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Abstract

Random graph and tree are two topologies used to build
overlay networks. These overlay networks may be used by
large scale discovery mechanisms to run search algorithms.
The Distributed Spanning Tree (DST) is another topology
that may be used as overlay. In a DST, every computer is
a leaf. DST’s non-leaf nodes are sets of computers instead
of computers. Thus, it allows the use of tree traversal algo-
rithms while avoiding the usual tree’s bottlenecks. As a re-
sult, the DST allows more efficient executions of search al-
gorithms in term of number of sent messages and in term
of load balancing. In this paper, we describe the results of
several simulations of flooding algorithm executions. These
simulations are run on the three previous topologies and
for different numbers of nodes. These simulations indicate
that the DST structure is more efficient than graph topology
which, in turn, is more efficient than tree topology in term
of traversal speed and in term of supported load for every
simulated scale. We study as well the behaviour of the DST
when nodes are added or deleted to show that the struc-
ture is adapted to dynamic environments.

1. Introduction

Grid middleware allows resources sharing between sev-
eral entities. These resources consist into a wide variety of
hardware, data and software. As the size of Grid deploy-
ments increases, finding the resource that is needed by a
user becomes an issue. To solve this issue, peer-to-peer sys-
tems are an inspiration source for Grid middleware because
they propose several scalable search mechanisms [8]. These
mechanisms could be classified into two categories [9].

The first category is composed by mechanisms based on
a directory. Each resource has to register itself by specify-
ing its name and its location to be visible. Then, clients can
find this resource by giving the corresponding name to the
directory. Distributed Hash Tables are a good example of di-
rectories based peer-to-peer search mechanisms.

The second category is composed by mechanisms based
on flooding algorithms. Information on resources are stored
on each computer participating to the peer-to-peer system.
The computers are connected together to form a communi-
cation graph, also called overlay network. When a peer, a
node of the graph, is looking for some information that it
does not already have, it asks its adjacent nodes for the in-
formation. If they do not own it, these nodes forward the
request to their adjacent nodes, and so on until the informa-
tion is found or until a specified maximum number of hops
is reached (usually called Time To Leave or TTL).

The performances of flooding algorithms depend on
many factors. One of them is the topology of the com-
munication graph. The tree is an interesting topology
because its complexity in number of exchanged mes-
sages is optimum as it directly depends on the num-
ber of nodes. But searches on trees generate bottlenecks
when the load of the system increases. So flooding algo-
rithms are run most of the time on pseudo-random graphs
although their complexity in term of number of mes-
sages is higher.

To improve the performances of flooding algorithms, we
propose a new way to build a tree which does not have the
usual tree’s bottlenecks. This original structure, called Dis-
tributing Spanning Tree (DST), has already been described
from a theoretical point of view in two previous publica-
tions [1, 3]. But no study about how it behaves in practise
has been made public. The purpose of this paper is to share
pertinent results and comments about simulations that were
made to study the performances of flooding algorithms us-
ing a DST structure. These performances are compared with
two others topologies: pseudo-random graphs and trees.

Simulations have been used numerous times to study
performance of flooding algorithms in various contexts. For
example, G. Fletcher and H. Sheth [5] compare search on a
CAN distributed hash table, on a random graph and on a
Pandurangan Graph to evaluate their efficiency . L. Qin et
Al. [10] wrote a comparative study about performances and
supported load of various random-graph topologies and var-
ious resources distribution. Beside simulations, some peo-
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ple, like R. Gaeta et Al. [6], also propose analytical model
for those search algorithms on random graphs.

The article is organised the following way. The DST is
shortly presented in section 2. We study the cost in term of
messages when nodes arrive or leave the DST in section 3.
The performances comparisons are conducted on a simu-
lator described in 4. The simulations results are discussed
in section 5 and exhibit the interest of the DST structure for
search algorithms. Then, we conclude on the use of the DST
structure in several distributed contexts.

2. The DST Structure

The DST structure is designed to correct the drawbacks
of trees and random graphs in large scale overlay networks.

The DST is a virtual tree which covers the whole set
of computers — spanning — and where nodes are dis-
tributed across several computers to avoid bottlenecks. A
DST is similar to a B-Tree [7]: it is composed of several
levels. All leaves belong to the same level, each non-leaf
node has a limit number of sons and the root, if it is not a
leaf, has at least two sons. The level 0 contains the leaves of
the tree. The level 1’s nodes are complete graphs of leaves,
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Figure 1: Level 1’s nodes of a DST

Fig. 1 presents 3 nodes of level 1 and 8 leaves. Upper lev-
els of a DST are structured the following way: any node of
level n+1 is a complete graph of its children which are nodes
of level n. The Fig. 2 is an example of a level 2’s node.

231211

212
213

222 221

232

233

21

22

23

2

Figure 2: Level 2’s nodes of a DST

By definition, a DST’s node is distributed through its de-
scendants. Thus, a DST’s node is distributed through the
computers that are leaves of the node’s subtree. To imple-
ment a node of level n with n>2 we connect each computer
of this node to at least one computer of each children of the
node as shown in Fig. 3. Thus, any computer of a node can
send a message to every children of this node via the com-
puters that are inside these children.

Using this construction, each node generates its own
“routing table”. The routing table of one node has as many
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Figure 3: Links that implement a complete graph of graphs.

entries as levels in the DST and each entry contains a link
to a computer that resides inside each brother nodes. On
Fig. 3, if node 2 wants to broadcast a message to its de-
scendant, it will send a message to node 21, node 22 and
node 23. If, the process that initiates the broadcast is lo-
cated in node 213, it will send its message to the process of
node 21 located in node 213, to the process of node 22 lo-
cated in node 221 and to the process of node 23 located in
node 232. Then, node 21, node 22 and node 23 forward the
message to their children using their complete graph.

This quick explanation of the DST’s structure provides
enough information to understand that a DST is a tree where
non-leaf nodes are complete graphs of their children. By re-
cursively creating complete graphs, we are able to distribute
non-leaf nodes between their children and create a spanning
tree per node. As every computer acts as a node of differ-
ent levels, it is possible to share the load of these levels be-
tween several and thus avoid the usual tree’s bottlenecks.
For more information about the DST structure and details
on construction algorithms, a complete description of the
DST structure is available in [3].

3. The DST management

The DST has an incremental structure : we add and we
delete nodes as participants come or leave the DST. To be
a DST member, a node must know another node which is
already in the DST. We study here the cost of adding and
deleting nodes from the DST. We also introduce the notion
of limits with an inferior and superior limit which apply to
the size of a node. If a node is too small (under the inferior
limit) it should be merged, it should be split if it is too big
(above the superior limit).

3.1. Cost of adding nodes

Figures 4 and 5 show the number of messages for a 4
and a 8 levels DST. The abscissa indicates the number of
messages necessary to add a node and the ordered indi-
cates the number of nodes that has generated this number
of messages (two nodes can generate the same number of
messages). In this figure, each peak matches with the split
of a higher level node. If the node is high in the hierarchy
then more nodes will be affected by the splitting which im-
plies an important number of messages. These figures in-
dicate that the number of messages needed to split a node

2



Number of messages

N
um

be
r 

of
 c

as
es

 1

 10

 100

 100  1000  10000

Figure 4: Number of messages with 4 levels.
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Figure 5: Number of messages with 8 levels.

grows exponentially with the level of the node. Besides, the
number of splits for a node decrease logarithmically with its
level in the DST.

Thus, we have a lot of splits into first levels, those are
costless in comparison with higher level splits which are far
more seldom. In this simulation we have a relation of ten
between both.

3.2. Cost of deleting a node

We study here the impact of different factors coming
from the departure of a node.

Impact of the area where the node is deleted We test the
DST behaviour when nodes leave in a restricted area. For
those simulations we use a DST with 50 nodes in which
we delete 30 nodes. The inferior and superior limits for the
nodes size are respectively 2 and 4. First we delete node ran-
domly from the DST. This result will be the witness. Then,
we focus on a restricted area. We ran 20 simulations for both
situations and note the total number of messages needed for
all deletes. Both curves are shown on figure 6 (a). The aver-
age cost of random deleting is 1374 messages for 30 leav-
ing nodes. When deleting in a restricted area the cost is 1555
messages for the same number of leaving nodes. The prob-
ability of merging nodes is higher when deleting from the
same area. The merging operation has an important cost,
that explain this result. Thus a good merging algorithm is
paramount. We focus on the reorganisation cost in the next
paragraph.

Reorganisation cost We use a DST with the smallest pos-
sible limits (2 and 4). We create a DST with 90 nodes and
5 levels. We delete 88 nodes so that we can study all the
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(a) Deleting into different areas.
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Figure 6: Cost study of deleting.

steps of merges. The results are given on figure 6 (b). We ob-
serve peak for series 2 and 3 just before the tenth delete.
This peak corresponds to the merging operation that implies
the delete of the level 5. All peaks are due to reorganisation.
The peaks are very pronounced because after a reorganisa-
tion the DST is well balanced.

Average cost of deleting. During our simulation we observe
a linear increase of the number of messages in function of
the level. Note that, in the studied case we initiate a very
fragile DST with limits of 2 and 4. Thus, by studying the
worst case we have the worst behaviour.

4. Description of the Simulations

The simulations presented in section 5 use two algo-
rithms. The first is a TTL-based flooding algorithm that is
used with the graph and tree topologies [4]. The second use
the DST structure to run a traversal with similar properties.
Fig. 7 illustrates the four steps of the execution of this algo-
rithm on a DST of height 3. The request is initiated by the
gray node on step 1. Then it broadcasts the request in the
subtrees of level 1 on step 2, level 2 on step 3 and level 3 on
step 4. Complete algorithms are given in [2].
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Figure 7: Example of a DST’s traversal
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Our first idea was to simulate and study the DST behav-
ior on the Internet. However, experiences on Internet can-
not be reproduced as the simulation conditions cannot be
two times the same. Thus, we restrict to a model where
all computers have one link, an access to every other com-
puter through a central router and the bandwidth is limited.
This model is not far from a realistic Internet model if we
consider different bandwidth for different links and FIFO
queues that assure that there is no more than one message
in a link at any time. This way, we can mesure the impact
of different factors on the execution performances.

Exact details of the simulations can be found by down-
loading the simulator 1. We perform simulations for popu-
lations of 10, 100, 1 000 and 10 000 peers to study the be-
haviour of the algorithms when the overlay network scales
up.

For all topologies the TTL is set to 10. Hundred dif-
ferent types of resources are available, and each computer
has a probability of 10 % to own a resource for each type.
Each search request stops either when it finds a node with
the requested resource, when the TTL is reached or when
the whole structure is traversed. However, we noticed that
a maximum depth of four is generaly enough to find a re-
source whith this probability to find the resource.

About the overlay topologies characteristics, trees are
bidirectional and their arity is 5. Graphs are also bidirec-
tional, connected and the degree of each node is 5. Finally
the DST is made in a way that each node has 5 children.
These degrees were chosen because they show the best per-
formances in our simulations. More precisely, we ran few
tests at various scales to find these optimal degrees. Then,
we used them for all our simulations by considering that
these degrees are always optimal in our experiments. How-
ever, these values depend on the links throughput and the
probability to find a service. Changing one of these param-
eters implies that the chosen degrees would not longer be
optimal.

5. Discussion about the simulation results

In this section, we discuss the results obtained by the
simulations. For each simulated overlay network, we com-
pare the performances of the three tested topologies. The
two performance criteria that we are interested about in this
article are the average time taken to process a search and its
variation depending on the average load of the system. The
system load is defined by the requests arrival rate or fre-
quency: the number of queries that are initiated per second
for the whole network. In the last section, we explain how
the three topologies scale up.

1 http://lifc.univ-fconte.fr/∼philippe/pub/simulator-12-06.tar.gz

5.1. 10 peers overlay networks

The simulations results for 10 peers overlay networks are
displayed in Fig. 8. The simulations show that the average
time needed to process a request depends on the requests ar-
rival rate. This is an ordinary observation. When the num-
ber of initiated requests grows, the system becomes more
and more loaded and messages spend more time in a wait-
ing queue before being sent.
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Figure 8: Performances for 10 peers networks

When the number of requests that enter the system be-
comes higher than the number of requests that leave it, the
system becomes saturated. This saturation is easily identifi-
able for the DST on Fig. 8: the average time needed to pro-
cess a request grows slowly for frequencies from 1 req.s-1

to a frequency of 150 req.s-1 ; but it grows very quickly for
frequencies greater than 200 req.s-1. On the other hand, the
graph and the tree become very quickly saturated.

For a 10 peers overlay network, the simulations tell us
that graphs and trees have similar performances. This is in-
teresting because we expected to get better performances
with the graph in term of time used to process a request
when the system is not loaded (0.1 req.s-1) as explained in
section 5.2. The more plausible explanation of this result is
that some requests completely traverse the graph as no re-
source is found (we only have 10% of chance to find a re-
source on each peer and we only have 10 peers). So, these
requests need an additional round to check that no other
peers can be contacted. This is the final round where lots of
messages are sent to traverse both ways the latest links, not
marked as flooded, although no untraversed peer remains.
Due to this additional round, the traversal depends on the
number of links rather than on the number of nodes and af-
fects the global average search time.

Studies of individual load of peers also explain why the
tree and the graph become saturated on a similar way: bot-
tlenecks of both topologies have to support similar load.
This can be explained by the fact that the tree has few bot-
tlenecks that send an average of, say x̄ messages. With the
graph traversal every peer also sends an average of x̄ mes-
sages, as the number of messages depends on the number of
links. Because every peer has the same bandwidth, and be-
cause the topologies performances are limited by their bot-
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tlenecks, both topologies become overloaded in a similar
way at this scale. The DST has the best behaviour for these
simulations. Because a DST is based on trees, a search re-
quest only needs 2.n messages to query n peers, which is
less than the graph. But because it distributes the load of
father nodes between its children, it does not suffer from
the tree bottlenecks. Thus, the DST can support much more
load than the other topologies at a scale of 10 peers. Note
that the DST also generates a lower search time than the tree
when the system is not loaded.

5.2. 100 peers overlay networks

Fig. 9 presents the simulations results for 100 peers. Like
before, the three topologies saturate when the query arrival
rate becomes too high. From the simulations, it is clear that
the tree has the worst performances in term of supported
load. 100 req.s-1 is enough to overload trees while graphs
and DST start to overload for a frequency of 700 req.s-1.
Before reaching this point, the average search time grows
slightly with the average load of the system.
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Figure 9: Performances for 100 peers networks

Graphs performances are roughly similar to the DST
ones in term of supported load and average search time. Be-
cause each search needs to query a small part of the graph,
few links are traversed to access already contacted peers.
Thus, few peers are contacted twice by the same request
and the number of exchanged messages is, in a wide ap-
proximation, roughly similar to the tree’s one. It depends
on the number of nodes rather than on the number of links.
For this reason, as graphs inherently distributes their load
between their peers and as a DST is a tree that distributes
the father’s nodes load between its descendants, the perfor-
mances of both graphs and DST are approximately similar
in term of average query time and supported load.

We observed that tree topologies have a higher average
search time than graphs even when the average load is very
low. This is counter-intuitive if we think that the average
query time only depends on the number of exchanged mes-
sages and that the tree based traversal generates an opti-
mal number of messages. In a balanced tree with an ar-
ity of 5, there are lot more leaves than non-leaf nodes.
Because every peer has the same probability to initiate a

search, the majority of searches are initiated by leaf nodes.
These searches are not efficient because the first step of a
search only queries one peer, its father, when the same step
queries 5 peers in a graph or in a DST. At the second step the
tree queries 5 peers when the graph or the DST can query
25 peers. Further, the tree behaves as if it always has one
round late compared to the two other topologies, because
tree leaves have one more hop to cross when they issue a
search request. Being one round behind the other topolo-
gies is translated by a higher latency which explains why
the average search time of the tree is more important than
the two others even when the system is under light load.

Same simulation were made for 1 000 and 10 000 peers
overlay networks. Results shown the same type of curves.
For 1 000 peers, a load of 300 req.s-1 is enough to satu-
rate the tree and it starts to overload around 1 000 req.s-1

for 10 000. Graphs and DST start to overload around
8 000 req.s-1with 1 000 peers and support at least a load
of 40 000 req.s-1with 10 000. Before overloading, the av-
erage search time of DSTs and graphs grows slowly when
the load increases and it linearly depends on the load.

5.3. Scalability of the three topologies

Until now, we have discussed the performances for each
scale separately. Here we present how the number of peers
affects the performances of each topologies. For Fig. 8 and
Fig. 9, we note that adding new peers always allows to in-
crease the performances in term of supported load. But, de-
pending on the topology, the supported load per node may
decrease. For the tree topology, 40 req.s-1 saturate a tree of
10 peers, 100 req.s-1 saturate a tree of 100 peers, 300 req.s-1

saturate a tree of 1 000 peers and 1 000 req.s-1 saturate a
tree of 10 000 peers. This is not very efficient because mul-
tiplying the number of peers by 100 (from 100 peers to
10 000 peers) only multiplies the supported load by a fac-
tor 10 (from 100 req.s-1 to 1 000 req.s-1). We can conclude
that the tree topology does not scale and the reason is clearly
the bottlenecks generated by non-leaf nodes. The DST has
a good scalability. The supported load grows linearly with
the number of peers: 150 req.s-1 for 10 peers, 700 req.s-1

for 100 peers, 8 000 req.s-1 for 1 000 peers and more than
40 000 req.s-1 for 10 000 peers. When the system is not sat-
urated, the performances, in term of average search time,
are stable: it varies from 25 ms to 75 ms whatever the num-
ber of peers is. A performance of 150 req.s-1 on 10 peers
for a DST seems to be inconsistent with the performance of
700 req.s-1 for 100 peers, but this is normal. There is only
10 peers, so two steps searches only contact 10 peers when
the same search contact 25 peers in a 100 peers DST. Less
peers contacted means less messages generated and implies
that the overlay networks supports mode load. The scalabil-
ity of the graph is similar to the DST’s one except for small
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scale where it is worst. This similarity comes from the fact
that both topologies behave in a similar way when the prob-
ability to find a resource on each peer is fixed (10 % in our
simulation) and that the number of peers is high enough. If
the scale is too small, then queries contact several times the
same peers and graphs perform badly.
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Figure 10: Performances for 1 000 peers networks when no
resources are available

However, if the probability to find a resource is low
enough that peers receive a query several time, then graphs’
performances cannot cope with the DSTs’ ones. Fig. 10
presents the performances of graphs and DSTs of 1 000
computers when the probability to find a resource is 0 %.
In this case, the DST’s performances are better than the
graph’s ones because a DST sends fewer messages and dis-
tributes fairly its load between computers. Note that a fre-
quency of 1 request every 5 seconds is enough to satu-
rate a DST of 1 000 computers. This is normal as TTL-
based flooding algorithms, which generate several waves of
search, are not efficient for this kind of applications. A di-
rectory, like a DHT, should be used instead.

Other simulations on influence of service population and
load balancing were run in [2].

6. Conclusion

If the performances of search algorithms only depend on
the number of messages generated by a search request then,
in theory, these algorithms are more efficient on a tree than
on a graph. But, taking into account bottlenecks, graphs are
more resistant than trees.

The Distributed Spanning Tree (DST) is a tree based
structure that connects a set of computers while distributing
the load of parent nodes between their children. This struc-
ture is in theory better suited to run flooding based search al-
gorithms than trees and graphs topologies. It is designed to
send an optimal number of messages like a tree without suf-
fering from topological bottlenecks. The simulations pre-
sented in the paper confirm the interest of this approach and
the DST always has better performances in term of average
search time and supported load. Moreover, we found that,
thanks to the DST structure, the implementation of traver-
sal algorithms is simpler for the DST than for graphs.

As these results are encouraging, we are currently work-
ing on the dynamics of the structure. We already designed
the algorithms to dynamically construct and manage a DST.
Simulations are carried out to observe the evolution and ro-
bustness of the DST in a context of short lived peers. We
will focus on that point for further works.
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