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Abstract

The Galilean transformation is a universal operation connecting the coor-
dinates of a dynamical system, which move relative to each other with a
constant speed. In the context of exact solutions of the universal nonlinear
Schrödinger equation (NLSE), inducing a Galilean velocity (GV) to the pulse
involves a frequency shift to satisfy the symmetry of the wave equation. As
such, the Galilean transformation has been deemed to be not applicable to
wave groups in nonlinear dispersive media. In this paper, we demonstrate
that in a wave tank generated Galilean transformed envelope and Peregrine
solitons show clear variations from their respective pure dynamics on the
water surface. The type of deviations depends on the sign of the GV and
can be captured by the modified NLSE or the Euler equations. Moreover, we
show that positive Galilean-translated envelope soliton pulses exhibit self-
modulation. While designated GS and wave steepness values expedite multi-
soliton dynamics, the strong focusing of such higher-order coherent waves
inevitably lead to the generation of supercontinua as a result of soliton fis-
sion. We anticipate that kindred experimental and numerical studies might
be implemented in other dispersive wave guides governed by nonlinearity.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is a comprehensive frame-
work which describes the dynamics of wave pulses beyond surface gravity
water waves [1, 2]. For instance, in Kerr media, plasma, and Bose-Einstein
condensates [3, 4, 5]. Since the proof of NLSE-integrability [6], several key
wave envelope solutions have been derived and discussed within the context of
modulation instability, see [7, 8, 9, 10, 11, 12, 13]. Besides the time-reversal
symmetry [14], which has been proven to be useful for applications [15],
another invariant operation is the Galilean transformation (GT) [7, 16, 17].
That said, introducing a Galilean velocity (GV) to a NLSE pulse is colligated
to a carrier frequency-shift to satisfy symmetry [18]. As such, the GT has
been legitimately considered not to be applicable and relevant for dispersive
physical systems [7, 19, 20].

In this work, we report experimental observations of Galilean NLSE soli-
tons for a wide range of GVs without an external flow forcing [21]. The
experimental data show considerable deviations from hydrodynamic NLSE
predictions, nevertheless, a very good agreement with the modified NLSE
(MNLSE) [22] and the numerically-solved Euler equations using the higher-
order spectral method (HOSM) [23, 24]. It is shown that the type of de-
viations in wave envelope depends on the sign of GV. For the case of the
envelope soliton, the pulse undergoes a strong broadening when GV is neg-
ative, whereas a strong self-focusing of wave envelope is observed when the
GV is positive [25]. Furthermore, we show that for predetermined carrier
wave steepness parameters, there are exact GV values for which a Galilean-
transformed envelope soliton corresponds to an exact multi-soliton solution
[26]. In fact, the higher the value of GV, the higher the order of the multi-
soliton. As a result, supercontinuum generation is an unavoidable process,
which follows as a result of substantial wave focusing and subsequent soli-
ton fission events [27, 28, 29]. We experimentally confirm the hydrodynamic
supercontiuum generation from Galilean envelope solitons in form of an ir-
reversible and severe spectral broadening genesis. We also briefly discuss
the influence of the GT on the Peregrine soliton dynamics, even though the
limited fetch of the experimental facility does not allow the study of emer-
gent and long-ranging complex wave patterns as a result of intrinsic and
higher-order modulation instability processes [30, 31].
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2. Constructing hydrodynamic Galilean solitons

Our starting point is the dimensional time-like NLSE for deep-water
waves. In fact, the weakly nonlinear propagation of a narrowband wave field
ψ with dominant wave frequency ω and wave number k while propagating
along the longitudinal direction x follows [32, 33, 2]

i(ψx +
1

cg
ψt)−

k

ω2
ψtt − k3|ψ|2ψ = 0, (1)

where ω and k are connected through the linear dispersion relation ω =
√
gk,

involving the gravitational acceleration g and t being the time coordinate
while cg =

ω

2k
denotes the group velocity in deep-water. The simplicity of

this nonlinear wave framework allows for the understanding of the distinct
role of dispersion and nonlinearity in the wave dynamics. Moreover, being an
integrable framework [6] facilitates the study of coherent structures’ behavior
in a variety of wave guides, regardless of being either steady or unstable [12,
34]. The dimensional form of the envelope soliton of amplitude a, satisfying
Eq. (1) reads

ψS(x, t) = a sech(−
√
2αk(x− cgt)) exp(−

iα2kx

2
), (2)

α := ak being the wave steepness. Even though having a simple construction
form, such localized wave groups play an important role in understanding the
formation of wave coherence in the ocean [35, 36]. Applying the GT to the
sech-soliton yields to the following parametrization

ψGS(x, t) =a sech(−
√
2αk(x− cgt)−

c

2
α2kx) exp(−iα

2kx

2
)

exp(
i
√
2cαk(x− cgt)

2
+
ic2α2kx

8
),

(3)

which still satisfies the NLS Eq. (1). We refer to [7, 16] for GT details, in-
cluding more convenient theoretical representations in dimensionless physical
quantities. Note that the GT compromises a frequency-shift of the carrier
and is different from the Tajiri-Watanabe-type construction [37], which may
cause experimental challenges in optical wave guides.

Examples of dimensional envelope soliton evolution for different GVs and
wave steepness values are shown in Fig. 1. We emphasize that when the
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Figure 1: Evolution of an NLSE envelope soliton (middle panels), slower analogues with
negative GVs (left panels), and faster counterparts with positive GVs (right panels) for
three wave steepness values 0.04, 0.06, and 0.08.

GV is negative, i.e. c < 0, the wave packet propagates slower, whereas when
c > 0 the coherent wave groups evolves faster compared to the pure and non-
Galilean soliton. The Galilean-transformed hydrodynamic Peregrine soliton
[38] is expressed as

ψGP (x, t) =a(−1 +
4(1− iωα2x/cg)

1 + 4(cα2kx/2 +
√
2kα(x− cgt))2 + ω2α4x2/c2g

)

exp(−iα2kx) exp(
i
√
2cαk(x− cgt)

2
+
ic2α2kx

8
),

(4)

Both, Galilean-transformed envelope and Peregrine solitons will be tested
in a water wave tank. The boundary conditions and times-series applied to
the wave maker can be determined from the expression of water elevation to
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first-order in steepness, as defined by

η(x†, t) = <(ψ(x†, t) exp(i(kx† − ωt))), (5)

where x† can be adapted to control the location of wave focusing in the wave
guide, i.e. the wave flume in our case, for the case of breathers.

3. Experimental build-up and arrangements

The experiments were carried out in the water wave flume of the Uni-
versity of Sydney, which is 30 meters long, 1 meter high and 1 meter wide,
allowing the study of specifically controlled or irregular and random wave
trains. A piston-type wave paddle located at one side of the wave tank, as
shown in Fig. 2, can generate waves in finite water depth as well as deep-
water conditions. The wave paddle can generate wave time-series with a

Figure 2: The University of Sydney wave flume, which operates and piston wave maker.

peak frequency ranging between 0.5 to 2 Hz in water depth conditions vary-
ing from 0.4 m to 0.9 m. In this study, the carrier wave frequency is fixed at
f = 1.25 Hz, which corresponds to a wavelength of λ = 1 m and a wavenum-

ber of k =
2π

λ
= 2π. The amplitude a of the carrier wave is varied to satisfy

wave steepness α values of 0.04, 0.06 and 0.08, respectively. We also ensure
that the dominant carrier frequency-shift after the GT, as defined by the
GV value c, is within the operational range of the wave maker. The water
depth is set to be h = 0.7 m. Hence, kh � 1, which satisfies deep-water
requirements. Eight capacitance wave gauges with a sampling frequency of
32 Hz can be re-deployed along the flume for a generated time-series to allow
not only a very high temporal, but also a spatial resolution considering the
repeatability of the experiments.
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4. Experimental results

The focus of our experimental campaign will be on the Galilean-transformed
envelope solitons. The case of Peregrine breather is more complex and will
be briefly discussed as well.

We recall that both, envelope and Peregrine solitons have been observed
in a wide range of physical media [39, 40, 41, 42, 43, 44, 45]. In water waves
envelope solitons have been confirmed to be steady even for very large steep-
ness values, even close to the wave breaking threshold [46, 47]. The carrier
wave steepness does not only quantify the degree of nonlinearity of Stokes
waves, but also determines the width of a wave pulse or wave packet. Three
values of wave steepness have been considered α ∈ {0.04, 0.06, 0.08} as well as
negative and positive values of GV. The evolution of envelope solitons subject
to GT as propagating over 22 m are shown in Fig. 3. We stress that the wave

Figure 3: Experimental observations of Galilean-transformed and pure envelope sech-type
solitons.

envelope has been reconstructed from the water surface data using the Hilbert
transform [2]. At first view, the cases for α = 0.04 seem to show a steady
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evolution of the wave packet. However, since this steepness value is indeed
very small, it does not allow for the nonlinear interaction to unfold over the
limited fetch. Increasing the value of wave steepness reveals that differently
than predicted from the NLSE framework, the Galilean-transformed solitons
in a physical water wave guide are not stationary while the type of unsteadi-
ness depends on the sign of GV. In fact, when the GV is negative, we can
clearly notice that the solitons subject to GT broaden, whereas when GV is
positive, the Galilean-transformed envelope solitons follow a self-compression
in form of a breathing process. The latter process becomes clearly visible for
the highest steepness and GV values adopted in the experiments.

To examine the physics of these deviations, we performed numerical sim-
ulations based on the modified nonlinear Schrödinger equation (MNLSE)
[22, 48, 49, 50, 51]. We recall that whereas the NLSE can be derived from
the Euler equations at third-order in steepness O(α3) [52], the MNLSE is an
improvement at the next order O(α4), which accounts for higher-order dis-
persive effects [22, 53, 54]. The MNLSE simulation results, as revealed in Fig.

Figure 4: MNLSE prediction of pure and Galilean transformed envelope solitons as gen-
erated in the wave tank and shown in Fig. 3.

7



4, support the evidence that unsteadiness of GT wave envelope evolution can
be attributed to the failure of simplified dispersion relationship in the wave
packet evolution description, similarly to the water wave propagation under
the action of a uniform and steady current [55, 56].

Positive values of GVs have a significant influence on the amplitude vari-
ations of envelope solitons subject to GT, see Fig. 5. No significant change

Figure 5: Amplitude amplification factors of Galilean-transformed envelope solitons with
respect to GV αc and the dimensionless evolution distance, as quantified from MNLSE
simulations.

in steadiness can be noticed for marginal αc values. The observed self-
modulation, which has been also underlined by the MNLSE simulations,
for positive GVs is indeed similar to the dynamics of multi-solitons [26]. The
connection between Galilean transformed multi-solitons and Satsuma-Yajima
solutions will be further explored in the next Section 5.

The investigation of Galilean-transformed solitons on zero-background
are simpler to perform due to the absence of modulation instability [57,
58]. Consequently, any yet small perturbation of the background wave can
provoke a drastic wave focusing [59, 60, 61]. Moreover, the observation of
such unstable patterns requires a larger fetch. This makes it challenging to
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be explored in the University of Sydney wave flume, which is limited to an
effective propagation distance of 22 m, considering the frequency range of
wave maker and the limited water depth possibilities.

The propagation of a Peregrine breathers being converted according to
a GT with negative and positive GVs in the wave flume together with the
respective MNLSE expectations are shown in Fig. 6. Indeed, we can ob-

Figure 6: Galilean-transformed Peregrine evolution in the wave flume (blue lines) for
the carrier parameters ak = 0.1, a = 0.01 m and x† = −12 m to observe the maximal
compression for the pure case in the middle of the tank. The red lines are the corresponding
MNLSE simulations of wave envelope.

serve that the Peregrine perturbation focuses later in the case of a negative
GV and earlier for the positive GV while the MNLSE simulations agree well
with the observations [46, 62]. However, there is an omnipresent MI dynam-
ics, which cannot be captured within the short fetch. Hence, we extended
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the propagation distance of the numerical simulations to inspect the long-
term behavior of the Galilean transformed Peregrine soliton following the
parameters adopted in the experiments, see Fig. 7. The MNLSE simulations

Figure 7: Long-term MNLSE prediction of Galilean-transformed Peregrine breather for
the same parameters as in Fig. 6. Top panels: Envelope evolution. Bottom panels:
Corresponding spectral evolution.

suggest that long-term evolution of the Peregrine soliton is indeed complex,
particularly, when GV is positive. Considering the Peregrine breather being
a particular case of Kuznetsov-Ma [63, 64] and Akhmediev [65] breathers, an
extensive and comprehensive study is required to address and quantify the
influence of the GT on solitons on finite background.

5. Galilean-transformed envelope solitons and multi-solitons

To disclose the relationship between multi-solitons, or Satsuma-Yajima
solitons [26], and the Galilean-transformed solitons, we will assume that both
parametrizations are equal at x = 0, for simplicity. We recall that the dy-
namics of a multi-soliton ψMS can be triggered by an integer-multiple of an
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envelope sech-type soliton [28]. That is

ψMS(0, t) = Nψ′
s(0, t) = Na′ sech(−

√
2α′k′(−c′gt)), N ∈ N, (6)

where ψ′
s(0, t) is a pure envelope soliton of amplitude a′, wavenumber k′

and wave frequency ω′. Let us assume that the GT of an envelope soliton
of amplitude a, wave number k, and wave frequency ω corresponds to a
real-multiple of a soliton of amplitude a′, and a wave frequency ω′ which
corresponds to the wave frequency of the Galilean-transformed soliton (incl.
the phase-shift), while k′ = w′2/g

Rψ′
S(0, t) = ψGS(0, t), R ∈ R (7)

Since the water surface elevation to first-order in steepness should be identi-
cal, the following holds

η′(0, t) = <(Rψ′
S(0, t) exp(i(−ω′t))) = <(ψGS(0, t) exp(i(−ωt))) = ηGS(0, t),

(8)
which is equivalent to:

Ra′ sech(−
√
2α′k′(−c′gt))) exp(i(−ω′t)) =

a sech(−
√
2αk(−cgt))) exp(i(−ωt)) exp(

i
√
2cαk(−cgt)

2
).

(9)

One way to solve this is problem is to set the amplitudes, sech-components,
and phases equal. Consequently, we can establish the following set of three
equations 

Ra′ = a

α′k′c′gt = αkcgt

ω′t = ωt+
cαkcgt√

2
.

(10)

Using the deep-water expression for the group velocity cg =
ω

2k
, we can

solve Eqs. (10) and get

ω′ = ω(1 +

√
2

4
cα) and R = (1 +

√
2

4
cα)3. (11)

Eq. (11) shows that both, steepness and GV affect the values of R and ω′.
Moreover, these later parameters α and c can be chosen so that R becomes
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an integer R = N and as such, Galilean-transformed solitons can define
boundary conditions to launch exact multi-soliton orbits. Fig. 8 illustrates
the range for the values of ak and c to map the Galilean-transformed solitons
to exact Satsuma-Yajima wave groups of order N .

Figure 8: The order factorN of higher-order solitons corresponding to the Galilean solitons
versus GS c and steepness values ak.

6. Supercontinuum generation

Having established the relationship between Galilean transformed enve-
lope solitons and higher-order solitons, it is self-evident to discuss supercon-
tinuum generation following a soliton-GT. Supercontiua can be formed as a
result of soliton fission of higher-order solitons due to the strong unbalance
between nonlinearity and dispersion, which arises from the considerable en-
velope compression or focusing, i.e. substantial high values of nonlinearity
[27, 66, 28, 29].

Recurrent multi-soliton focusing and the formation of supercontinua re-
quires a long fetch. Since these cannot be met by our state of the art facility
as illustrated in Fig. 2, we will investigate and explore such dynamics using
a numerical wave tank, based on the higher-order spectral model scheme,
which solves the Euler equations [23, 24].
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We first consider perfectly recurrent Galilean-transformed envelope soli-
tons to be mapped on the orbit of a multi-soliton as described in the previous
section. Simulation results and corresponding spectral evolution are summa-
rized in Fig. 9.

Figure 9: HOSM simulations of Galilean solitons corresponding to higher-order solitons
with order N = 2, 3, 4, carrier steepness of ak = 0.075, and frequency f = 1.25 Hz.
Top panels: cα = 0.735, N = 2. Middle panels: cα = 1.251, N = 3. Bottom panels:
cα = 1.661, N = 4,

The HOSM simulations strikingly confirm several wave focusing recur-
rence cycles of wave envelope on zero-background focusing, which are clear
attribute of Satsuma-Yajima breathers. This is also remarkably noticeable
for the order N = 3. One possibility to break this symmetry and induce
soliton fission is to increase the order of the multi-soliton solution, i.e. the
GV c, or the carrier wave steepness [29]. We stress that wave breaking should
be excluded in this process, since the flow is assumed to be irrotational to
justify the use of the HOSM. One realization involving an envelope soliton,
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subject to a GT and meeting an initial multi-soliton profile of the order of 4
is illustrated in Fig. 10.

Figure 10: HOSM simulations of Galilean solitons corresponding to a multi soliton of order
4 with cα = 1.661, carrier steepness ak = 0.0667 and wave frequency f = 2.035 Hz. The
soliton fission is clearly observed.

The evolution of the wave envelope shows a clear soliton dominant fission
signature into three solitons after the first focusing cycle. The latter mech-
anism brings along a severe and irreversible spectral broadening, which is a
characteristic feature of a supercontiuum emergence.

7. Conclusion

Galilean soliton dynamics have been investigated in controlled labora-
tory conditions. Even though the NLSE predicts that the GT should not
affect steadiness of the envelope solitons, clear deviations from NLSE predic-
tions have been observed and quantitatively captured by the MNLSE, which
takes into account high-order dispersive effects. For positive values of GV,
Galilean-transformed solitons exhibit a self-focusing dynamics, which can be
in particular cases connected to exact multi-soliton solutions. Higher-order
spectral method-based numerical wave tank simulations confirm such dis-
tinctive recurrent focusing dynamics of multi-solitons as obtained from GTs,
including orders of 2, 3, and 4. In addition, a particular case is consid-
ered in which soliton fission has been observed involving a supercontinuum
generation, as characterized by a severe and irreversible broadening of wave
spectrum. Future work will be devoted to understanding and addressing the
role and limitations of MNLSE in the modeling of velocity-translated soli-
tons on zero and particularly finite background. Preliminary observations
and simulation results have revealed very complex wave coherence and fo-
cusing dynamics as a result of modulation instability at play. We also expect
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complementary theoretical, numerical, and experimental studies in nonlinear
dispersive media other than water waves.
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