
theory offer a reasonably accurate kinematic behavior of
CTRs but suffer from computational complexity. In [22],
through the simulation of two tube CTRs, four different
approaches are investigated concerning computational effi-
ciency. One can admit that all these approaches take more
than multiple seconds to calculate the ultimate shape. Here,
we compare the proposed model with the Cosserat one from
[34] in computation time and accuracy.

Table 2
Parameters of CTR used during simulation

Tube 1 Tube 2 Tube 3
Inner Diameter (mm) 0.385 0.55 0.8
Outer Diameter (mm) 0.515 0.76 0.9
Curved Length (mm) 100 50 50
Straight Length (mm) 165 105 85
Young’s Modulus (E) (Gpa) 70 70 70
Shear Modulus (G) (Gpa) 26.31 26.31 26.31
Pre-curvature (�∗) (m−1) 6.46 6.2 5

To this aim, we consider a three-tube CTR with param-
eters listed in table 2 as a framework to address their be-
havior in the presence of both distributed and concentrated
forces. The methods run on an Intel Core i7-7660U CPU
running at 2.5GHz. The external moments, in all simula-
tions and experiments, are zero, and the finishing condition
is the point at which the norm of distal torsion vector �l isless than 0.1N∕m2. The switching frequency of torsional
Jacobian T�(t) is considered 25 times smaller than the sam-
ple rate. In the simulations, the initial values of �0 and P ,respectively, are a zero vector and the position vectors got
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Figure 6: Distributed force and its corresponding concentrated
force used by helical piecewise model.

Figure 7: The effect of concentrated tip section force on dif-
ferent kinematic models for two selected configurations of 50
tests, two different actuator values have been taken while the
same external forces (see Table 3) have been applied to them.
The circles radius indicates the tip errors between Cosserat and
the two other models.

from the constant curvature model. Figure 7 compares the
shapes of two selected configurations derived from the ex-
act geometrical and helical model when concentrated forces
listed in Table 3 are applied at the tubes’ tip points. Also, the
continuous nature of Cosserat models enables us to include
distributed forces neglected in discrete ones. So, in helical
kinematics, we must consider them as a set of concentrated
loads applied on point set S. We define concentrated force
fj as follow to cover the effect of distributed force on piece
j

fj = ∫

sj

sj−1
fd(�)d� (38)

The distributed force and corresponding concentrated
ones applied to the CTR are indicated in figure 6. Figure
8 shows how a five-piece helical kinematic model can esti-
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Figure 8: The effect of distributed force on different kinematic
models for two selected configurations of 50 tests, two different
actuator values have been taken while the same external forces
(see Fig. 6) have been applied to them. The circles radius
indicates the tip errors between Cosserat and the two other
models.

Helical Constant Curvature Helical Constant Curvature

0

0.05

0.1

0.15

0.2

0.25 Point Force Distributed Force

Figure 9: The simulation results for 50 tests. The accuracy
of helical (10 pieces per section) and constant curvature kine-
matics is demonstrated by comparing their tip positions with
those derived from the exact geometric kinematics.

Table 3
The condition of loading in the point force case

Point
Force F1 =

⎛

⎜

⎜

⎝

0
0

−0.1

⎞

⎟

⎟

⎠

F2 =
⎛

⎜

⎜

⎝

0
0.1
0

⎞

⎟

⎟

⎠

F3 =
⎛

⎜

⎜

⎝

−0.2
0
0

⎞

⎟

⎟

⎠

Application
Point

The tip of
tube 1,
s = L1

The tip of
tube 2,
s = L2

The tip of
tube 3,
s = L3

mate the exact shape created by the exact model [34]. We
tested 50 different configurations of the CTR while the con-
centrated and distributed forces were acting on it. Compar-
ing the computation time of these approaches barely reveals
that discretizing decreases the computation time. It reduces
the average computation time from 72.6s to 11ms for ap-

Table 4
Comparison of computation time of kinematic models
over 50 configuration tests through simulation, in two
different loading conditions depicted in Fig6 and Table
3 .

Kinematic models Average computation time (sec)
Distributed force Point force

Constant curvature 0.0012 0.0012
Helical 0.069 0.0115
Cosserat rod [34] 236.8 72.6

Figure 10: Experimental setup consisting of a concentric tube
robot, an electromagnetic tracker and two coils mounted at
the base and tip of the robot which are used to measure the
position.

plied point forces and from 236s to 69ms when a distributed
force acts on CTR. Table 4 details the average computation
times of the different kinematic models. On the other hand,
as highlighted in Fig. 9, the performance criteria (37) of the
helical piecewise model reaches comparable performance to
that of the Cosserat one [34].

Table 5
Physical Quantities For Experimental Tubes

Tube 1 Tube 2
Inner Diameter (mm) 0.385 0.55
Outer Diameter (mm) 0.515 0.76
Curved Length (mm) 125 65
Straight Length (mm) 165 105
Young’s Modulus (E) (Gpa) 70 70
Shear Modulus (J) (Gpa) 26.3 26.3
Pre-curvature (�∗) (m−1) 6.46 6.2

3.3. Robot Prototype and Measurement Methods
The experimental platform, as shown in Fig. 10, involves

a concentric-tube robot prototype and an Aurora electromag-
netic tracking system (EMTS) manufactured by Northern
Digital Inc. TwoNiTi tubes with physical properties listed in
Table 5 comprise the CTR. Each tube has an initial straight
length on the actuation unit, followed by a curved section.
Tubes are translated and rotated independently, so, to gener-
ate the achievable configuration space, one can define the
actuator vector of the CTR as qa =

[

�1 �2 �1 �2
]
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where �1, �2 ∈
[

−� �
], �1 ∈

[

0.165 0.225
] and

�2 ∈
[

0.105 0.135
]. The outward length of inner and

outer tubes in initial configuration are 0.095 and 0.04 re-
spectively. In our experiments, the CTR took four differ-
ent paths in the actuator space. All start at common point
qaI =

[

0 0 0.195 0.115
]T , but end at different points

qaE =
[

�1e �2e �1e �2e
]T . They were sampled at rate

�qa =
[

��1 ��2 ��1 ��2
]T , given in Table 6. The col-

lected data from these different paths made several config-
urations in which the accuracy of the kinematic model was
examined.

As shown in Fig. 10, two 3-D points at the base and
endpoint of the robot were determined via the EMT system.
Considering the prototype’s dimensions, it was not difficult
to adjust the robot pose and keep its workspace within mea-
surement volume (a cube with edges of about 50cm). Sen-
sors are small coils in which weak currents are induced by
the varying electromagnetic the field produced by filed gen-
erator. As depicted in Fig. 10, we used the Aurora 5DOF
Flex Tube at the base because it showed more robustness
against the disturbance caused by somemetallic components
of the actuation unit, and the AuroraMicro 6DOF, the small-
est 6DOF sensor offered byNDI, at the endpoint. The system
control unit (SCU) sends the position and orientation data to
the host computer through a USB connection.
3.4. The Kinematic Model Performance

Several probable error sources may affect the perfor-
mance of the kinematic model and can be divided into two
categories. One is unmodeled details, which we call distur-
bance wrenches, and the other is discretization error.

Clearance and friction are one of the most important de-
tails that have been neglected. They occur among the tubes
or between the outer tube and the hole drilled in the base
plate. The rest includes shear effects, tubes manufacturing
errors such as tolerance of pre-curvatures, pre-torsion, and
length. Besides the factors mentioned above, probable un-
certainties in the applied force and the sensor observations
can also raise the error. Discretization error usually is more
problematic in external loads, where the internal moments
caused by them vary along the length of tubes.

The capability of the proposed model to handle the two
mentioned sources of errors is examined experimentally. To
draw a complete comparison, we demonstrated the result by
box plot which provides statistical properties. Fig. 11 and
12 compare the performance of the proposed model, for the
different number of helices, with that of PCC in terms of
evaluation criteria (37) and computation time in the absence
and presence of external force. In unloaded conditions, the
PCC model ensures an acceptable accuracy (see Fig. 11) in
a short computation time. However in the presence of a tip
point load, as was expected, PCC fails to give an accurate
picture of CTRs kinematic behavior (see Fig. 12). Since
the pre-curvature of tubes is considered constant, the curva-
ture of segments must be almost constant in free space con-
ditions, and disturbance wrenches play the dominant role in

creating the position error. It explains why considering more
pieces of helices seems not to affect decreasing errors in the
unloaded tests (see Fig. 11), but, in the presence of external
loads (see Fig. 12), shows a decrease in the average error.
As external forces create internal moments varying along the
tubes, this reduction is more prominent with increasing load.
As seen in Fig. 11 and 12, the proposed approach produces
a trade-off between accuracy and computational cost. Obvi-
ously, under heavier load, the kinematicmodel requiresmore
pieces and inevitably more time to successfully characterize
the CTR shape.

In Fig. 13, the accuracy of the kinematics with five he-
lices per section is shown while different weights are applied
to the CTR tip point and execution time is about 11ms. Also,
one can find from Fig. 13 that the model fails to capture the
deformation which tip-weight M = 50gr makes. The ef-
fect of tip force on changing the configurations of a CTR
is indicated in Fig. 14, where the CTR approximate shapes
are shown in free space and loaded with M = 15gr and
M = 50gr weights, while the actuators are locked. The ra-
dius of spheres centered at the distal end of the CTR shows
the tip position error.

As expected, the discretization error decreased with in-
creasing the number of pieces, and this reduction is es-
pecially noticeable under high loads. The disturbance
wrenches is not affected, as a rule, by increasing the de-
grees of freedom. However, we hope that estimating external
wrenches based on position data will reduce the error caused
by unmodeled details. The effect of torsion deformation on
the kinematics of CTRs is apparent in comparing the perfor-
mance of PCC with that of the proposed kinematics.

Table 6
Paths of the CTR in the Actuator Space

Translation (mm) Rotation (deg)
D1e D2e �D1 �D2 �1E �2E ��1 ��2

1 165 110 0.2 0.2 180 45 0.5 0.15
2 165 105 0.2 0.1 180 0 0.5 0
3 175 130 0.6 -0.3 90 -90 0.8 -0.8
4 175 130 0.08 -0.1 -270 90 -0.8 0.4

3.5. Discussion
The inherent flexibility of thin tubes made of superelas-

tic NiTi alloys allows them to experience complex deforma-
tion, including bending and twisting. Shaping tubes into pre-
curved configurations and concentring them creates a small
needle-sized tool that can elongate and bend. These en-
hanced and unique features of CTRsmake them ideal for per-
forming delicate surgical maneuvers, although their possible
applications can be developed outside medicine in the future
[15]. They have been proposed to perform various intracra-
nial procedures where access is difficult and requires pen-
etrating the heart through the vascular system [40]. More-
over, they have been recognized as a reliable instrument for
endonasal skull base surgery [3], transoral throat, and other
natural orifice surgeries likely to pursue in the future.

The present study suggested a discretizedmodel of CTRs
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Figure 11: Comparison of evaluation criteria Je and the com-
putation time of PCC with those of proposed helix-based kine-
matics for different number of pieces to describe CTR kine-
matics in free space.
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Figure 12: Comparison of evaluation criteria Je and the com-
putation time of PCC with those of the proposed helix-based
kinematics for different number of pieces to describe the kine-
matics of a CTR on which a 10gr weight is mounted.

by assuming a piecewise constant strain along the tubes. An-
other novel contribution is that we presented a closed-loop
switching system to ensure meeting the distal boundary con-
dition imposed by external moments at the tubes’ tip points.
In such a scheme, the distal torsions obtained by the consti-
tutive model makes the set value to which torsional output
�L should reach (refer to Fig. 5).

Discretization, by itself, allows us to have less compu-
tation in comparison with traditional continuous models.
Moreover, the switching frequency is smaller than the con-
trol frequency, and since the large portion of the computa-
tion is concerned with Jacobian calculation, it significantly
reduces the computational cost. Comparing the results of
the proposed method with simulations of the Cosserat-based
model [34] represents an improvement of computational ef-
ficiency in computation time (Table 4). Moreover, com-
pared to the results of simulations, implementations reveal
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Figure 13: The performance of helical kinematics dealing with
different tip loads. A weight with mass M is tied to the tip
point of the CTR, and the sections are divided into 5 pieces in
all tests.

Figure 14: Different configurations of a two tube CTR that cre-
ated by various point forces, while the all actuators are locked.
The number of pieces is varied according to the applied forces
values. The kinematic behavior of each section is described
by two pieces in free space, (F = 0), and by five pieces when,
15gr (F = 147.15mN) and 50gr (F = 490.5mN) weights are
hanged at the tip. The radius of the blue sphere indicates the
tip error in each case.

a significant decrease in computation time (about 7 ms for
an approximation with five pieces per section, see Fig. 12
and 11). An appropriate choice of initial values, the pre-
vious step in implementations, accelerates the convergence.
However, in all simulations, the initial values come from
the PCC model. This work fails to achieve the computation
time reported in sensing-based methods [45] (about 1 ms
for a three-tube CTR) or data-driven kinematic approaches
[47, 16, 13, 17].However, it is still fast enough to easily be
performed at 100 Hz or faster by implementation in C++.

The stability of all individual subsystems is guaranteed
by the Lyapunov method. The switching depends on CTR
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movement speed, and as long as there are not many sudden
changes in environment or actuators, CTRs can be viewed
as slowly switched linear systems. So, CTRs can be stable
under a dwell time constraint. It means that staying on each
mode for a period greater than or equal to tD make the sys-
tem asymptotically stable. Thus, contrary to previous mod-
els not dealing with the convergence of the numerical proce-
dure used to solve the boundary value problem of a CTR, the
proposed method gives us a characterization of the stability.

Normalized tip position error is the metric to evaluate
the accuracy performance of the proposed model. The max-
imum and average tip position errors between Cosserat [34]
and the PCS model are less than 5.5% and 4% of their length
in the point force case, and 3% and 2.5% of their length in the
distributed force case. It is also worth noting the accuracy
of the Cosserat based model [34] is announced about 2% of
the length (on average). Some loss of accuracy is the price to
pay for obtaining model-based kinematics facilitating the ef-
fective control of CTRs. Nevertheless, we hope that external
wrench estimation will be beneficial in increasing accuracy,
where shape reconstruction techniques [39] based on Fiber
BraggGratings (FBG) or electromagnetic (EM) sensing help
to express the effects of these unmodeled details in terms of
disturbing wrenches.

Creating a straightforward analytical framework of
CTRs also provides a chance to address other essential as-
pects of them. We are confident that the proposed model
can improve the knowledge about bifurcation, an elastic in-
stability in which the manipulator suddenly releases strain
energy and jumps from a critically stable configuration to
lower energy, a stable one. Such an abrupt change in config-
uration, given the CTR’s static condition, comes from a sud-
den change in proximal torsion while the distal condition is
unchanged. It probably means the invertibility assumption
in Theorem 2 is violated.

4. Conclusion and Future Work
This paper proposed a novel kinematic model for CTRs

based on piecewise constant strain (PCS) assumption that
allows describing tubes by a series of helices. The resulting
conformed piecewise helical curves must satisfy two con-
ditions, 1) minimum strain energy along their length 2) the
distal torsion constraint imposed by external tip moment. A
closed-loop structure presented in which the two mentioned
conditions were satisfied, respectively, in forward and feed-
back directions. We used the torsional Jacobian to linearize
CTR at a set of similar configurations and a Lyapunov func-
tion to converge it to a valid configuration or a stable state.
The stability of the switching system is ensured under dwell-
time constraints.

The findings indicate that the computation time is re-
duced to 7ms for a two-tube CTR while the average tip error
is about 4% of the robot length under loading conditions. We
hope that the accuracy can be improved through real-time
estimating of external loads, using different shape sensing
approaches, and including the effect of unmodeled details
as an external wrench in PCS structure. Moreover, we think

the resulting analytic framework provides insights for further
studies on characterizing of snapping behavior of CTRs.
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A. Minimizing strain energy
Beginning with strain energy (16)
Ei,j(s) =

1
2
(

ūi,j(s) − u∗i,j(s)
)TKi

(

ūi,j(s) − u∗i,j(s)
)

We differentiate with respect to s to obtain
E
′

i,j(s) =
(

ūi,j(s) − u∗i,j(s)
)TKi

(

ū
′

i,j(s) − u
∗
i,j
′
(s)

)

From (14), we have
ū
′

i,j(s) =
[

0 0 �i
′ (s)

]T

u∗i,j
′
(s) =

[

−�i
′ (s)�∗i,j cos �i(s) −�i

′ (s)�∗i,j sin �i(s) �∗i
′
(s)

]

At the minimum energy, we have
(

−�j sin�j + �∗i,j sin �i(s)
)

EiIi
(

�∗i,j�i
′
(s) cos �i(s)

)

+
(

− �j cos�j − �∗i,j cos �i(s)
)

EiIi
(

�∗i,j�i
′
(s) sin �i(s)

)

+
(

�i(s) − �∗i (s)
)

GiJi
(

�i
′
(s) − �∗i

′
(s)

)

= 0

From (12), we know �i
′ (s) = �i(s). So, when �i(s) ≠ �∗i (s)the following condition satisfy the minimum energy con-

straint.
�i
′
(s) = �∗i

′
(s) −

�i(s)
�i(s) − �∗i (s)

EiIi
GiJi

�j�
∗
i,j sin

(

�j − �i(s)
)

and when �i(s) = �∗i (s) , the tube is torsionally relaxed, thenthe deformed and undeformed configurations of tube i are
in the same plane. So, knowing that �j = �i(s), the strain
energy is minimum.
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