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Extensive research has been devoted recently to the design of metasurfaces. Design strategies
based on impedance theory stand out for power flow regulation. The designed impedance matrix is
characteristic of a given pair of incident and modulated wave fields, hence providing opportunities
for encrypted information storage. We consider acoustic vortices propagating along cylindrical
shell waveguide as signal carriers. Within the shell waveguide, an annular acoustic impedance
metasurface is introduced for encrypted information storage. Information stored in the metasurface
would only be retrieved when interrogated with the correct input. Hidden messages are successfully
read in numerical simulation when the three-layer model is used to implement the metasurface. A
realistic structure based on Helmholtz resonant unit cells is further designed to verify experimentally
the encryption storage process. This work is expected to spur more applications of impedance
metasurface to acoustic holography and encrypted acoustic communications.
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I. INTRODUCTION

Metamaterials have attracted great attention owing
to their extensive functionality1. Various novel ap-
plications have been reported and implemented dur-
ing the last decade, including wave regulation2–5, heat
flow management6, invisibility cloaking7,8, holographic
imaging9 and non-destructive evaluation10,11. Infor-
mation processing based on metamaterials12–14 is cur-
rently emerging, accompanied with a rising demand
on minimization, integration, and increased informa-
tion capacity. Metasurface, as a branch of meta-
material, appears to be a brilliant candidate in this
respect15. It owns an extraordinary capability to com-
pactly process information within a 2D artificial struc-
ture and can be integrated with multiple functions. Some
achievements have been reported recently, including cross
medium communication16,17, oriented transmission18–20,
and acoustic vortex generation21 and decoding22,23.
However, the current designs sometimes suffer from an
unsatisfactory transmission efficiency24. The applicable
scenarios are also very limited and reliability is a global
concern.

A perfect solution for the power flow control of electro-
magnetic waves was originally given by Asatchy et al.25

and is attracting extensive attention. In this setting, the
metasurface together with the whole space surrounding
it are regarded as a complete system. Wave propaga-
tion is described in terms of a characteristic interface
impedance that can be precisely controlled without in-
troducing parasitic scattering. By analogy, Dı́az-Rubio
et al. proposed a comprehensive discussion for refraction
and reflection of acoustic waves24. Reflective metasur-
faces with perfect control on power flow were designed
and verified numerically by the three-layer model. It was
proven that the efficiency of the designed metasurfaces
surpasses the theoretical limit for the generalized Snell’s
law. Li et al. then developed a quadruple Helmholtz res-
onator structure for practical construction of refractive

impedance metasurfaces26. The unit can be designed in-
dependently and used to approach the impedance char-
acteristics of the interface when its tangential dimension
is deeply sub-wavelength. Metasurfaces obtained by de-
scribing wave field regulation via an impedance matrix
are currently termed impedance metasurfaces.

Despite those promising prospects, there are some
underlying limitations that cannot be ignored. Power
flow on both sides needs to be strictly local in or-
der for the metasurface to be discretized into in-
dependently designed units. Ideas for improvement
were proposed, including the power flow-conformal
design methodology27–29 and the in-plane transverse
connection30,31. These strategies, however, sometimes
make the design more complex without extending the
range of realizable functions that can be implemented.
The balance of power flow is much more complicated in
practice as well, especially when Gaussian beams rather
than theoretical plane waves are used for excitation. In
addition, unlike metasurfaces based on the generalized
Snell’s law, that provide a certain steering angle for
any incident angle32, the impedance metasurface only
works under a fixed incidence and transmission setting24.
Once fabricated, perfect output can only be observed un-
der preset input. Interestingly, this feature allows the
impedance metasurface to serve as a cipher lock, so that
tailored information can only be correctly revealed in the
output under specific inputs. Hence, it seems tempting
to use it for the storage of encrypted information. So far,
similar applications have been reported for optical33 and
mechanical metamaterials34,35, but seldom for pressure
acoustics.

In this paper, we design an annular acoustic impedance
metasurface as an information processing device for
encrypted information storage, with the idea that it
might be a generic application turning the limitations
of impedance theory into advantages. Cylindrical shell
waveguides, supporting a controlled number of acoustic
vortices and containing annular metasurfaces, are consid-
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ered for implementation. Besides, the composition of the
concentric annular waveguides enables more contents to
be integrated in a limited footprint. Customized informa-
tion is hidden inside the miniaturized annular structure
in terms of acoustic vortices. Eight cases including five
cases with a single output and three cases with a double
output are discussed. Through orthogonal decomposition
of the output signals, we show that correct information
can be retrieved only under specific input. A realistic
model with quadruple Helmholtz resonant units is op-
timally fabricated with the help of a genetic algorithm
and is tested both numerically and experimentally. The
results are found to be highly consistent with the ideal
ones.

II. DESIGN OF IMPEDANCE METASURFACES

A. Modal analysis of the cylindrical shell
waveguide

A synthetic presentation of cylindrical shell waveguides
is proposed before establishing the impedance metasur-
faces. The governing equation for the sound pressure of
time-harmonic acoustic waves is(

∇2 + ω2/c2
)
p = 0, (1)

where c =
√
κ0/ρ0 is the velocity of sound in the homo-

geneous background medium, ω is the operating angu-
lar frequency, ρ0 is the mass density, and κ0 is the bulk
modulus. Cylindrical coordinates are considered in this
section. Generally, propagating modes are described ex-
plicitly by exact expressions combining Bessel functions.
A reduced dimensional approximate solution for cylindri-
cal shell waveguide is proposed instead (see Appendix A
for details):

p(ρ, θ, z) = Cm exp (−ı (γz +mθ)) (2)

with γ =
√
k20 −m2/R2

0. Bessel functions are absent
from Eq. (2), and each acoustic vortex has a simple an-
alytical expression independent of the radial coordinate.
R0 = (Rin +Rout) /2 is the arithmetic mean of the in-
ner and outer radii. The wave field depends only on the
azimuthal angle θ and on the axial coordinate z.

The axial wavenumber should be real (γ > 0) for prop-
agating modes, hence

|m| < 2πR0

λ0
. (3)

From this expression, the center radius R0 of the cylin-
drical shell waveguide required to obtain N = 2mmax+1
propagating wave modes is obtained explicitly. The
largest order of propagation mmax is smaller than the
ratio of the waveguide circumference to the wavelength.
Modes such that |m| > mmax are evanescent in the z-
direction.
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FIG. 1: Spatial distribution of propagating modes at f0 =
3500 Hz in the same cylindrical shell waveguide. The nor-
malized sound pressure of the approximate solutions for (a)
m = 1, (b) m = 2, (c) m = −1, and (d) m = −2.

For illustration purposes, an example with the follow-
ing parameters is given if Fig. 1. Air is taken as the back-
ground medium, characterized by mass density ρ0 = 1.2
kg/m3 and bulk modulus κ0 = 0.14 MPa. Considering
the operating frequency f0 = ω/(2π) = 3500 Hz, the
wavenumber in air is k0 = ω/c = 64 m−1 and the wave-
length is λ0 = 9.8 cm. The inner and outer radii of the
waveguide are set to Rin = 4.45 cm and Rout = 4.65 cm,
respectively. Hence, the cylindrical waveguide is very
thin. Five mutually orthogonal propagating modes are
allowed under this configuration according to Eq. (3).
Modes with order m = ±1,± 2 described by the approx-
imate solutions are depicted in Fig. 1, respectively. It
can be noticed that guided waves travel along the pos-
itive z-axis in the form of acoustic vortices. The chi-
rality of each acoustic vortex is determined by the posi-
tive or negative order m, whose absolute value represents
the number of periods along the azimuthal direction. A
cross-correlation coefficient is computed to measure the
quantitative difference between the approximate solution
given by Eq.(2) and the exact solution given by Eq.(A9).
The cross-correlation coefficient between the two solu-
tions exceeds 99.99% for all four modes. Hence, the re-
duced dimensional approximation is accurate.

B. Analysis of impedance interface

Our derivation is based on the general principle of
impedance theory. Space is assumed to be divided into
two domains separated by interface Γ, as shown in Fig.
2. sound pressure fields p1 and p2 propagate in the up-
per and lower regions of space, respectively. Both fields
satisfy the scalar Helmholtz Eq. (1). At the interface,
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FIG. 2: Illustration of a generalized impedance interface.
Space is divided in two domains by interface Γ. Those do-
mains are occupied by pressure fields p1 and p2, respectively.

the impedance relationship is[
p1
p2

]
=

[
Z11 Z12

Z21 Z22

] [
−n ·v1

n ·v2

]
on Γ, (4)

where vi is the local velocity field and n is the vector
normal to the interface and entering region 1. For a con-
servative system, the real part of the impedance matrix
Z vanishes and thus

Z = ı

[
X11 X12

X21 X22

]
. (5)

The target metasurface can then be obtained by approx-
imating the impedance matrix for interface Γ, as given
by Eq. (5), with an actual solid structure with a given
finite thickness ds.
The expression of the impedance matrix specific to the

case of a single input and a single output acoustic vor-
tices is given by Eq. (B12) in Appendix B 1. First, we
wish to examine if that expression leads to the success-
ful conversion between two acoustic vortices and for this
purpose we evaluate numerically the result of the con-
version. The COMSOL Multiphysics software is used in
this paper for numerical simulations using the finite el-
ement method (FEM). The metasurface is numerically
described by a combination of 80 angular units defined
using the three-layer model24 (see Appendix B 3 for de-
tails). The quality of the conversion from the m1 = 0
acoustic vortex to different m2 acoustic vortices is exam-
ined in Fig. 3.

A quantitative evaluation was conducted by evaluat-
ing the inner product between the numerical solutions
and the theoretical acoustic vortices defined by Eq. (2).
Results are displayed as a histogram in Fig. 3(f). All
inner products are close to zero except for the diagonal
values that are all greater than or equal to 1. As a note,
the inner products are not normalized for unit power but
to measure the transmission of pressure. Since the mode
wavenumber γ2 decreases with the mode order |m2| at a
given frequency, the propagation speed slows down conse-
quently. Power flow conservation imposes that the power
passing through the waveguide cross-section should be
equal on both sides of the metasurface in each period,
therefore leading to the conservation of

γ1p
2
1 = γ2p

2
2. (6)

(f)
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FIG. 3: Conversion of single acoustic vortices at f0 = 3500
Hz, from m1 = 0 to (a) m2 = 0, (b) m2 = −1, (c) m2 = −2,
(d) m2 = +1, (e) m2 = +2. (f) Inner products between nu-
merical output wave and the standard acoustic vortices with
unit amplitude.

For an input with unitary amplitude (p1 = 1), p2 =√
γ1/γ2 > 1 when γ2 < γ1. The normalized pressure

amplitude can then exceed 124. It is further observed
that impedance theory remains valid in the quasi two-
dimensional approximation of the problem, despite the
application of the reduced dimension approximation.
Next, we consider the more general case of the conver-

sion of a superposition of a set of acoustic vortices to an-
other set. At a given frequency, there are N = 2mmax+1
propagating waves. For |m| > mmax, acoustic vortices
are evanescent and γ is purely imaginary. Evanescent
waves attached to either edge of the metasurface may
have to be included in the superpositions in order to sat-
isfy the power flow conservation condition, as exemplified
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later. For definiteness, we consider the superposition of
α1 propagating vortices and β1 evanescent vortices on the
incidence side, and the superposition of α2 propagating
vortices and β2 evanescent vortices on the transmission
side. An analysis of the impedance matrix and of power
flow conservation is provided in Appendix B 2.

Generally, for an information processing device signals
are expected to be input from one side and read from
the other side. Therefore, the case of a single input and
a double output is demonstrated here (α1 = 1, α2 = 2).
We use again the setting of the previous discussion to
provide examples. Three pairs of output acoustic vor-
tices are allowed: (m2,1 = +1, m2,2 = −2), (m2,1 = +2,
m2,2 = −2) and (m2,1 = +2, m2,2 = −1) (see Ap-
pendix B 2 for details). The consideration of evanes-
cent vortices is essential in order to balance passively the
power flow36(β1 = 2, β2 = 0). Numerical simulations for
the three metasurfaces implemented with the three-layer
model are shown in Fig. 4. The incident flat-phase acous-
tic vortex is transformed into a pair of acoustic vortices
after passing through the metasurface and the evanescent
vortices can be observed to decay from the upper edge of
the metasurface. The orthogonal decompositions of the
output vortices are given in Fig. 4(d). In this case power
flow conservation is established as

k0p
2
1,1 = γ2,1p

2
2,1 + γ2,2p

2
2,2. (7)

It can be verified that conservation is satisfied for the in-
ner products shown in Fig. 4(d). All pressure amplitudes
can alternatively be normalized to a sum of 1 for both
Fig. 3(f) and Fig. 4(d) by including the power flow in the
definition of the inner product, as Appendix D discusses.

C. Series connection of metasurfaces for power
flow balance

So far, eight different impedance metasurfaces (five for
a single output vortex and three for output vortex pairs)
has been considered. It seems difficult to convert an arbi-
trary input mode to a pair of outputs through a metasur-
face, since this may result in non-local unit design (see
Appendix B 2 for details). The inclusion of evanescent
waves also greatly increases the difficulty of design and
analytical expressions for impedance matrices is more dif-
ficult to obtain. It is however easy to convert any input
acoustic vortex into a plane wave, by reciprocity of the
result of Sect. IIA. Therefore, one can achieve non-local
power flow regulation equivalently through series connec-
tion of two metasurfaces. The superposition of a plane
wave and evanescent waves on one side can fulfill the
power flow condition for a pair of acoustic vortices on
the other side. concurrently, any single acoustic vortex
is obtained owing to the rapid attenuation of evanescent
waves. By connecting two metasurfaces in series, in con-
clusion, any incident acoustic vortex can be converted to
a pair of acoustic vortices.
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FIG. 4: Conversion from input acoustic vortex m1 = 0 into
pairs of acoustic vortices with order: (a) m2,1 = +1, m2,2 =
−2, (b) m2,1 = +2, m2,2 = −2, (c) m2,1 = +2, m2,2 = −1.
(d) Inner products between numerical output vortices and the
standard acoustic vortices with unit amplitude.

The case of input vortex m1,1 = −2 and output acous-
tic vortices (m2,1 = −2, m2,2 = +2) is demonstrated as
an example in Fig. 5. The input vortex with m1,1 = −2
is first converted into a plane wave with m = 0 and then
into the output vortices m2,1 = −2 and m2,2 = +2, as
shown in Fig. 5(a). The power flow is modulated by the
cavity between the two metasurfaces, hence no evanes-
cent waves can be observed at the upper edge of the top
metasurface. Power flow conservation is now expressed
by the condition

γ1,1p
2
1,1 = γ2,1p

2
2,1 + γ2,2p

2
2,2. (8)

It can thus be verified that the incident power is exactly
distributed to the pair of target modes. If the two meta-
surfaces are regarded as a whole, non-local transport of
power flow is realized in the space between them, even
though they are still designed locally.
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FIG. 5: (a) Conversion from input acoustic vortex with
m1,1 = −2 into a pair of output acoustic vortices with
m2,1 = −2, m2,2 = +2 using two series-connected metasur-
faces. (b) Orthogonal decomposition of the output acoustic
vortices with unit amplitude.

III. ANNULAR METASURFACES FOR
ENCRYPTED INFORMATION STORAGE

Interface impedance theory may appear at first glance
less flexible than the general Snell’s law (see Appendix
C for details). Perfect power flow conservation can in-
deed only be achieved under preset conditions. However,
this strict property can in fact be used to produce a ci-
pher lock that only works when the correct input is pre-
sented. Following this idea, one may hide information in
the metasurface and recover it accurately in the reflected
or transmitted acoustic waves. Ideally, the correct in-
formation can only be retrieved under a specific incident
wave, whereas the output information remains scrambled
when the input wave is given incorrectly.

In this section, acoustic vortices are regarded as sig-
nals carrying information. An annular metasurface for
encrypted information storage is then proposed based on
the impedance metasurfaces described in Sect. II C. In-
formation is encoded in the output signal as a superposi-
tion of vortices with different amplitudes. A demonstra-
tion of a specific case of information reading is examined
in the following based on numerical simulations.

The number of allowed propagating waves in the cylin-
drical shell waveguide is limited by Eq. (3). Besides,
due to the requirement on local power flow conservation,
there are only eight possible transmission metasurfaces.
However, the amplitude ratio

p1,1

p1,2
is still adjustable, due

to the perfect power flow control allowed by impedance
theory. In addition, metasurfaces can be stacked angu-
larly as multilayer concentric rings for the sake of inte-
gration. Considering those properties, transmitted waves
can be related to codes specified by the order and the am-
plitude of acoustic vortex signals. Sequences composed
of four bits are shown in Table I as an example. For
convenience, the codes on the right side of the table are
termed mode codes, and the codes on the left side are
termed binary codes. 8-bit binary codes expressed using
two rings can cover the requirements for character encod-

TABLE I: Relationship between binary code and amplitude
distribution/mode code.

Binary

Code

Amplitude

Distribution/

Mode Code

Binary

Code

Amplitude

Distribution/

Mode Code

-2 -1 1 2 -2 -1 1 2

0000 0 0 0 1 1000 1 0 2 0

0001 0 0 1 0 1001 2 0 1 0

0010 0 1 0 0 1010 1 0 3 0

0011 1 0 0 0 1011 3 0 1 0

0100 0 1 0 2 1100 1 0 0 2

0101 0 2 0 1 1101 2 0 0 1

0110 0 1 0 3 1110 1 0 0 3

0111 0 3 0 1 1111 3 0 0 1

ing in ASCII, for instance. The series-connected meta-
surfaces shown in Fig. 5 could as well be used here for
additional encryption. One can write specific informa-
tion into the metasurface and preset the input acoustic
vortex signal according to the above rules.
For demonstration purposes, an example of encrypted

storage of three characters is obtained as follows. The
word “TJU”, the abbreviation for Tianjin University,
is taken as the characters to be encrypted. Their 8-
bit binary codes in ASCII are 01010100B, 01001010B
and 01010101B, respectively. Each ASCII code is di-
vided into two parts: the high-four bits and the low-
four bits, which are encoded into mode codes encoded
into two rings. The mode codes corresponding to these
characters are listed in Table II. Six layers of concen-
tric cylindrical shell waveguides are adopted, as shown in
Fig. 6(a). The waveguides are named Ring1 to Ring6
from the outside to the inside, with width tw = 0.2
cm. A rigid wall with thickness tc = 0.05 cm is used
as an isolation between each ring. The inner diam-
eter of Ring6 is set to D = 6.4 cm to ensure that
|mmax| = 2 according to Eq.(3). The input sequence
is defined as Minput =

{
mi

1,1|i = 1, · · · , 6
}
, where mi

1,1

is the order of the input acoustic vortex signal preset for
Ringi. In this example, the input sequence is preset to
Minput = {−2,−1,+2,+1,+2,−2}.

Numerical simulation results for annular metasurfaces
designed with the three-layer model are summarized in
Fig. 6(b-e). Each ring includes a pair of metasurfaces.
The upper metasurface is used to convert the incident
acoustic vortex into the fundamental acoustic vortex,
whereas the lower metasurface converts the latter into a
pair of target acoustic vortices. The encoded characters
are hidden in the transmitted waves in the form of mode
codes, which can be obtained through orthogonal decom-
position. As the example shows, the encrypted charac-
ters “TJU” are successfully read out referring to Table
I. If the input sequence is wrongly given, for instance
as M ′

input = {+2,+1,−2,−1,−2,+2}, the output val-
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FIG. 6: (a) Schematic diagram of a multilayer coaxial cylindrical shell waveguide. There are 6 concentric annular metasurfaces,
with the first and second ring storing the character “T”, the third and fourth ring storing the letter “J”, and the fifth and
sixth ring storing the letter “U”. Under the correct input sequence Minput = {−2,−1,+2,+1,+2,−2}, the response is shown
for (b) the first and second ring, (c) the third and fourth ring, (d) the fifth and sixth ring; panel (e) shows the orthogonal
decomposition. Under the incorrect input sequence M ′

input = {+2,+1,−2,−1,−2,+2}, the response is shown for (f) the first
and second ring, (g) the third and fourth ring, (h) the fifth and sixth ring; panel (i) shows the orthogonal decomposition.

TABLE II: Encoding of characters into mode codes.

Character Ring Number Binary Code Mode Code

T
1 0101 0201

2 0100 0102

J
3 0100 0102

4 1010 1030

U
5 0101 0201

6 0101 0201

ues shown in Figs. 6(f-i) are scrambled. There is hardly
any transmitted signal in some of the cylindrical shell
waveguides. The upper metasurface actually becomes a
filter that blocks the input signal. Some signals can be
received at the transmission end in other annular waveg-
uides. However, these signals are not compatible with
the encoding principle for ASCII characters in Table I.

IV. OPTIMIZATION OF REAL STRUCTURE
AND EXPERIMENTAL VERIFICATION

The three-layer model used in the previous section to
implement the impedance matrix is an idealization of an

actual structure. Here, we examine the design of the an-
nular metasurfaces as a physical structure that includes
four Helmholtz resonators per unit cell26. A cylindri-
cal shell waveguide with an inner radius Rin = 3.10 cm
and an outer radius of Rout = 4.65 cm is adopted to
transmit signals. According to Eq.(3), the highest or-
der of propagation is |mmax| = 2. The incident signal is
preset as the flat-phase acoustic vortex with m1,1 = 0.
The transmitted signal is considered to implement the
binary code “1010”. In the corresponding mode code,
the amplitude distribution should be “1030” according
to Table I. The components of the target impedance ma-
trix are plotted in Fig. 7(a) as a function of the az-
imuthal angle. The metasurface is discretized into thirty
angular sectors, each of which serves as an independent
unit cell. Quadruple Helmholtz resonators are adopted
to meet the required impedance characteristics, following
the schematic diagram in Fig. 7(b). The detailed param-
eters of each unit are shown in Figs. 7(c) and (d). The
thickness of the metasurface is ds = 8.5 cm. The length
and width of the i-th resonant cavity from bottom to top
are respectively lh = 2 cm and wi. Adjacent cavities are
separated by a plate with a thickness of 1 mm. The cen-
ter angle of each sector is θ0 = 360◦/30 = 12◦. To ensure
independence between adjacent cells, the center angle of
each Helmholtz resonator is set to θh = 9◦. The width
of the side channel is w0. The neck thickness is wt = 2
mm and the height is hti . Among all parameters, w0, wi
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FIG. 7: (a) Analytical results for the required impedance characteristics as a function of azimuthal angle: X11 (orange curve),
X12 (green curve), X22 (blue curve). The target impedance characteristics (circular points) and the impedance characteristics
of the real structure obtained through optimization (square points) are shown. Schematic diagram of the simulation model of
the quadruple Helmholtz resonance metasurface and the detailed parameters for each unit: (b) overall view of the quadruple
Helmholtz resonance metasurface (air); quadruple Helmholtz resonance unit (solid part): (c) side view, (d) vertical view.
Response of the metasurfaces under correct input with m1,1 = 0: (e) by three-layer model, (f) by real structure, (g) orthogonal
decomposition. Response of the metasurfaces under incorrect input with m1,1 = 0: (e) by three-layer model, (f) by real
structure, (g) orthogonal decomposition. (k) Photograph of the experimental setup, with speakers and the experimental
platform. (l) Modal analysis of experimental data with the least-square method.

and hti are then used as optimization variables in a ge-
netic algorithm. The optimization goal is to find a struc-
ture best satisfying the target impedance characteristics.
All other parameters remain fixed during optimization to
avoid considering an excessive solution space. The prob-
abilities of crossover and mutation are set to 20% and
40% respectively. The impedance of the target and of

the real structure obtained after optimization are shown
in Fig. 7(a) with circular and square markers, respec-
tively. It can be noted that the impedance characteristics
obtained by optimization fairly coincide with the targets
and that they are sufficient to represent the curves ob-
tained through analysis. The corresponding structural
parameters are listed in Table III.
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TABLE III: Parameter configuration of metasurface [Unit:
cm].

Cell w1 w2 w3 w4 wt ht1 ht2 ht3 ht4

1 0.26 0.29 0.35 0.25 0.9 0.52 1.03 1.41 1.44

2 0.84 0.36 0.81 0.73 0.61 0.20 0.41 1.76 1.79

3 0.75 0.42 0.45 1.12 0.33 0.73 0.84 1.68 1.21

4 0.78 0.76 0.76 0.47 0.44 1.32 1.46 1.58 0.54

5 0.77 0.75 0.89 0.72 0.47 1.56 1.41 1.32 1.62

6 0.40 0.60 0.94 0.39 0.47 0.66 1.17 1.22 0.65

7 0.37 0.77 0.84 0.6 0.49 0.46 1.24 1.49 1.21

8 0.37 0.77 0.84 0.60 0.49 0.40 1.34 1.49 1.26

9 0.30 1.01 0.23 0.54 0.20 1.75 1.41 0.89 1.68

10 0.53 0.86 0.84 0.55 0.50 0.75 1.78 1.33 1.20

11 0.53 0.86 0.84 0.57 0.50 0.75 1.80 1.33 1.26

12 0.92 0.38 0.86 0.40 0.51 1.22 1.18 0.74 1.29

13 0.51 0.76 0.92 0.32 0.53 0.73 1.77 1.32 0.34

14 0.24 0.82 0.61 0.38 0.63 0.87 0.96 1.35 0.32

15 0.86 0.53 0.82 0.44 0.59 1.31 1.54 1.13 1.33

16 0.55 0.38 0.43 0.38 0.65 0.76 0.71 0.73 0.67

17 0.55 0.38 0.43 0.38 0.53 1.23 0.71 1.53 0.67

18 0.49 0.43 0.28 0.30 0.37 1.18 1.66 1.55 0.91

19 0.49 0.43 0.31 0.23 0.37 1.08 1.37 1.48 1.08

20 0.49 0.47 0.40 0.30 0.37 1.22 1.66 1.76 0.96

21 0.61 0.42 0.27 0.30 0.37 1.51 1.76 1.50 0.96

22 0.87 0.53 0.27 0.26 0.58 1.76 1.71 0.71 0.31

23 0.64 0.36 0.28 0.66 0.79 1.51 1.48 0.23 1.34

24 0.61 0.61 0.21 0.55 0.84 1.02 1.42 1.74 1.66

25 0.31 0.33 0.37 0.42 1.03 0.68 0.71 0.84 0.41

26 0.49 0.50 0.20 0.50 0.95 1.09 1.74 0.49 1.80

27 0.23 0.26 0.30 0.40 1.05 1.14 0.42 0.90 0.69

28 0.37 0.31 0.37 0.41 1.04 1.27 1.59 0.58 1.68

29 0.28 0.23 0.42 0.31 1.03 1.74 1.48 1.07 0.35

30 0.38 0.31 0.37 0.30 1.00 1.04 1.63 0.97 1.04

When the correct input signal is given, the response of
the theoretical metasurface described by the three-layer
model and the response of the quadruple Helmholtz res-
onator metasurface are in fair agreement (see Figs. 7(e)
and (f)). Some reflection occurs at the incident side due
to the limitation of structural parameter accuracy. The
orthogonally decomposed output signals shown in Figs.
7(g) indicate that the mode code “1030” can be read in
either case. Although some of the incident energy leaks
into other modes with the quadruple Helmholtz resonator
metasurface, the stored information can still be retrieved
successfully.

Additionally, we checked the response when the incor-
rect input m1,1 = −2 is given (see Fig. 7(h) and (i)).
Some reflections can be noticed again. Perfect power flow
transmission is no longer satisfied under this input. The
orthogonal decomposition of the output signals are shown
in Figs. 7(j). The output signals do not match any mode

code in Table I, for both the three-layer model and the
quadruple Helmholtz resonator metasurface. The stored
binary code “1010” (mode code “1030”) is hence not re-
trieved.

An experimental verification was conducted for the
particular annular metasurface of Fig. 7(b). The experi-
mental setup is depicted in Fig. 7(k). The experimental
sample was fabricated by 3D-printing using a photosen-
sitive resin material that can be regarded as a rigid body
under the framework of airborne acoustics. Extending on
both sides of the sample, two annular waveguides with a
wall thickness of 1.5 cm and a length of 20 cm were fur-
ther fabricated through another 3D-printing technique
(polyactic acid; PLA). Geometric and operating param-
eters were all selected to be consistent with numerical
simulations.

Ten input speakers were arranged along a circle and at-
tached tightly at the entrance to ensure that there is no
leakage of acoustic power. At the transmission end, a mi-
crophone was inserted inside the waveguide at a number
of positions to sample the output wavefield. Since there
are only five propagating wave modes allowed in the de-
signed waveguide according to Eq.(3), at least five sam-
pling points are required to reconstruct the total field.
In order to improve the estimation quality, however, 36
sampling points were defined as follows. Twelve sam-
pling measurement points were evenly distributed along
the circumference. Furthermore, considering the possible
presence of reflected waves at the exit port, the micro-
phone was inserted axially by 8 cm, 9.5 cm and 11 cm,
and the 12 measurements were repeated. The generated
and collected signals were controlled by a B&K 3160-A-
042 control module connected to a computer. The exper-
iment was repeated ten times before the collected data
were subjected to modal analysis with the help of the
least-square method. After normalization to the maxi-
mum value, the amplitudes assigned to each mode are
shown in Fig. 7(l). It can be noted that the amplitude
ratio between modes m = −2 and m = +1 is 0.29, close
to the ideal value of 0.33. The amplitude ratios for modes
m = −1 and m = 0 are relatively small, in accordance
with the simulation result in Fig. 7(g). However, the am-
plitude ratio for mode m = +2 is about 0.2, about four
times more than the numerical simulation result. We at-
tribute this discrepancy to the difficulty to define ideal
operating conditions in the experiment. Theoretically,
there are only incident waves, whereas in the experiment
reflections occur on the speakers. Furthermore, because
of the machining accuracy, backscattering in the inci-
dence annular waveguide is bound to occur. As a note,
there is almost no way to have the speakers absorb re-
flected waves, hence some unexpected power leaks into
the other modes. It is also worth mentioning that as the
thickness of the cylindrical shell decreases, damping near
the wall may also take place, especially at high frequen-
cies. In spite of all these limitations, the disturbance
could arguably be eliminated at the design and fabrica-
tion stage using appropriate methods. Subsequent work
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is required to develop more efficient impedance unit mod-
els.

V. CONCLUSION

In this paper, we have designed an annular metasurface
for encrypted information storage based on impedance
metasurface. A cylindrical shell waveguide supporting
acoustic vortices is used to carry information. A re-
duced dimension approximation is introduced to obtain
a simpler solution for guided waves and to establish
the impedance matrix. Using the strict requirements of
impedance theory for input and output fields, the cus-
tomized binary information stored in the annular meta-
surfaces can only be read under the incidence of a specific
acoustic vortex. Taking the word “TJU” as an exam-
ple, we demonstrated that characters are read under cor-
rect input but are not under incorrect input. Consider-
ing the implementation of the metasurface using quadru-
ple Helmholtz resonance units, consistent results are ob-
tained both in simulation and experiment.

Although the discussion was conducted under local de-
sign of unit cells, the annular metasurface is not neces-
sarily limited to local power flow transfer. More likely,
conversion between acoustic vortices with any different
power flow distribution can be realized by metasurfaces
with non-local power transfer. Thereby, the capacity of
information encryption could be much larger although
using a more compact metasurface. Even though only
mode codes with specified amplitude ratios were consid-
ered, the flexibility of phase difference encoding could
still be used to extend the information capacity. This
work could also be extended to the design of metasur-
faces for acoustic holography. The field of the target im-
ages can be series expanded, whereby information could
be encrypted and stored in metasurfaces in the form of
an image or a two-dimensional array.
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Appendix A: Reduced dimensional approximate
solution

The Helmholtz equation in cylindrical coordinates is

1

ρ

∂

∂ρ

(
ρ
∂p

∂ρ

)
+ ρ2

∂2p

∂θ2
+

∂2p

∂z2
+ k20p = 0. (A1)

Using the method of separation of variables, the analyt-
ical solution takes the general form

p (ρ, θ, z) = R (ρ)Θ (θ)Z (z) . (A2)

Substituting this expression into Eq. (A1), wave solu-
tions traveling along the z-axis are solved as

Zk = exp(−ıkz),

Θm = exp(−ımθ), (A3)

Rk,m = Ck,m,1Jm(βρ) + Ck,m,2Ym(βρ)

where k ∈ R, m ∈ Z, ı is the imaginary unit, Jm and Ym

are the m−order Bessel function of the first and second
kind, respectively, and

β2 = ω2/c2 − k2. (A4)

For cylindrical shell waveguides, Neumann boundary
conditions, also termed sound hard boundary conditions,
are added at the inner boundary ρ = Rin and at the outer
boundary ρ = Rout

∂p

∂ρ

∣∣∣∣
ρ=Rin

= 0,
∂p

∂ρ

∣∣∣∣
ρ=Rout

= 0. (A5)

Since Eq. (A5) holds everywhere along the boundaries,
each mode (k,m) satisfies

Ck,m,1J
′
m(βRin) + Ck,m,2Y

′
m(βRin) = 0, (A6)

Ck,m,1J
′
m(βRout) + Ck,m,2Y

′
m(βRout) = 0. (A7)

The trivial solution β = 0 always holds for m = 0, associ-
ated with a flat phase solution propagating at the velocity
of sound (k = ω/c). Furthermore, for a non trivial solu-
tion to exist, the transverse wavenumber β must satisfy

J ′
m(βRin)Y

′
m(βRout)− J ′

m(βRout)Y
′
m(βRin) = 0 (A8)

and each mode has the form

pk,m(ρ, θ, z) = [Ck,m,1Jm(βρ) + Ck,m,2Ym(βρ)]

× exp(−ı(kz +mθ)). (A9)

For different modes m1,m2 ∈ Z, strict orthogonality ap-
plies∫

Ω

pk1,m1
(ρ, θ, z)p∗k2,m2

(ρ, θ, z)dV
m1 ̸=m2
======= 0, (A10)

ensuring that the dispersion relation is composed of in-
dependent, continuous bands labeled with index m.
Eq. (A8) is an implicit solution for β (or k) for fixed

real ω and integer m. The exact solution must be given
through Newton iteration method. Propagating solu-
tions require β2 ≥ 0 or 0 ≤ k2 ≤ ω2/c2. Hence the
condition

|kω,m| ≤ ω/c (A11)
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FIG. 8: The radial cross-sections of normalized pressure |p|
p0

(blue curve for |m| = 1, blue dashed curve for |m| = 2) and

pressure gradient R0
p0

∂|p|
∂ρ

(red curve for |m| = 1, red dashed

curve for |m| = 2 of the exact solution [Eq.(A9)].

TABLE IV: Characteristics of propagating modes at f0 =
3500 Hz in the cylindrical shell waveguide with Rin = 4.45
cm and Rout = 4.65 cm.

m β (m−1) k (m−1) Ck,m,2/Ck,m,1

0 0 64 0

±1 21.9798 60.1073 −0.3736

±2 43.9596 46.5140 −0.4375

limits the number of propagating modes at a specific fre-
quency and is used to filter the results. The allowed
modes and corresponding parameters are listed in Ta-
ble IV. Five mutually orthogonal propagating modes are
allowed for the waveguide under this configuration.

It can be noted that the solution of Eqs. (A7-A9) is
implicit and does not allow for analytic solutions. Fur-
thermore, the number of propagating modes for a given
structure size at every frequency is only obtained nu-
merically, which introduces difficulties for the subsequent
analysis of the impedance interface. However, it can be
noticed in Fig. 8 that the normalized complex pressure
p
p0

is almost constant along the radial direction. The

same observation holds for the normalized complex pres-
sure gradient R0

p0

∂p
∂ρ , where R0 = (Rin +Rout) /2 is the

arithmetic mean of the inner and outer radii. Therefore,
an approximate solution can be proposed to obtain sim-
pler expressions. It is observed that the azimuthal phase
gradient that characterizes acoustic vortices is properly
maintained during this approximation process 37,38.

Considering ∆R = Rout − Rin << λ0 together with
the boundary conditions Eqs. (A5-A6), the following ap-
proximation is considered

∂p

∂ρ
≈ 0,

∂2p

∂ρ2
≈ 0. (A12)

Then Eq. (A1) becomes

1

R2
0

∂2p

∂θ2
+

∂2p

∂z2
+ k20p = 0 (A13)

and the pressure distribution does not depend on ρ any-
more. Using again the method of separation of variables,
the general solution is assumed to take the form

p (ρ, θ, z) = Θ (θ)Z (z) (A14)

and Eq. (A13) decouples into

d2Θ

dθ2
+m2Θ = 0, (A15)

d2Zm

dz2
+
(
ω2/c2 −m2/R2

0

)
Zm = 0. (A16)

Modes propagating along the positive z-direction satisfy
the relation

ω > |m|c/R0. (A17)

We introduce the notation γi =
√

k20 −m2
i /R

2
0 as the

longitudinal wavenumber. The approximate solution can
then be given as

p(θ, z) = Cm exp (−ı (γz +mθ)) . (A18)

The radius coordinate ρ disappears in the approximate
expression, whereas the azimuthal phase gradient that
characterizes acoustic vortices is maintained. This ap-
proxiumation is of great help for establishing impedance
metasurfaces in the main text.

Appendix B: Impedance matrices of metasurfaces

1. Impedance metasurfaces with single input and
single output

In the frequency domain, the local velocity of the
acoustic field is obtained from the pressure field pi as

vi =
ı

ω0ρ0
∇pi, i = 1, 2. (B1)

Then the power flow vector is

Ii =
1

2
Re [piv

∗
i ] , i = 1, 2. (B2)

This physical quantity is crucial in the following analy-
sis. Power flow conservation needs to be satisfied on the
interface∫

Γ

1

2
Re [p1 (n ·v∗

1)] dS =

∫
Γ

1

2
Re [p2 (n ·v∗

2)] dS. (B3)

In order to ensure an independent design of all meta-
surface units in the following text, the transfer of power



11

flow is expected to be local. Then, Eq. (B3) should be
restricted to

1

2
Re [p1 (n ·v∗

1)] =
1

2
Re [p2 (n ·v∗

2)] . (B4)

Combining Eqs. (B1-B4), it follows

X12 = X21. (B5)

This relation indicates that after considering the localized
power flow Eq. (B4), the impedance matrix is symmetric.

Let us focus on the conversion between two different
acoustic vortices in a cylindrical shell waveguide. A plane
described by

z = 0, (B6)

with normal vector

n = ez. (B7)

is adopted for Γ. The azimuthal orders of the input and
the output vortices are denoted m1 and m2, respectively.
The acoustic fields on both sides of the metasurface then
read

p1 = p0 exp(−ı (γ1z +m1θ)), (B8)

p2 = Ap0 exp(−ı (γ2z +m2θ)), (B9)

and their velocity vectors read

v1 =
p0

Z0k0
exp(−ı (γ1z +m1θ)) (γ1ez +m1/R0eθ) ,

(B10)

v2 =
Ap0
Z0k0

exp(−ı (γ2z +m1θ)) (γ2ez +m2/R0eθ) ,

(B11)

where Z0 = c0ρ0 is the acoustic impedance of air. Eq.
(B4) is used to ensure localized power flow. Substituting
expressions into Eq. (4) and following the same steps as
in Ref. 26, the impedance matrix can be easily solved as

Z = ı

[
Z0k0

γ1
cot(∆mθ) Z0k0√

γ1γ2
csc(∆mθ)

Z0k0√
γ1γ2

csc(∆mθ) Z0k0

γ2
cot(∆mθ)

]
, (B12)

with ∆m = m1 − m2 and the amplitude amplification
factor

A =

√
γ1
γ2

. (B13)

2. Impedance metasurfaces with single input and
double output

The acoustic pressure distributions are expressed as

p1 =

α1∑
i=1

p1,i exp(−ı (γ1,iz +m1,iθ + φ1,i)) +

β1∑
i=1

pe1,i exp
(
−ke1,iz − ıme

1,iθ − ıφe
1,i

)
, (B14)

p2 =

α2∑
i=1

p2,i exp(−ı (γ2,iz +m2,iθ + φ2,i)) +

β2∑
i=1

pe2,i exp
(
ke2,iz − ıme

2,iθ − ıφe
2,i

)
. (B15)
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The velocity vectors read

v1 =

[
α1∑
i=1

p1,im1,i

Z0k0R0
exp(−ı (γ1,iz +m1,iθ + φ1,i)) +

β1∑
i=1

pe1,im
e
1,i

Z0k0R0
exp

(
−ke1,iz − ıme

1,iθ − ıφe
1,i

)]
eθ

+

[
α1∑
i=1

p1,iγ1,i
Z0k0

exp(−ı (γ1,iz +m1,iθ + φ1,i)) +

β1∑
i=1

−ıpe1,ik
e
1,i

Z0k0
exp

(
−ke1,iz − ıme

1,iθ − ıφe
1,i

)
)

]
ez, (B16)

v2 =

[
α2∑
i=1

p2,im2,i

Z0k0R0
exp(−ı (γ2,iz +m2,iθ + φ2,i)) +

β2∑
i=1

pe2,im
e
2,i

Z0k0R0
exp

(
ke2,iz − ıme

2,iθ − ıφe
2,i

)]
eθ

+

[
α2∑
i=1

p2,iγ2,i
Z0k0

exp(−ı (γ2,iz +m2,iθ + φ2,i)) +

β2∑
i=1

ıpe2,ik
e
2,i

Z0k0
exp

(
ke2,iz − ıme

2,iθ − ıφe
2,i

)]
ez. (B17)

For evanescent waves, the following condition holds∣∣me
1,i

∣∣ > 2πR0/λ0,
∣∣me

2,i

∣∣ > 2πR0/λ0. (B18)

Next, conservation of power flow [Eq. (B4)] is imposed along the normal direction n⃗ to the metasurface Γ, leading to

α1∑
i

α1∑
l

γ1,lp1,ip1,l cos [(m1,l −m1,i) θ − (φ1,l − φ1,i)]−
α1∑
i

β1∑
l

ke1,lp1,ip
e
1,l sin

[(
me

1,l −m1,i

)
θ −

(
φe
1,l − φ1,i

)]
+

β1∑
i

α1∑
l

γ1,lp
e
1,ip1,l cos

[(
m1,l −me

1,i

)
θ −

(
φ1,l − φe

1,i

)]
−

β1∑
i

β1∑
l

ke1,lp
e
1,ip

e
1,l sin

[(
me

1,l −me
1,i

)
θ −

(
φe
1,l − φe

1,i

)]
=

α2∑
i

α2∑
l

γ2,lp2,ip2,l cos [(m2,l −m2,i) θ − (φ2,l − φ2,i)] +

α2∑
i

β2∑
l

ke2,lp2,ip
e
2,l sin

[(
me

2,l −m2,i

)
θ −

(
φe
2,l − φ2,i

)]
+

β2∑
i

α2∑
l

γ2,lp
e
2,ip2,l cos

[(
m2,l −me

2,i

)
θ −

(
φ2,l − φe

2,i

)]
+

β2∑
i

β2∑
l

ke2,lp
e
2,ip

e
2,l sin

[(
me

2,l −me
2,i

)
θ −

(
φe
2,l − φe

2,i

)]
.

(B19)

Generally speaking, solutions to this equation can be
obtained by equating the coefficients of each trigonomet-
ric function, since they are orthogonal. However, there
are an infinite number of solutions since the number of
variables is far larger than the number of equations. For
definiteness, we would like to consider in the following
solutions describing the conversion of a single fundamen-
tal vortex (α1 = 1, m1,1 = 0) to a pair of propagating
vortices (α2 = 2, β2 = 0). The reference of phase is
the incident vortex, or φ1,1 = 0. For reasons that will
soon be apparent, we have to include a pair of evanes-

cent vortices (β1 = 2) with opposite azimuthal numbers
(me

1,1 = −me
1,2). From (B4) we must have

pe1,1 = pe1,2

ke1,1 = ke1,2

me
1,1 = −me

1,2

φe
1,1 = −φe

1,2 (B20)

The power flow conservation (B19) becomes

p21,1 + 2pe1,1p1,1 cos
(
me

1,1θ − φe
1,1

)
=

γ2,1
k0

p22,1 +
γ2,2
k0

p22,2 +
(γ2,2 + γ2,1)

k0
p2,1p2,2 cos [(m2,2 −m2,1) θ − (φ2,2 − φ2,1)] . (B21)

The coefficients of each term on both sides must be equal, from the orthogonality of trigonometric functions. Con-
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servation of power flow is guaranteed for any θ when

1 =
γ2,1
k0

(
p2,1
p1,1

)2

+
γ2,2
k0

(
p2,2
p1,1

)2

, (B22)

pe1,1 =
γ2,1 + γ2,2

k0

p2,1p2,2
2p1,1

, (B23)

me
1,1 = m2,2 −m2,1, (B24)

φe
1,1 = φ2,2 − φ2,1. (B25)

The last equation is valid modulo 2π. Through Eq. (4), the required metasurface is given by interface impedance

X11 = [p2,1 cos (Φ2,1) γ2,1 + p2,2 cos (Φ2,2) γ2,2]
[
2pe1,1 cos

(
Φe

1,1

)
+ p1,1

]
k0Z0/D, (B26)

X12 =
[
2pe1,1 cos

(
Φe

1,1

)
+ p1,1

]
k20p1,1Z0/D, (B27)

X21 =
[
γ2,1p

2
2,1 + γ2,2p

2
2,2 + (γ2,2 + γ2,1) p2,1p2,2 cos (Φ2,2 − Φ2,1)

]
k0Z0/D, (B28)

X22 =
{
[p2,1 cos (Φ2,1) + p2,2 cos (Φ2,2)] p1,1k0 + 2pe1,1k

e
1,1 cos

(
Φe

1,1

)
[p2,1 sin (Φ2,1) + p2,2 sin (Φ2,2)]

}
k0Z0/D, (B29)

D = [p2,1 sin (Φ2,1) γ2,1 + p2,2 sin (Φ2,2) γ2,2] p1,1k0 − 2pe1,1k
e
1,1 cos

(
Φe

1,1

)
[p2,1 cos (Φ2,1) γ2,1 + p2,2 cos (Φ2,2) γ2,2]

(B30)

where

Φ2,1 = φ2,1 −m2,1θ, (B31)

Φ2,2 = φ2,2 −m2,2θ, (B32)

Φe
1,1 = φe

1,1 −me
1,1θ. (B33)

As a note, the symmetry [Eq. (B5)] still holds when com-
bining Eqs. (B27) and (B28) together with Eq. (B22).
Due to the constraint set by Eq. (B18), the acoustic
vortices satisfy

me
1,1 = m2,2 −m2,1 > 2πR0. (B34)

Their phases are set as

φ2,1 = φ2,2 = φe
1,1 = 0 (B35)

for simplicity. Imposing p2,1 = p2,2, Eq. (B22) yields

p2,1 = p2,2 =
p1,1√

(γ2,1 + γ2,2)/k0
. (B36)

3. Three-layer model for simulation

The three-layer model used in numerical simulations is
set according to the following principles. Adjacent units
are separated by sound-hard boundaries. Each unit con-
tains three interior impedance boundaries separated by
distance d0 = 4.25 cm, set according to

Z1 = Z11 + Z12 + ıZ0 cot (k0d0) , (B37)

Z2 = 2ıZ0 cot (k0d0)−
Z2
0

Z12
sin−2 (k0d0) , (B38)

Z3 = Z22 + Z12 + ıZ0 cot (k0d0) , (B39)

respectively24. The thickness of the metasurface satis-
fies ds = 2d0 = 8.5 cm. Perfectly matched layers are
added to both ends of the waveguide to avoid reflections.
The maximum element size in the finite element mesh is
set to λ0/10 to ensure convergence. Additional mesh re-
finement is applied near the impedance boundaries. The
background pressure field representing the incident wave
travels along the negative z-axis, with unitary amplitude.

Appendix C: A drawback of impedance theory

1. Semi-infinite space

In impedance theory, both the background field and
the metasurface are considered as a single complete sys-
tem. In the two-dimensional case the background field is
an infinite plane wave

p(x, y) = C0 exp(−ı (kxx+ kyy)). (C1)

The analysis of the 2D impedance interface was carried
out by Dı́az-Rubio et al.24 and Peng et al.29.
However, a Gaussian envelope must be used in order

to truncate laterally wavefields in practice36, in the form

p(x, y) = C0G(f(x, y), σ) exp(−ı(kxx+ kyy)), (C2)

where G(u, σ) is a Gaussian function with σ the variance
used to describe the lateral extent of the wave and where

f (x, y) = −kxy + kyx+ b0 (C3)

is the center line of the incident wave. Hence, when the
incident field is adjusted to Eq. (C2), the distribution of
the power flow

I =
1

2
Re [pv∗] (C4)
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should be adjusted as well. As a result, it might be more
difficult to balance the power flow at incident and trans-
mission boundaries, especially for application to beam
splitting36. Although the result looks visually correct,
the observance of plane wave propagation is not perfect
in a strict sense.

It needs to be noted that Eq. (2) and Eq. (C1) are
similar in form. The former, however, describes a wave
field that is bounded in space by natural boundary condi-
tions and that does not require lateral truncation as the
latter does. Theoretically, the potential of impedance
theory can hence be fully exploited in cylindrical shell
waveguides where perfect power flow regulation can be
achieved.

2. Strict input requirements

Acoustic impedance theory appears to be less flexible
than generalized Snell’s law despite its perfect manipula-
tion of the power flow. One could alternatively fabricate
a metasurface based on generalized Snell’s law5 providing
a local phase-shift in transmission

Φ (x) = αk0x. (C5)

For input incident waves with incident angles θi1 and θi2,
the transmission angle of the response can be determined
as

θt1 = arcsin (α− sin θi1) , (C6)

θt2 = arcsin (α− sin θi2) , (C7)

respectively. But when it comes to impedance theory,
these two sets of angles would correspond to completely
different metasurfaces24. Therefore, it is evident that
impedance theory is hardly applicable for a wide-angle
response. In the case of annular waveguides, the response
is deeply modified when the input is wrongly given. Per-
fect power flow conservation can only be achieved under
preset conditions.

Appendix D: Normalization of modes

The inner product of the acoustic vortex described by
Eq. (2) is defined in this paper as

Ii =< p2,p
i
s >=

1

V

∫
V

p2 · exp (ı (γiz +miθ)) dv. (D1)

where pis is the standard vortex with order mi. Clearly
this definition considers only pressure and not velocity,
so that the sum of output amplitudes may exceed 1 even
though transmittance of power flow is 100% or less. One
could instead adopt a definition of the inner product in-
duced by power flow conservation. For the case of single

(a)

(b)

FIG. 9: Mode analysis given by power induced inner product
(a) single output, (b) double output.

input to multiple outputs, the conservation of power flow
on both sides of the metasurface reads

γ1p
2
1 =

α2∑
i=1

γ2,ip
2
2,i. (D2)

Normalizing with reference to the input power γ1p
2
1, the

inner product would then be defined as

I ′i =< p2,p
i′
s >=

γi
V

∫
V

p2 · exp (−ı (γiz +miθ)) dv.

(D3)
Under this definition, the sum of amplitudes becomes

α2∑
i=1

I ′i =

α2∑
i=1

< p2,p
i′
s >= 1. (D4)

Modal analysis obtained given by Eq. (D4) for the ex-
amples of Figs. 3 and 4 is presented in Fig. 9. The sums
of amplitudes all become 1. Another issue however arises
when there are multiple output vortices. The normal-
ized amplitudes of modes m2,1 = −1 and m2,2 = 2 are
not equal in Fig. 9(b) when p2,1 and p2,2 are selected to
be equal. Therefore, the usual inner product definition of
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Eq. (D1), originating from plane waves, was still adopted
in this paper to define amplitude ratios, without loss of

generality.
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