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Deep learning for the prediction of the chemotherapy response of 
metastatic colorectal cancer: comparing and combining H&E staining 
histopathology and infrared spectral histopathology 
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Colorectal cancer is a global public health problem with one of the highest death rates. It is the second most deadly type of 

cancer and the third most frequently diagnosed in the world. The present study focused on metastatic colorectal cancer 

(mCRC) patients who had been treated with chemotherapy-based regimen for which it remain uncertainty about the 

efficacy for all eligible patients. This is a major problem, as it is not yet possible to test different therapies in view of the 

consequences on the health of the patients and the risk of progression. Here, we propose a method to predict the efficacy 

of an anticancer treatment in an individualized way, using a deep learning model constructed on the retrospective analysis 

fo the primary tumor of several patients. Histological sections from tumors were imaged by standard hematoxylin and 

eosin (HE) staining and infrared spectroscopy (IR). Images obtained were then processed by a convolutional neural 

network (CNN) to extract features and correlate them with the subsequent progression-free survival (PFS) of each patient. 

Separately, HE and IR imaging resulted in a PFS prediction with an error of 6.6 and 6.3 months respectively (28% and 26% 

of the average PFS). Combining both modalities allowed to decrease the error to 5.0 months (21%). The inflammatory 

state of the stroma seemed to be one of the main features detected by the CNN. Our pilot study suggests that multimodal 

imaging analyzed with deep learning methods allow to give an indication of the effective-ness of a treatment when 

choosing.  

1. Introduction 

 

Colorectal cancer is a global public health issue, with one of 

the highest number of deaths. It is the second most deadly and 

third most diagnosed type of cancer in the world.1 In our 

study, we focused on metastatic colorectal cancers (mCRC) 

treated with chemotherapy and targeted therapies 

combination. Targeted therapies, such as bevacizumab2, 

directed against the Vascular Endothelial Growth Factor 

(VEGF) or cetuximab/panitumumab3, targeting Epidermal 

Growth Factor receptor (EGFR), have shown  clinical activity 

when combined to chemotherapy in patients with cancer.4 

However, this improvement is conditioned by the 

development of resistance of cancer cells to targeted 

therapies.5 The appearance of numerous pro-angiogenic 

drivers during anti-VEGF treatment6, and different mutations 

in  KRAS gene during anti-EGFR treatment7, may lead to a 

resistance of cancer cells to targeted therapies. Therefore, this 

uncertainty about the effectiveness of such treatments is a 

major problem, especially if we consider the time required to 

test different therapies and the consequences that can have 

on the health of patients. For that reason, predicting the 

effectiveness of a treatment response in an individualized 

manner would be a crucial advantage. 

To gain insight on the condition and characteristics of a tumor, 

histology remains a reference method. By staining histological 

sections with standard hematoxylin and eosin staining (HE) the 

different cellular structures of a tissue (tumor, necrosis, fibrous 

stroma…) can be identified. Therefore, the colored section 

guides pathologists and oncologists to make a diagnosis and to 

propose the best treatments, based on the morphological 

types of cells (such as tumor cells, immune cells...).  Indeed, 

the response to treatment varies greatly depending on the 

differentiation of cancer cells, the surrounding stroma, the 

abundance of immune cells, and the mutational profile in 

cancer cells which can lead to its resistance.8 

Mid-Infrared (IR) imaging has proven to be a valuable 

analytical method for characterizing tumors and their 

environment. IR spectroscopy probes the vibrations of 
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chemical bonds and thus provides a biomolecular fingerprint 

of cells and tissues. Each pixel within the image comprises an 

entire mid-IR spectrum that can give information on the 

biochemical content of the sample at a scale of few 

micrometers. For example, it is possible to reveal a molecular 

heterogeneity of tumor, and to characterize their 

microenvironment, without labeling nor particular preparation 

of the sample.9,10 Histology studies based on the numerical 

analysis of spectral images acquired on human colic tissues are 

gaining prominence.11,12 Similarly to the segmentation done in 

standard histology, IR spectroscopy images can be numerically 

segmented by using multivariate analysis, to visualize the 

different histological structures of the sample. This method, 

called spectral histopathology, makes it possible to obtain a 

digitally colored image, that is informative of the 

physiopathology status of the tissue. Recently, studies have 

automated spectral histopathology13 and optimized it14, on 

colon samples of patients. Spectral histopathology is set as a 

promising diagnostic and prognostic tool on which clinicians 

can rely on to choose the most appropriate treatment.15,16 

Deep learning algorithms, and more precisely convolutional 

neural networks (CNN), are powerful tools to detect spatial 

characteristics in an image. In the biomedical field, such 

characteristics can be correlated to a disease.17 Models are 

trained on labeled data and can then be applied to unknown 

data. For example, CT images analyzed by deep learning have 

being put forward to guide the choice of treatment in CRC.18 In 

the field of histopathology, deep learning algorithms have 

been proposed to perform tumor detection or grading tasks.19 

In the field of vibrational biospectroscopy, their use begins to 

emerge.20,21  

In this study, we propose to evaluate a method to predict the 

best treatment for mCRC patients from images of histological 

sections of the primary tumor, obtained before the treatment 

was set up. Our approach consists in applying deep learning 

algorithm on HE staining and infrared pseudocolor-coded 

images, first separately and then in a combined manner, to 

test the possibility to predict the treatment efficacy evaluated 

by considering the progression free survival (PFS).  To the best 

of our knowledge, this pilot study is the first to compare and 

combine standard and spectral histopathology, using deep 

learning analysis, to provide indicators of treatment response 

in mCRC. 

2. Materials and methods 

2.1 Study design and population 

The study was conducted on surgical sections of primary 

tumors of CRC. Our samples were provided by the tumor 

biobank of the French University Hospital of Reims. The criteria 

for samples inclusion were: i) to correspond to stage IV 

metastatic CRC, ii) localized in the left side of the colon (left 

transverse colon, descending sigmoid colon and rectum if not 

irradiated), iii) and treated in the first line with FOLFIRI + 

bevacizumab palliative chemotherapy regimen (irinotecan + 

folinic acid + bolus and infusional 5-fluorouracil combined with 

an anti-angiogenic (bevacizumab)). The effectiveness of 

treatments depends on the side (left or right) of the primary 

tumor.22 We chose to carry out our study on left-sided CRCs 

because the range of PFS is wider for left-sided CRCs, 

consequently the prediction is of greater importance. Also, 

these lesions are more frequent.   

The primary endpoint was the progression free survival (PFS) 

of the patients from whom the primary tumor was taken. PFS 

is the period of time between the first day of treatment and 

the day when cancer progression is observed. In practice, this 

period without progression corresponds to the length of time 

during which first-line treatment is maintained, the treatment 

being considered effective since it prevents the progression of 

the tumor (assuming that only the treatment has an influence 

on the progression of the cancer). A progression was 

considered if an increase of at least 20% in the size of the 

target lesion was observed on a CT scan (Response Evaluation 

Criteria in Solid Tumors (RECIST)), or if there was a change in 

the treatment or if the patient died. A progression was also 

taken into consideration if it was observed after a therapeutic 

discontinuation because the patient’s condition was too 

deteriorating, or because the patient had refused the 

treatment. However, a progression was not counted, if it was 

observed during a therapeutic break.  

2.2 Ethical approval 

The study was conducted in accordance with the Helsinki 

Declaration. Informed written consent was obtained from each 

patient to inclusion of the tumor in biobank. Patients’ records 

were anonymized prior to analysis. The data base was 

constituted in accordance with the reference methodology 

MR004 (MR00414012022) of the French National Commission 

on Informatics and Liberty (CNIL). As per French regulations 

concerning the retrospective study, no informed consent or 

additional ethical committee review was required. 

2.3 Sample preparation 

Frozen histological sections were prepared from the surgical 

resection of primary tumors of patients treated in Reims 

University Hospital. In our study, samples from 6 patients 

could be usable, after a histological examination of adjacent 

tissue sections, stained with HE. The main characteristics of 

the 6 patients for whom samples had been analyzed is given in 

Table 1.  

Two adjacent tissue sections were performed; the thickness of 

sections was 6 µm for the first one and then 3µm for the 

second one. The first section was placed on a calcium fluoride 

window (CaF2) for FTIR imaging and the second one was 

placed on a glass slide for histology (HE staining). 
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Table 1 Clinical characterization of patients included in this study (F: female, M: male, 

m: mutated, w: wild). 

Sex Age (years) KRAS PFS (months) 

M 44 w 14.9 
F 72 m 15.3 

F 58 m 15.4 

F 66 m 20.7 

M 69 w 35.1 

M 83 m 41.3 

 

 

2.4 Segmentation of HE images 

HE images were segmented into histological classes before 

deep learning analysis. Segmentation was first done by 

histopathologists on a small portion of the surface of each 

image, using QuPath software.23 Six distinctive classes were 

identified: cancer cells, immune cells, necrosis, cryptic cells, 

glandular lumen and stroma. The rest of the surface was 

segmented using machine learning trained on the set of the 

labelled portions of all images, as explained below.  

First, the colors of the different HE images were normalized by 

estimating the stains vectors.24 Doing so, colors were 

expressed as linear combinations of the two stains vectors 

(HE). Images were down sampled by a factor of 5 as the pixel 

size (0.17 µm) was very small as compared to the size of the 

histological structures and to the precision of their manual 

segmentation. Then, the classifier was trained at the level of 

the individual labelled pixels (around 24 million). Classification 

was not only based on the 2 colors of the pixels, but also on 

features calculated from the surrounding pixels. Selected 

features were: local (disk of 7 µm of radius) average, standard 

deviation and skew of colors, larger (disk of 43 µm of radius) 

average, standard deviation and skew of colors, and average 

(disk of 43 µm of radius) of the square of a ridge detection. A 

linear discriminant analysis (LDA) reduction was then 

performed to go from 16 to 6 features. 

To predict the class of pixels, the 6-dimensional space of pixels 

was discretized into 35 bins for each dimension (ranging from 

the minimal to the maximal value of the feature), leading to 

356 bins. Using the pixels of the training set, the mode of each 

bin was calculated. Applied on the testing set, the class of each 

pixel was selected as the class attributed to the corresponding 

bin. Pixels that correspond to unclassified bins form an 

“unclassified” class. This model has the advantage of not using 

any assumptions about the shape of the class distributions, 

and in particular about a linear shape. The number of pixels in 

each class was far from balanced. This could result in small 

classes being ignored by the model. To avoid this, pixels were 

weighted with the proportion of their class to the power of -

2/3. This balancing step was tuned to give an approximate 

equality between the sensitivity and the precision of the 

prediction of each class.  

The final step of segmentation consisted in smoothing the 

segmented images obtained with the classifier. Small patches 

(below 300 pixels) of each class were deleted, and each pixel 

was classified in the majority class of local pixels (disk of 9 µm 

of radius). These last three steps were repeated 3 times. To 

assess the accuracy of the segmentation process, the labelled 

pixels were separated into training and test data. We used 

cross-validation, which is more reliable than an evaluation 

based on a single separation.25 Three folds seemed sufficient, 

given the large number of pixels (24 million). Finally, the model 

was applied to the unlabelled portion of HE images (figure 1a, 

c and e). 

2.5 Instrumentation and FTIR data collections 

FTIR imaging acquisitions of colonic samples were obtained 

using the spectrum spotlight TM 400 microscope coupled to 

spectrum One FTIR spectrometer (Perkin Elmer, Villebon sur 

Yvette, France). 

The device was equipped with a cadmium and mercury 

telluride (MCT) detector cooled with liquid nitrogen. The 

frozen sections were imaged in IR with wavenumbers between 

800 cm-1 and 4000 cm-1, with a spectral resolution of 4 cm-1 

and a pixel size of 25 x 25 µm2.  

 

 

Fig. 1 Segmentation of HE stained (a,c,e) and IR spectroscopy (b,d,f) images. The same 

area for both modalities was selected as an example. HE images (a) are segmented 

semi-automatically (c) into six classes (e). IR images (at 1080 cm-1) (b) are segmented 

using k-means (d) into six classes related to one another as shown in the dendrogram 

(f). White pixels in (d) are unclassified pixels. 
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Before image acquisition, a background spectrum was 

recorded on a clean surface of the CaF2 window and 

automatically removed from the tissue spectrum for each pixel 

using the Spectrum Image Software (Perkin Elmer, Waltham, 

MA, USA). During acquisition, the sample was placed in a 

chamber purged with dry air. In addition, atmospheric 

correction of water vapor and CO2 was applied using Spectrum 

Image Software. Images preprocessing was carried out using 

internal algorithms written in Matlab (the Mathworks, Natick, 

MA, USA). An extended multiplicative signal corrections 

(EMSC) model was used to eliminate outlier spectra, correct 

scattering effects, and normalize spectra, with the target being 

the average of all spectra.26 

2.6 Segmentation of IR spectroscopy images 

K-means clustering 27 was applied to FTIR images to group the 

spectra according to their spectral similarity in 6 clusters. In 

order to visualize the k-means clustering image, different 

colors were assigned to each class and we obtained a 

reconstruction of the spectral image (figure 1d). The 6 spectral 

classes corresponded to histological structures slightly 

different from the 6 histological classes fixed from the HE 

stained images; these spectral classes are cancer cells type 1, 

cancer cells type 2, mucus secretion, necrosis, immune cells 

and stroma (figure 1f). Cancer cells type 1 might correspond to 

a mucinous carcinoma as they had a spectral signature close to 

mucus secretion and were mainly found in the histological cut 

of a single patient. 

Figure 2 shows the IR absorbance spectra of the centroids of 

the different classes, with peaks at 968 cm-1(N+-CH3), 1083 

cm-1 (symmetric PO2-), 1235 cm-1 (asymmetric PO2-), 1390 

cm-1 (CH3), 1455 cm-1 (CH2), 1540 cm-1 (amide II), 1650 cm-1 

(amide I). Differences in intensity could be observed mainly at 

1083 cm-1, related to the proportion of DNA, and at 1650 cm-

1 related to the proportion of protein and their conformation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  FT-IR spectra of the centroids of the different classes determined by k-means. 

The colors of the lines correspond to those in figure 1f. 

 

2.7 CNN for HE stained images analysis 

To highlight the existence of a statistical correlation between 

HE images and the treatment efficacy, evaluated by the PFS, a 

CNN was used. Several images were associated with each 

patient, but to evaluate the model, a separation between 

training and test sets had to be done at the patient level. 

Otherwise, the presence of different images of the same 

patient in both sets would overestimate the model's ability to 

generalize to an unknown patient. As the number of patients 

was small, eliminating several patients for training would have 

had a major impact on model training, so we opted to leave-

one-patient out validation. Consequently, all but one of the 

patients were used for training, and the last was used for 

validation. By changing the left-out patient, the model was 

evaluated on all patients, making the evaluation more robust. 

The evaluation criterion was the root mean square error 

(RMSE) of the PFS prediction. Image processing parameters 

values presented below were found by empiric optimization. 

They will be discussed in the "Results and Discussion” section. 

As the full spatial resolution was not necessary to measure 

general histological features and affects greatly the calculation 

time for training the CNN, we tried to down sample images, 

eventually by a factor of 27. Then, images were cut into 

squares, a more appropriate shape for CNN.  

The choice of the size of the squares was a compromise 

between a larger number of small squares to train the 

network, and larger squares to be more representative of the 

tissue architecture. The selected size was 45 x 45 pixels, 

corresponding to 1160 x 1160 µm2. Between 2 and 32 squares 

were extracted from each cut. To avoid too much imbalance 

between the patients in the training set, the number of 

squares was limited to a maximum of 4 by cut, with a random 

selection. Segmented squares were then reshaped into stacks 

of binary images, one for each class. Rather than keeping all 

the classes in the next processing step, we tried to select only 

some of them. Better RMSE was obtained when selecting only 

the two classes corresponding to immune cells and stroma.  

Finally, a CNN was trained from the binary squares, with a 

leave-one-patient out validation scheme. Training data was 

augmented by adding 7 copies of each image, rotated (90°, 

180°, 270°) or flipped and rotated (0°, 90°, 180°, 270°). The 

CNN was build using Keras API, whose architecture is 

presented in figure 3a. The input layer consisted in two 

(stroma and immune cells) 45x45 images. Then followed 3 

repetitions of i) a 2D convolutional layer with 16 neurons, a 

kernel of 2x2 and a softplus activation function, ii) a batch 

normalization28 and iii) a max pooling layer with a kernel of 

2x2. The resulting outputs were flattened, a dropout of 20% 

was applied during training and a final batch normalization 

was applied. Finally, a linear regression was performed on the 

outputs to predict the PFS. 
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Then followed 3 repetitions of i) a 2D convolutional layer with 

16 neurons, a kernel of 2x2 and a softplus activation function, 

ii) a batch normalization28 and iii) a max pooling layer with a 

kernel of 2x2. The resulting outputs were flattened, a dropout 

of 20% was applied during training and a final batch 

normalization was applied. Finally, a linear regression was 

performed on the outputs to predict the PFS. Briefly, 

convolutional layers allow to extract morphological features of 

the input images by applying convolution filters. Max pooling 

layers allow both the concentration of information and a 

change of scale for the search for features. Batch 

normalization normalizes the output values of the layer, to 

speed up the learning process. Dropout allows 20% of the 

neurons to be deactivated (weight =0) randomly at each batch 

during the training, to make the model less sensitive to noise. 

For more details on CNN, we refer the reader to work of LeCun 

et al.29 In the training process, the entire training set was 

presented to the network 900 times (number of epochs). 

2.8 CNN for IR spectroscopy images analysis 

Similar processing was done for the analysis of IR spectroscopy 

images segmented by k-means clustering. Using a leave-one-

patient out validation, with the criterion of the RMSE on PFS, a 

slightly different CNN was built. The segmented images were 

cut into squares of 63x63 pixels. Selected areas did not include 

borders of the cuts (margin of approximately 150 µm), as they 

were more likely to be damaged during sectioning. For each 

cut, two squares were extracted. Segmented squared were 

then reshaped into stacks of binary images, one for each class. 

K-means clustering allows to identify structures, but the 

information about variation inside classes is lost. To consider 

this spectral variability, the k-means binary images were 

modulated by a score calculated as follows. A principal 

component analysis (PCA) was calculated class by class, then 

the score of each pixel according to the first component of its 

class was extracted. The PCA scores were centered and 

reduced, then limited to the interval ]-0.5, +0.5[ to avoid 

extreme scores. The binary images were modulated by this 

score by multiplying them by (1-2*scores). Thus, the pixels out 

of class (0) remain at 0 and the pixels of the class took a value 

strictly higher than 0 and lower than 2. The intensity of each 

pixel positioned it within its class. This process was done for all 

classes except for the class of unclassified pixels. Figure 4 

shows an example of the result obtained. The addition of the 

intra-class spectral variability improved the prediction given by 

the CNN. 

 

 

Fig. 4 Example of spectral images obtained from k-means segmentation, then 

modulation by PCA scores. The central image represents the k-means segmentation, 

with the corresponding classes label below. Then, for each class (number in the top left 

corner), a PCA was calculated, and the intensity of pixels was modulated according 

their PCA score.   

Fig.3 CNN architecture used for HE images analysis (a) and for IR images analysis (b). Abbreviations: 2D convolutional layer 

(Conv2D), batch normalization (BN), max pool (MP). 
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Like for HE, classes to be included in the processing step were 

selected. Better RMSE was obtained when selecting only the 

class corresponding to unclassified pixels, immune cells and 

stroma. Finally, a CNN was trained from the squares, with a 

leave-one-patient out validation scheme, using data 

augmentation as described above. Architecture of the CNN is 

presented in figure 3b. The input layer consisted in three 

(unclassified, immune cells, and stroma) 63x63 images. 

Then followed 3 repetitions of i) a 2D convolutional layer with 

16 neurons, a kernel of 3x3 then 2x2, and 2x2 and a “softplus” 

activation function, ii) a batch normalization28 and iii) a max 

pooling layer with a kernel of 3x3 then 2x2, and 2x2. The 

resulting outputs were flattened, a dropout of 20% was 

applied during training and a final batch normalization was 

applied. Finally, a linear regression was performed on the 

outputs to predict the PFS. The CNN was trained for about 530 

epochs. 

2.9 Fusion of HE and IR CNN 

Once the two CNN were trained separately, we fuse them to 

test whether the combined information of HE staining and IR 

spectroscopy would improve the prediction of the PFS 

prediction. The two CNNs were combined at the last layer level 

(concatenation of flatten layers) allowing the extraction of 

features to be specific to each modality. The resulting CNN 

could have been trained from scratch, in the same way as the 

two separate networks. However, it would have twice as many 

parameters, without the possibility to increase accordingly the 

number of images to train on. As an alternative, the already 

trained HE and IR CNN were used, and only the last layer 

(linear regression) was trained. This resulted in a faster 

training (100 epochs) as compared to two previous training 

from scratch (900 and 530 epochs). The number of squares per 

patient was set to two for each modality, meaning part of the 

HE squares were not considered here. Note that HE and IR 

squares did not necessarily correspond to the same areas of 

the histological cuts. 

3. Results and discussion 

3.1 Segmentation of HE images 

Visual segmentation in histology requires an anatomical 

pathologist and is time consuming. To automate this step, we 

applied a segmentation model, trained to recognize the 

different tissue structures, previously identified by a 

pathologist. Figure 5 presents the resulting confusion matrix, 

and table 2 presents the corresponding overall and class by 

class accuracies. Segmentation parameters were adjusted so 

that the average class by class accuracy was maximized, rather 

than the overall accuracy. This choice aimed at having the best 

prediction for each class, and not just for the most 

represented classes.  

Many recent studies have shown promising results using 

automated segmentation in the case of CRC.30–32 Our goal here 

was not to develop a competitive classifier for histology 

recognition, but to have a quick approach for labelling entire 

surfaces of the HE images, as manual segmentation can be 

time consuming. For a review of current methods of 

segmentation of HE stained histological, we refer the reader to 

Wang et al.33 and Bankhead et al.34 The most difficult 

distinction seemed to be between cancer and cryptic cells. As 

showed in figure 5 and table 2, we obtained sufficiently 

satisfactory results to be used in the further analysis.  

3.2 Deep learning for PFS prediction from HE and IR images 

The CNNs described in figure 3 were applied on HE (figure 3a) 

and IR images (figure 3b). Using a leave-one-patient out 

validation, prediction for each patient when leaved out was 

obtained. Histological sections of each patient were divided 

into several sub-images, leading to the corresponding number 

of PFS predictions (see table S1 and S2 in Supporting 

Information for results detailed for each patient and each 

section). Figure 6 shows the median (square) and standard 

deviation (bar) of these values, for HE (a) and IR (b) modalities. 

 

Fig. 5 Confusion matrix of the segmentation method tested on labelled pixels. 

Table 2 Overall and class by class accuracies of the segmentation. 

 

 

 

 

 

 

 

 

 

Class Accuracy 

Cancerous cells 97.6 % 
Immune cells 99.5 % 
Necrosis  87.1 % 
Non-cancerous cryptic cells 81.2 % 
Glandular lumen 95.2 % 
Stroma  95.6 % 
Mean 92.7 % 
Overall 96.0 % 
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The RMSE obtained over all patients was of 6.6 and 6.3 months 

(28% and 26% of the average PFS) for standard HE staining and 

IR imaging respectively. Short PFS are overestimated, while 

long PFS are underestimated. This bias is known as regression 

dilution and is due to real PFS measurement uncertainties.35  

We then applied a CNN taking as input both HE stained and IR 

spectroscopy images simultaneously (see table S3 in 

Supporting Information for results detailed for each patient 

and each cut). Figure 6c shows the median (square) and 

standard deviation (bar) of these values. The RMSE obtained 

over all patients was of 5.0 months (21% of the average PFS).  

Several tests were carried out on the parameters of the 

processing sequence. These parameters affect the prediction 

output, but the values retained also provide information on 

the characteristics on which the prediction is based.  

HE images were down sampled with a factor of 27. This 

indicates that small details of the cuts are not relevant for the 

prediction, and thus only the global features of the different 

classes were taken into account. However, it could come from 

the segmentation step, which was performed at a limited 

resolution (26 µm). In that case, small details, such the shape 

of cancerous cells, could provide some information regarding 

the state of the cancer. The size of the square sub-images was 

chosen as the largest possible for both for HE and IR 

modalities. This suggests that having large images, 

representative of the whole cut, is more important that having 

many small images for CNN training.  

Fig. 6 PFS predicted by the CNN on HE images (a), IR images (b), and both (c) as a 

function of the real PFS. Error bars correspond to the standard deviation of the 

predictions made on the different sub-images of a single patient. 

When selecting the most relevant classes, immune cells and 

stroma were selected for both HE and IR modalities. It 

suggests that CNN correlates the PFS with the presence of 

immune cells in the stroma. And indeed, a visual examination 

of the sections allows to observe a correlation between the 

number of immune cells and the PFS. This is consistent with 

the literature saying that inflammation of the stroma is linked 

with better prognosis.36 Also, larger percentage of stroma in 

tumor have been showed to be associated with worse 

prognosis, with higher tumor growth and invasion.37 Previous 

work by Kather et al. also underline the importance of the 

stroma in the prognostic score.38 Jones et al have also shown, 

thanks to machine learning algorithms, the importance of the 

composition of the tumor stroma and inflammation in the 

evaluation of the risk of recurrence from HE sections.39 Other 

studies show the important impact on the prognosis of certain 

markers related to inflammation40,41, these markers can also be 

linked to the TNM score for more precision.42  

We noted an interesting difference in the segmentation of the 

'immune cells' class, between IR and HE images. For the HE 

images, this class is mainly composed of local clusters of 

immune cells. But for the k-means images, the class also takes 

into account areas of inflammatory stroma. This difference 

could explain why the HE model seems to have an increased 

variability in its predictions (figure 6a and table S1 and S2). 

Indeed, the prediction is based on the detection of a small 

number of clusters, more susceptible to variations from one 

sub-image to another.  

To determine the architecture of CNNs, we started with the 

standard combination of a convolution layer, followed by 

batch normalization and a max pooling layer.20 This 

combination was repeated a few times to allow working at 

different scales on the images, using max pooling. As the 

number of samples was limited, the total number of trainable 

parameters was limited to a few thousands, by taking a simple 

2x2 kernel for the convolutions and adjusting the number of 

layers to end up with a few hundred features before the final 

regression. Exact values of parameters were then tuned 

empirically. 

CNN used for the two modalities were close, although 

different architectures were tested separately. Likewise, the 

selected classes were close, leading mainly to the same 

information: the inflammation of the stroma. The fact that the 

same feature could be found from two different modalities, 

segmentation and optimization of the processing sequence 

tends to show that the method is robust. The prediction 

obtained with the fusion CNN was better, but not by much. 

This result is coherent with the hypothesis that the two 

separate methods identify similar features. The increase in 

precision could also partly come from the two modalities 

imaging different areas of the histological cuts. As so, the 

combined information is more representative than for single 
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modalities. Indeed, the representativeness of the sub-pictures 

had a strong impact on the RMSE. 

While the number of patients is limited, partly due to 

restricted inclusion conditions to limit the impact of 

confounding factors, RMSE obtained were relatively low. This 

number should be compared to the precision of the real PFS 

measurement. Progression is usually checked upon every two 

months during a check-up scanner. This means that the 

confidence interval of real PFS is at least of 2 months. With 

more patients included, it would be possible to increase the 

depth of the network, allowing more subtle features to be 

extracted, and obtain lower errors.  

4. Conclusions 

As a pilot study, the present results suggest the possibility of 

anticancer treatment efficacy prediction with an acceptable 

accuracy. Standard histopathology (HE) and spectral 

histopathology can extract information correlated with 

treatment response, including stromal inflammation, from 

histological sections. The accuracy of the deep learning model 

is better when based on both modalities jointly. The 

modulation of k-means clustering by PCA scores allows to take 

into account spectral variability within the same stromal 

structure, which improves the accuracy. Other approaches to 

take advantage of the richness of the spectral information will 

be tested in further investigations. To obtain more robust 

results, it would be important to find new samples and confirm 

these promising results on a larger number of patients. 

Overall, the present study illustrates the interest of new 

numerical methods, especially from recent developments in 

neural networks, in the field of spectroscopy and histology. It 

also contributes to the improvement of prognostic methods to 

better personalized therapy for cancer patients. 
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