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Abstract

We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger

equation system) using the machine-learning technique of data-driven dominant balance. We aim to auto-

mate the identification of which particular physical processes drive propagation in different regimes, a task

usually performed using intuition and comparison with asymptotic limits. We first apply the method to in-

terpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue

wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation

from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization.

Using numerical simulations, we then apply the technique to the more complex case of noise-driven spon-

taneous modulation instability, and show that we can readily isolate different regimes of dominant physical

interactions, even within the dynamics of chaotic propagation.
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INTRODUCTION

Modulation instability (MI) of the nonlinear Schrödinger equation (NLSE) describes the process

whereby a weak perturbation experiences exponential growth at the expense of a strong input

wave [1, 2]. MI (sometimes called the Benjamin-Feir or Bespalov-Talanov instability [3, 4]) leads

to complex spatio-temporal pattern formation, and is one of the fundamental nonlinear dynamical

processes of nature. It has been observed in many different systems including hydrodynamics,

plasmas, Bose-Einstein condensates, and fiber optics. Despite this large body of work over many

years, its centrality to nonlinear science is such that it continues to be extensively studied from both

experimental and theoretical perspectives. Recent work, for example, has explored its description

in terms of integrable turbulence [5, 6], its relationship with computational complexity [7], its

thermodynamic link to the soliton-gas concept [8], and its intrinsic association with Fermi-Pasta-

Ulam-Tsingou recurrence [9]; to cite only a small number of examples.

The dynamics of MI leads to the spontaneous emergence of localized structures that possess dif-

ferent spatial and/or temporal periodicities [10, 11]. These structures are intimately connected with

known analytic solutions to the NLSE (including Peregrine soliton and Akhmediev and Kuznetsov-

Ma breathers [12–14]), and understanding this correspondence has allowed experimentalists to

excite a wide range of soliton and breather solutions in both optics and hydrodynamics [15–18].

Moreover, even under conditions where modulation instability is excited from noise, it has been

shown that the random peaks developing from noise possess the expected characteristics of these

analytic solutions [19–21]. It is these nonlinear localization dynamics in particular that have at-

tracted great interest as potentially underpinning the growth and decay of destructive rogue waves

on the ocean [22, 23].

These various studies have yielded significant insights into the properties of MI under diverse

conditions, and in different systems. Somewhat surprisingly, however, although some aspects of MI

localization can be interpreted precisely using mathematical methods such as the inverse scattering

transform [24], the physics of nonlinear and dispersive interactions in MI is more often discussed

in qualitative terms by a comparison with specific limiting cases or characteristic nonlinear and

dispersive length scales [25]. It would be highly desirable to have a means of interpreting the

physics of MI that went beyond such a qualitative description, and yet avoided the formalism of

the inverse scattering method.

In this paper, we show that the machine-learning technique of data-driven dominant balance can

address this problem. Machine learning methods are currently of great interest in all areas of physics
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[26–28], and in the particular field of nonlinear optics, have been applied to the study of various

NLSE propagation scenarios [29–32]. The technique of dominant balance aims to automatically

determine the contributing dominant physical processes at each step of propagation. As a subset

of unsupervised learning techniques, it has been successfully applied to interpret the physics of a

number of nonlinear propagation scenarios in hydrodynamics, as well as the more challenging case

of broadband supercontinuum generation [33].

In this paper, we use a dominant balance approach to analyse modulation instability of the

NLSE. We first apply the method to interpret known analytic solutions for Akhmediev breather,

Kuznetsov-Ma, and Peregrine soliton structures, and for these spatio-temporal dynamics, we show

how we can distinguish background regions of dominant nonlinear propagation from regions where

nonlinearity and dispersion interact to drive localization. This is especially important in showing

how dominant balance can provide complementary insights into the dynamics, because associating

the nonlinear stage of evolution with the background may seem counter-intuitive as this is a region

of low intensity. Following these studies of analytic SFB solutions we then use numerical simulations

to study the more complex propagation case of noise-driven chaotic MI, and find again that we

can automatically identify these different regimes of physical interaction.

NLSE SOLUTIONS

We consider MI occurring in the focusing NLSE which is written in normalised form as follows:

i
∂ψ

∂ξ
+
∂2ψ

∂τ2
+ |ψ|2ψ = 0. (1)

Here ψ(ξ, τ) is a field envelope evolving in distance ξ and co-moving time τ . Dimensionless variables

ξ and τ are related to the usual notation of nonlinear optics by ξ = z/LNL and τ = t/
√
LNL|β2|/2,

where LNL = (γP0)
−1. Here z and t are dimensional distance and time, P0 is power (usually that of

the input continuous wave), and β2 and γ are the usual dimensional fiber group velocity dispersion

and nonlinearity parameters respectively [25]. The field envelope ψ(ξ, τ) is normalized with respect

to P
1/2
0 .

The NLSE possesses a number of known analytic solutions [11, 34]. Those associated with MI

are the solitons on finite background (SFB), that can be written in compact form as follows:

ψ(ξ, τ) =

[
1 +

2(1− 2a) cosh (bξ) + ib sinh (bξ)√
2a cos(ωmτ)− cosh(bξ)

]
exp(iξ), (2)

The physical behaviour of the solution is determined by the single governing parameter a through

arguments b = [8a(1 − 2a)]1/2 and ωm = [2(1 − 2a)]1/2. When a = 1/2, ωm = b = 0 and the
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solution is the limiting rational Peregrine soliton, double-localized in ξ and τ [14]. For a < 1/2,

ωm and b are real, and we obtain the τ -periodic Akhmediev breather, with ωm and b taking on

physical significance of a modulation frequency and exponential growth/decay rate respectively.

When a > 1/2, ωm and b become imaginary, and we obtain the ξ-periodic Kuznetsov-Ma solution.

These various SFB structures are well known, and have been observed in a range of experiments

since 2010 [35–37].

IMPLEMENTING THE DOMINANT BALANCE TECHNIQUE

In this section, we give a general overview of how the dominant balance technique and algorithm

are applied to nonlinear propagation in the NLSE. Further details and references are given in the

Methods section. The dominant balance technique aims to automate the process of identifying the

key interacting physical processes associated with different spatio-temporal regions of evolution.

The technique involves several steps. The first is to determine the evolution of the field ψ(ξ, τ),

and this is straightforward here as we have access to the analytic result in Eq. (2). However, as we

see below for noise-driven MI, the evolution can also be obtained using numerical integration of

the NLSE. Indeed, in the most general case, this could also involve analysis of experimental data

when access to full field information is available [38, 39].

The second step analyses the evolution ψ(ξ, τ) in its associated “equation space,” where each

coordinate axis corresponds to a physical process defined by one of the terms in the governing

NLSE (see Methods). Specifically, for each point (ξ, τ), the NLSE terms {iψξ, ψττ , ψ|ψ|2} are

separately computed, and we search for a “dominant balance” regime where the NLSE is approxi-

mately satisfied by only a subset of terms (the other terms contributing only negligibly.) As shown

in Ref. [33], machine learning tools can automate this search, using cluster detection (Gaussian

mixture modelling) and sparse regularization to identify regions where different combinations of

terms drive the dynamics. These are standard tools of unsupervised learning and optimization, and

allow robust detection of clusters even when they overlap (see Methods) [28, 40]. When different

clusters are found to possess the same sparcity pattern (significantly reduced variance in the same

directions of equation space), these are grouped together to form a particular candidate “balance

model.” In the case of the NLSE with three possible interacting terms, this process has a simple

geometric interpretation: two interacting terms will be associated with a cluster falling on a line

in the three-dimensional equation space, three interacting terms will be associated with a cluster

in a plane.
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When the data is fully grouped into balance models, the final step is to re-map the clusters back

onto the (ξ, τ) space for comparison with the standard evolution dynamics. Visually, we do this by

segmenting the original domain using a color key describing each balance model. In our analysis,

we used the code package described in Ref. [33], and available at the online repository [41]. We

also note that since we are dealing with complex fields, we stacked real and imaginary components

as input to allow grouping of regions of significant variance irrespective whether identified in the

real or imaginary components [41].

RESULTS

We first apply this technique to identify locally-dominant interactions during the evolution

of the three classes of SFB described above. Figure 1 shows results for the Peregrine soliton.

Specifically, Fig. 1(a-i) shows the spatio-temporal evolution |ψ(ξ, τ)|2 which reveals the expected

double-localization. The results of the dominant balance procedure are shown in Figure 1(b). Here

Fig. 1(b-i) plots the identified clusters in the three-dimensional space of the real parts of coordinates

{iψξ, ψττ , ψ|ψ|2}, whereas Fig. 1(b-ii) and Fig. 1(b-iii) show two projections as indicated. The color

key corresponds to two different dominant balance models that are found: one where only the

nonlinear and propagation terms contribute (blue) and another where all NLSE terms contribute

(orange). No cluster is found that involves only the dispersive and propagation terms. Note that

for convenience we plot dependencies only for the real field components, but similar results are

found for the imaginary components. The results in Fig. 1(b) show that all the points assigned

to the blue cluster (nonlinear and propagation terms) are strongly localised in the equation space

forming a dense distribution that manifests nearly zero variation with respect to the ψττ axis (see

particularly Fig. 1(b-iii)). In contrast, the orange cluster (all terms) is distributed throughout the

equation space with no reduced variance with respect to any of three axes. This illustrates the

geometrical interpretation lying behind the dominant balance approach.

The color-coded clusters are then mapped back onto a segmented dominant balance plot shown

in Figure 1(a-ii), and the particular intensity profile at ξ = 0 is also plotted in Fig. 1(c-i) using the

same color key. At ξ = 0, it is also instructive to plot the different contributions of each term of

the equation space as shown in Fig. 1(c-ii), clearly revealing how different combinations of terms

contribute to satisfy the NLSE (i.e. add to zero) in different regions. Note that at ξ = 0 all the

three terms {iψξ, ψττ , ψ|ψ|2} corresponding to the SFB solution are purely real.

These results reveal the key physical features of NLSE dynamics. For example, considering the
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(a) (b) (c)

FIG. 1. Dominant balance method applied to the Peregrine soliton. (a-i) Spatio-temporal evolution of

|ψ(ξ, τ)|2. (a-ii) Segmented map of the evolution space where the color key describes: only nonlinear and

propagation terms (blue), and all NLSE terms (orange). Using the same color key, (b) shows cluster identi-

fication for: (i) real parts of {iψξ, ψττ , ψ|ψ|2}; (ii) real parts of {ψ|ψ|2, iψξ}; (iii) real parts of {ψ|ψ|2, ψττ}.

(c) Using the same color key, (i) shows the intensity profile at ξ = 0; (ii) Individual contributing terms in

the NLSE at ξ = 0 as indicated in the legend.

Peregrine soliton and comparing Figs. 1(a-i) and 1(a-ii), the orange region reveals how the strong

spatio-temporal localization around (ξ = 0, τ = 0) arises from the interaction between all terms

in the NLSE, as both nonlinearity and dispersion combine to drive spatio-temporal compression.

In contrast, the surrounding background region (blue) is dominated only by nonlinear evolution,

and whilst this might be considered counter-intuitive since the background is where the intensity

is lowest, this result actually highlights how interpreting NLSE physics requires comparison of the

relative contributions of dispersion and nonlinearity. Specifically, a plane wave with no τ -structure

can not “experience” dispersion, and thus it is only nonlinear self-focussing that can initially

influence the evolution of the background. It is only after temporal structure develops from this

nonlinear stage of evolution that dispersion and nonlinearity interact. In fact, this approach to

visualizing the evolution very clearly illustrates the well-known “nonlinear” stage of the instability
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[34, 42]. The ability of the dominant balance analysis to identify this nonlinear stage explicitly

(even though perhaps counter-intuitive from a naive perspective) is an example of how it can yield

important insights into nonlinear evolution.

(a) (b) (c)

FIG. 2. Dominant balance method applied to the Akhmediev breather. (a-i) Spatio-temporal evolution of

|ψ(ξ, τ)|2. (a-ii) Segmented map of the evolution space where the color key describes: only nonlinear and

propagation terms (blue), and all NLSE terms (orange). Using the same color key, (b) shows cluster identi-

fication for: (i) real parts of {iψξ, ψττ , ψ|ψ|2}; (ii) real parts of {ψ|ψ|2, iψξ}; (iii) real parts of {ψ|ψ|2, ψττ}.

(c) Using the same color key, (i) shows the intensity profile at ξ = 0; (ii) Individual contributing terms in

the NLSE at ξ = 0 as indicated in the legend of Fig.1(c-ii).

The results in Figs 2 and 3 for the Akhmediev and Kuznetsov-Ma breathers respectively have

similar interpretation. Here we see again see how regions of background associated only with dom-

inant nonlinearity (blue) have been clearly identified, but we also clearly see how the contributions

of all terms (orange) leads to the expected spatio-temporal localization characteristics. We also

note how for the particular case of the Akhmediev breather, the ξ = 0 profile plot in Fig. 2(c)

shows how all terms contribute to the dynamics in the lower amplitude regions between the local-

ized peaks. These analytical SFB solutions, of course, do not exhaust the full variety of localised

structures appearing in MI such as higher-order solutions [43], breather or soliton collisions [44],
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ghost interactions [45] etc. However, these key examples provide a clear indication of how the dom-

inant balance approach can complement existing techniques such as inverse scattering transform

[24, 34, 46] in interpreting NLSE dynamics.

(a) (b) (c)

FIG. 3. Dominant balance method applied to the Kuznetsov-Ma breather. (a-i) Spatio-temporal evolution

of |ψ(ξ, τ)|2. (a-ii) Segmented map of the evolution space where the color key describes: only nonlinear and

propagation terms (blue), and all NLSE terms (orange). Using the same color key, (b) shows cluster identi-

fication for: (i) real parts of {iψξ, ψττ , ψ|ψ|2}; (ii) real parts of {ψ|ψ|2, iψξ}; (iii) real parts of {ψ|ψ|2, ψττ}.

(c) Using the same color key, (i) shows the intensity profile at ξ = 0. (ii) Individual contributing terms in

the NLSE at ξ = 0, as indicated in the legend of Fig.1(c-ii).

We now apply the dominant balance approach to interpret the more complex dynamics of noise-

driven MI. For this case, the NLSE is solved numerically for a plane wave input with an imposed

low level broadband noise background. We used a common optical noise model corresponding to a

one photon per mode background [47], but in fact similar chaotic dynamics in MI can be seen with

essentially any class of random amplitude and/or phase fluctuation on the input [25]. The spatio-

temporal intensity dynamics of |ψ(ξ, τ)|2 for this case are shown in Fig. 4(a) and for completeness,

we also show in Fig. 4(b) the associated spectral evolution [19].

We clearly see how the input plane wave evolves into a series of localized peaks, displaying
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FIG. 4. (a) Spatio-temporal evolution of the normalized intensity for spontaneous modulation instability.

(b) The associated spectral evolution. (c) The results of dominant balance revealing the different interaction

regions according to the colormap shown (same as in previous figures).

both random temporal (transverse) and spatial (longitudinal) periodicity. Maximum gain for the

spontaneous instability is at sideband frequency Ω = 1 and is associated with the initial emergence

of Akhmediev breathers with temporal periodicity of ∆τ = 2π. After this initial stage, subsequent

evolution is plotted up to ξ = 120. We also see how the incoherent temporal evolution is reflected in

the frequency domain with chaotic spectral expansion and contraction, as the random emergence

of particularly high intensity temporal peaks of ultrashort duration is associated with broader

spectra.

Analyzing the evolution in terms of dominant balance yields the results shown in Fig. 4(c).

The color scale is the same as the previous figures. Comparing these results with the analytic

SFB structures above allows us to distinguish the emerging localised structures. Indeed, even

in this case of highly random MI dynamics data-driven dominant balance successfully finds the

Akhmediev breathers with period ∆τ ≈ 2π (for example, at ξ ≈ 11 and ξ ≈ 38), and we also see

how propagation is associated with various ξ-periodic structures, breather collisions and Peregrine

soliton-like rogue wave structures (e.g. the isolated feature in Fig. 4(c) at ξ ≈ 93). Being based
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on unsupervised clustering of contributing terms to the evolution equation rather then simple in-

tensity thresholding, the technique successfully identifies developing localised structures even in

low-intensity regions. This suggests the further application of the method in automated identifica-

tion of emerging rogue wave structures [48].

DISCUSSION AND CONCLUSIONS

In conclusion, these results have clearly shown how the dominant balance approach provides a

powerful tool for studying the interactions between dispersion and nonlinearity in the context of

breather and modulation instability dynamics. In particular, even though these processes have been

the subject of much previous study, visualising the dynamics with dominant balance segmentation

clearly provides valuable insights into the relative contributions of different physical processes at

different points in the evolution map.

We stress here, however, that data driven methods are not designed to replace existing tech-

niques of analysing nonlinear dynamics, but should be seen as complementary tools to assist the

use of physical considerations. For example, of particular interest is the way in which the dominant

balance technique correctly associates the evolution of the plane wave background with a nonlinear

stage of propagation. This illustrates how simplistic interpretations such as associating nonlinear

evolution with intensity thresholding could be misleading, and it is always necessary to consider

the relative contributions of nonlinearity and dispersion in discussing the dynamics of the NLSE.

Moreover, whilst with experience, inspection of spectral and temporal evolution maps of the

NLSE can allow some processes (such as collisions) to be readily associated with combined nonlinear

and dispersive interactions, such interpretations can sometimes be misleading. This is particularly

the case with generalized forms of the NLSE where multiple processes combine, as previous studied

in Ref. [33] for the case of optical fibre supercontinuum generation. The strength of the dominant

balance approach is that it provides additional information in an unsupervised manner (i.e. not

based on intuition or experience). When applied in parallel with other analysis techniques, this

provides important complementary information to yield the best possible physical interpretation

of complex evolution.

Finally, we note that the NLSE describes propagation in many systems other than optical

fiber, and there has been a strong recent focus on studying novel NLSE dynamics in deep-water

hydrodynamics [22]. In this context, we anticipate an important area of future application will be

the case of MI induced by localized perturbations [49], and the associated emergence of rogue wave
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statistics [50, 51]. There is clearly much potential for data-driven discovery methods to be applied

in NLSE-related systems.[25].
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METHODS

Equation space representation

The methodology of identifying a dominant balance model for a physical system at a particular

stage of propagation aims to find a subset of terms of a more broadly applicable propagation model

that locally dominates the dynamics. Following the approach and notation of Ref. [33], we consider

a general evolution equation on a domain (ξ, τ) written as follows:

K∑
i=1

fi(ψ,ψξ, ψτ ..., ψ
2, ψψξ, ψψτ , ..., ψξξ, ψττ , ...) = 0, (3)

where K is the number of terms, and the terms fi can be constructed in various ways from the

spatio-temporal field ψ(ξ, τ). As discussed in Ref. [33] (and its accompanying Supplementary In-

formation), the advantage of this implicit form of the propagation equation is that it stresses the

balance that must be present to satisfy the equality: the sum of all the terms must be zero. “Dom-

inant balance” describes the situation when only a subset p of the K terms dominate the equality

such that the contributions from the other K − p terms are small or negligible. Geometrically, the

equation space is described by a vector: f(ξ, τ) = [f1[ψ(ξn, τm), ...], ..., fK [ψ(ξn, τm), ...]]T where

each of the dimensions (directions) corresponds to a specific term in the evolution equation (here

indices n ∈ [1, N ] and m ∈ [1,M ] represent the discretization of ψ(ξ, τ), where N and M are the

number of points in the ξ and τ directions respectively). A dominant balance regime then has

a direct geometrical interpretation - dynamical points attributed to a certain dominant balance

regime will be restricted to p directions of the full K-dimensional space. In other words, when

plotting the different terms in the equation space, the points associated with the dominant p terms

will have significantly reduced variance with respect to other K − p directions.

In the case of the NLSE, the dimensionality K = 3 and each dynamical point ψ(ξn, τm) is

associated with a vector [iψξ(ξn, τm), ψττ (ξn, τm), |ψ(ξn, τm)|2ψ(ξn, τm)]T . In geometrical terms,

dominant balance between the propagation and nonlinear Kerr terms (iψξ, |ψ|2ψ) will be repre-

sented by an ensemble of points restricted on a line with near-zero variance with respect to the

dispersion term ψττ (e.g. the blue clusters in Figs. 1-3). In contrast, the ensemble of points dis-

tributed throughout the iψξ +ψττ + |ψ|2ψ = 0 plane will represent the full dynamics that involves

the interplay of all three dynamical terms (e.g. the orange clusters in Figs 1-3).
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Finding Dominant Balance models through clustering

The search for dominant combinations of terms within a higher-dimensional equation space is an

ideal problem for unsupervised clustering algorithms [28, 40]. In particular, we use the algorithm

and code package described in Ref. [33] and Ref. [41] respectively which are based on a probabilistic

Gaussian Mixture Model (GMM) framework. GMM seeks to locate clustered subpopulations within

an overall population of data, under the assumption that the data consists of a mixture of Gaussian

distributions with specified weights, means and covariance matrices (usually denoted πk,µk,Σk

respectively, where k is the cluster index). The covariance matrix here generalizes the usual variance

of a one-dimensional Gaussian distribution to higher dimensions. In contrast to simpler techniques

such as k-means associated with hard partitions between clusters, GMM describes membership of a

clusters in a probabilistic sense, allowing the algorithm to fit and return clusters that overlap. The

GMM algorithm is based on the expectation-maximisation technique, a standard approach that is

fully described in e.g. Ref. [40]. The particular GMM algorithm used here is GaussianMixture

from the scikit-learn Python package [52], as implemented in Ref. [41].

A key motivation to use the GMM is that the covariance matrices can be interpreted physically

to identify combinations of terms that dominate the dynamics. In particular, clusters associated

with directions (dimensions) with significant variance correspond to physical terms that contribute

actively to the dynamics (see the discussion of the results in Figs 1-3 above). However, there are

some important additional factors that need to be considered to apply this approach successfully.

In particular, since the data points in the equation space may not actually approximate a mixture

of Gaussian distributions, the algorithm will usually return a number of clusters greater that the

number of physical balance regimes. As described in detail in Ref. [33], this problem can be

overcome using Sparse Principal Component Analysis (Sparse PCA) which uses l1-regularisation

to determine a sparse approximation to the leading principal component of each cluster [53, 54].

In this case, when a particular cluster is associated with a dominant balance regime, it should be

well described by the particular direction of its maximum variance. Note that l1-regularisation in

this context is a standard approach in machine learning using the l1 norm as the penalty in the

PCA regression-optimization problem [53].

There are two key parameters that need to be selected to ensure that the returned models

correspond as accurately as possible to physical regimes of dominant balance. The first is the

particular number of clusters used in the Gaussian Mixture Model. Although in principle we can

already anticipate the maximum number of potential clusters based on the number of terms in

the propagation model, it is usually advantageous to initially choose a greater number, as the
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l1-regularisation step will later group together clusters found to possess the same sparcity patterns

(i.e. reduced variances in the same directions of equation space) [33]. The second parameter is

associated with the sparse regularisation of the PCA that describes the tradeoff between accuracy

and sparsity in the returned models. A procedure for this selection process is described in detail

in the Supplementary information of Ref. [33], and is based on considering a returned Pareto-type

curve that plots the residual error of the inactive terms (accuracy) against the regularization pa-

rameter (sparsity). It is generally straightforward to see from this plot the most suitable parameter

to generate the returned balance model. The very last step of the algorithm involves re-mapping

the sparse clusters back onto the original spatio-temporal domain, and it is at this point we can

directly compare the initial field distribution with the identified cluster map (as in Figs 1-4).

It is useful to give further numerical details for our results. For the three classes of soliton on

finite background considered in Figs 1-3, the evolution maps ψ(ξ, τ) were computed over (N×M) =

(501× 1024) in ξ and τ respectively. For the noise-driven map considered in Fig. 4, evolution was

computed over (N×M) = (5001×1024) in ξ and τ respectively. The GMM search was based on an

initial selection of up to 5 clusters and the sparse regularisation parameter α (used in the Python

function SparsePCA [41]) was in the range 50–100. We also note the computation time associated

with the GMM clustering and SPCA analysis, which was typically 6 and 21 minutes respectively

for solitons on finite background and noise-driven MI, running on a standard Windows PC with

3.00 GHz 6 MB cache double-core CPU.
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