

Computing the Degree of Contextuality of Various Finite Quantum Geometries

Quantum days at AMU, EPiQ WP2 workshop, CIRM, Marseille, 20 September 2023

Axel Muller¹, joint work with Alain Giorgetti¹, Metod Saniga², Henri de Boutray³ and Frédéric Holweck^{4,5}

¹ Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
 ² Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranska Lomnica, Slovakia
 ³ ColibrITD, Paris, France
 ⁴ ICB, UMR 6303, CNRS, University of Technology of Belfort-Montbéliard, UTBM, 90010 Belfort, France

⁵Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

- 1. Background
- 2. Properties of multi-qubit doilies
- 3. Contextuality of quantum configurations with a SAT solver

1. Background

- 2. Properties of multi-qubit doilies
- 3. Contextuality of quantum configurations with a SAT solver

Single qubit measurement

Measurement of $|q\rangle = a|0\rangle + b|1\rangle$ in the basis ($|0\rangle$, $|1\rangle$)

$$|q\rangle = \begin{pmatrix} a \\ b \end{pmatrix} \xrightarrow{|a|^2} |0\rangle \longrightarrow +1$$

 $|b|^2 \mid 1\rangle \longrightarrow -1$

encoded by the third Pauli matrix $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$\begin{array}{ccc} \text{eigenvalues} & +1 & -1 \\ \text{eigenvectors} & |0\rangle & |1\rangle \end{array}$$

Pauli group

Pauli matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$X \text{ measures in the } \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \text{ basis}$$

$$Y \text{ measures in the } \left(\frac{|0\rangle+i|1\rangle}{\sqrt{2}}, \frac{|0\rangle-i|1\rangle}{\sqrt{2}}\right) \text{ basis}$$

$$\frac{\cdot |I X Y Z}{I |I X Y Z}$$

$$\frac{X |X I | iZ - iY}{Y |Y - iZ |I | iX}$$

$$Z |Z | iY - iX |I$$
Pauli group
$$P = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}, .)$$

$$X.I = I.X$$

$$X = iX \text{ and } Z.Y = -iX, \text{ so } Y.Z = -Z.Y$$

Generalized Pauli group

N-qubit Pauli operator $G_1 G_2 \cdots G_N$, with $G_i \in \{I, X, Y, Z\}$ generalized Pauli group $\mathcal{P}_N = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}^N, .)$ commuting pairYX.ZZ = (Y.Z)(X.Z) = (iX)(-iY) = XYZZ.YX = (Z.Y)(Z.X) = (-iX)(iY) = XYanticommuting pairXY.IZ = (X.I)(Y.Z) = iXXIZ.XY = (I.X)(Z.Y) = -iXX

Mutually commuting multi-qubit Pauli operators are compatible observables

Contextuality : The Kochen-Specker theorem

No non-contextual hidden-variable theory can reproduce the outcomes predicted by quantum physics¹

Without loss of generality, a non-contextual hidden-variable (NCHV) theory admits the existence of a function $v : \mathcal{P}_N \rightarrow \{-1, 1\}$ that determines (as v(M)) the result of any measurement with the multi-qubit Pauli observable *M* (among its two eigenvalues -1 and 1) independently of former measurements, even when they are compatible (commuting)

¹Kochen, Simon and Specker, Ernst. "The Problem of Hidden Variables in Quantum Mechanics". *Indiana Univ. Math. J.*. 1968.

The Mermin-Peres magic square

Finite geometry with 9 points and 6 lines

- Each point is an observable
- Each line is a measurement context

 $(1)I \otimes I \qquad (1)I \otimes I \qquad (-1)(I \otimes I)$

This geometry is *contextual*: no point valuation with -1 or +1 satisfies all context values

1. Background

2. Properties of multi-qubit doilies

3. Contextuality of quantum configurations with a SAT solver

The two-qubit doily W(3,2)

The (2-qubit) doily is the contextual geometry of all the 2-qubit Pauli observables except $I \otimes I$

 $I \leftrightarrow (0,0)$ $X \leftrightarrow (0,1)$ $Y \leftrightarrow (1,1)$ $Z \leftrightarrow (1,0)$

By using a bijection with the symplectic polar space W(2N-1,2), two observables O and O' commute iff the symplectic product $\sigma(\tilde{O}, \tilde{O'})$ of their images is 0

N-qubit doilies

N-qubit doily: Contextual geometry on *N* qubits with the same point/line structure as the 2-qubit doily W(3, 2)

Classification results

	Observables					Configuration of negative lines											
Туре	Α	В	С	D	ν	3	4	5	6	7A	7B	8A	8B	9	10	11	12
1	0	3	0	12	q	216				648				648			
2	0	4	0	11	q				3888			3888					
3	0	5	0	10	q	972		1944		4860	1944			1944			
4	1	0	5	9	q	648								648			
5	3	0	3	9	1	144											
6	0	6	0	9	q		1296		5184								
7	0	1	6	8	q	972				3888						972	
8	1	1	5	8	q				7776								
9	2	1	4	8	q	1944		1944									
10	2	1	4	8	1	972					972						
11	0	7	0	8	q			1944		972							
12	0	2	6	7	q				15552			11664	19440				
13	1	2	5	7	q	7776		13608			15552			1944			
14	1	2	5	7	1	3888					7776						
15	2	2	4	7	q		11664						3888				
					-					•			-		•		
									:								
95	6	9	0	0	1	6											

Partial results for the number of 4-qubit doilies¹

¹https://quantcert.github.io/doilies/

Doily generation program

All *N*-qubit doilies for a given *N* are generated in order to classify and check various properties about them¹²

► The *C* language is used for quick execution Execution time (Intel® Core™ i7-8665U CPU @ 1.90GHz, 8 cores):

- 4 qubits: 1 462 272 doilies in 0.5s and 1.4 Mo
- **5 qubits**: 1519648768 doilies in 12min and 1.8 Mo

¹Muller, A., Saniga, M., Giorgetti, A., de Boutray, H., and Holweck, F. "Multi-Qubit Doilies: Enumeration for All Ranks and Classification for Ranks Four and Five". *Journal of Computational Science*. 2022b.

²Muller, A., Saniga, M., Giorgetti, A., de Boutray, H., and Holweck, F. "Computer-assisted enumeration and classification of multi-qubit doilies". *Journées Informatique Quantique 2022 - JIQ'22*. 2022a.

1. Background

2. Properties of multi-qubit doilies

3. Contextuality of quantum configurations with a SAT solver

Contextual finite quantum geometries

the product of observables on ℓ_i is $(-1)^{E_i} I + 1 = (-1)^0, -1 = (-1)^1$

The geometry is contextual iff $\not\exists x. A x = E$

Contextuality degree

For every contextual geometry with an incidence matrix A, and for the valuation vector E related to the value of each line, we have

The *contextuality degree*¹ is the minimal Hamming distance $d_H(A x, E)$ between *E* and a vector *A x*

$$d_{\mathcal{H}}\left(\begin{pmatrix}0\\1\\1\\0\\0\end{pmatrix},\begin{pmatrix}1\\1\\0\\0\\0\end{pmatrix}\right) = 2$$

¹de Boutray, H., Holweck, F., Giorgetti, A., Masson, P.-A., and Saniga, M. "Contextuality degree of quadrics in multi-qubit symplectic polar spaces". *Journal of Physics A: Mathematical and Theoretical.* 2022.

Revealing contextuality in quantum configurations

¹Muller, A., Saniga, M., Giorgetti, A., Boutray, H. de, and Holweck, F. New and improved bounds on the contextuality degree of multi-qubit configurations. 2023c.

SCIENCES & TECHNOLOGIES

N-qubit doilies

N-qubit doily: Contextual geometry on *N* qubits with the same point/line structure as the W_2 doily

Example of 4-qubit doily

72 configurations checked in 1 second Proposition: All *N*-qubit doilies are contextual, and their contextuality degree is $3 (N \ge 2)$

Perpsets

The *perpset* P_r is the set of points that commute with a given point *r*:

$$P_r = \{ p \in W_n, p \text{ commutes with } r \}$$

Contextuality checked on 21 834 configurations, 17 minutes Proposition: All perpsets are non-contextual ($N \ge 2$)

Quadrics

A *quadric* Q_p is a set of points annihilating a quadratic form $Q_p(x) = Q_0(x) + \langle x | p \rangle$.

5 456 configurations checked in 33 minutes ($2 \le N \le 6$) Conjecture: All elliptic and hyperbolic quadrics are contextual ($N \ge 2$), when the contexts are their lines

Two-spreads

A *spread* is a set of lines such that each point of the plane is on exactly one line of the spread

A N-qubit two-spread is a doily from which a spread is removed

72 configurations checked in 1 second Proposition: All two-spreads are contextual, and their contextuality degree is 1 ($N \ge 2$)

Totally isotropic subspaces

A *totally isotropic subspace* is a set of mutually commuting elements with a base of *k* points

 $(k = 1, 2 \land N \le 5, 3 \le k \land N = 6, (k, N) = (6, 7))$: 14 configurations checked in less than 24 hours per configuration

Example of a Fano plane (k = 2, N = 3)

The configuration whose contexts are:

- ▶ all the lines \rightarrow contextual ($k = 1, N \ge 2$)
- Conjecture: all the planes \rightarrow non-contextual (k = 2, N \ge 3)

Totally isotropic subspaces

All the subspaces of some dimension k ≥ 3 are non-contextual because they are all positive (N > k)

\frown										
(1000)	i i3i2i1i0	b'	$ b' _{3}$	$ b^{2i} _3. b^{2i+1} _3$	$ b^{i} _{2}$	$ b^{2i} _2 \cdot b^{2i+1} _2$	$ b' _1$	$ b^{2i} _1. b^{2i+1} _1$	$ b^i _0$	$ b^{2i} _0. b^{2i+1} _0$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0000	$\begin{array}{c} & \\ & \\ b_n = I I Y Z \end{array}$	1	II = I	1	II = I		IY = Y		IZ = Z
	2 0010	$b_1 = IXXX$	i	=	X	XX = 1	8 2	XZ = -iY	2 () () ()	XY = iZ
	3 0011 4 0100	$b_1.b_0 = IXZY$ $b_2 = XZXY$	X		X		Z		· ·	
\bigcirc //// \bigcirc	5 0101	$b_2 = XZX$ $b_2 \cdot b_0 = -XZX$	\hat{x}	XX = I	Z Z	ZZ = I	ź	XZ = -iY	𝔅 𝔅 𝔅	YX = -iZ
	6 0110 7 0111	$\frac{b_2.b_1 = XYIZ}{b_2.b_1.b_0 = XYYI}$	X X	XX = 1	Y Y	YY = I	I Y	IY = Y	Z	ZI = Z
	8 1000 9 1001	$\frac{b_3 = ZIXX}{b_3.b_0 = ZIZY}$	Z	ZZ = I	1	<i>II</i> = <i>I</i>	<u>Х</u> 7	XZ = -iY	X Y	XY = iZ
	10 1010	$b_3.b_1 = ZXII$ $b_3.b_1.b_0 = ZXYZ$	Z	ZZ = 1	x x	XX = 1	I Y	IY = Y	ı I Z	IZ = Z
	12 1100 13 1101	$b_3.b_1.b_0 = 2.YT2$ $b_3.b_2 = -YZIZ$ $b_3.b_2.b_0 = -YZYI$	Y Y	YY = I	Z	ZZ = I	· I Y	IY = Y	Z	ZI = Z
	14 1110	$b_{3}b_{2}b_{1} = YYXY$ $b_{3}b_{2}b_{1}b_{0} = -YYZX$	Ŷ	YY = I	Y Y	YY = I	x Z	XZ = -iY	Y X	YX = -iZ
		0.2.1.10	<u> </u>	18		/ ⁸	Y^4	$(-iY)^4 = I$	Z ⁴ .(i	$Z)^{2} \cdot (-iZ)^{2} = I$
	\			trivial		trivial	ca	se 1 (r = 1)	case	$2(b^0 = b^1.b^2)$
	XZXY									

Illustrative example of the positivity of a subspace for k = 3 and N = 4

Conclusion

Achievements

- Program for generating quantum configurations
- Computed contextuality degree values leading to various conjectures and proved propositions

Perspectives

- Building more efficient algorithms to compute contextuality
- Finding more properties of quantum configurations
- Proving formally quantum properties

25/26

Questions?

Contributions

- A. Muller et al. (Oct. 2022b). "Multi-Qubit Doilies: Enumeration for All Ranks and Classification for Ranks Four and Five". In: *Journal of Computational Science* 64. ISSN: 1877-7503. DOI: 10.1016/j.jocs.2022.101853
- A. Muller et al. (May 2023c). New and improved bounds on the contextuality degree of multi-qubit configurations. arXiv: 2305.10225
- A. Muller et al. (2023b). "Décider la contextualité de configurations quantiques avec un solveur SAT". In: AFADL, pp. 50–52
- A. Muller et al. (2023a). "Disclosing Quantum Contextuality: A Geometric Approach to N-Qubit Configurations". In: SICGT, pp. 105–106

Fundings

hto.ct

- Agence Nationale de la Recherche, Plan France 2030, EPiQ project, ANR-22-PETQ-0007
- EIPHI Graduate School, contract ANR-17-EURE-0002
- Slovak VEGA Grant Agency, Project # 2/0004/20