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Near-ideal four wave mixing dynamics are observed in a nonlinear Schrödinger equation system using a new 
experimental technique associated with iterated sequential initial conditions in optical fiber. This novel approach 
mitigates against unwanted sideband generation and optical loss, extending the effective propagation distance by two 
orders of magnitude, allowing Kerr-driven coupling dynamics to be seen over 50 km of optical fiber using only one short 
fiber segment of 500 m. Our experiments reveal the full dynamical phase space topology in amplitude and phase, showing 
characteristic features of multiple Fermi-Pasta-Ulam recurrence cycles, stationary wave existence, and the system 
separatrix boundary.  Experiments are shown to be in excellent quantitative agreement with numerical solutions of the 
canonical differential equation system describing the wave evolution. 

1. INTRODUCTION 

The nonlinear Schrödinger equation (NLSE) is one of the seminal 
equations of science, describing wave evolution in a dispersive 
medium subject to an intensity-dependent nonlinear phase shift. It 
applies to many different domains including plasma physics, 
hydrodynamics, Bose-Einstein condensates, analog gravity, optical 
self-focussing and filamentation, and wave propagation in optical 
fiber [1].  
 The key physical process in the NLSE is nonlinear four wave 
mixing (FWM), which arises from the dispersion-mediated energy 
exchange between discrete evolving frequency components [2].  
From a fundamental perspective, the essential features of FWM are 
most clearly seen in the degenerate case when a single frequency 
pump generates only two sidebands of upshifted and downshifted 
frequency. In this case the system is fully described by a reduced 
system of three coupled differential equations which fully captures 
the rich dynamical landscape [3]. This includes effects such as the 
initial phase of modulation instability, Fermi-Pasta-Ulam 
recurrence, stationary waves (fixed points), and a separatrix 
boundary between different dynamical regimes.  However 
although this canonical FWM system has been the subject of a 
number of previous theoretical and numerical studies, it is 
notoriously difficult to implement in practice. Consequently the 
expected ideal FWM dynamics have only been partially or 
imperfectly seen in experiments to date. 
 Here, we address this shortcoming directly through a new 
experimental technique which has allowed us to characterize near-
ideal FWM dynamics in a nonlinear Schrödinger equation system 
based on optical fibre propagation. In particular, we have developed 

a system where iterated initial conditions are sequentially injected 
into an optical fiber, extending the effective propagation distance by 
two orders of magnitude and mitigating against unwanted 
sideband generation and optical loss.  As a result we are able to 
clearly follow the dynamical interactions between only four 
evolving frequency components over a distance of 50 km using only 
one fiber segment of only 500 m length. Our experiments reveal the 
full dynamical phase space topology, revealing characteristic 
features of multiple Fermi-Pasta-Ulam recurrence cycles, stationary 
wave existence, and the system separatrix boundary.  We compare 
our experimental results with solutions of the canonical differential 
equation system describing the wave evolution, obtaining excellent 
agreement. This approach represents a significant improvement in 
both implementation and accuracy on previous approaches and 
moreover, it can be readily generalized to the study of any arbitrary 
number of interacting wave components. This represents a major 
advance in the development of experimental techniques in 
nonlinear fiber optics. 

2. THEORETICAL BACKGROUND AND PRINCIPLE 

We first review the theoretical description of ideal FWM dynamics 
in the NLSE, and use numerical simulations to illustrate the 
expected dynamical behavior.  In an ideal single mode and loss-free 
fiber, the evolution of a slowly-varying electric field envelope z,t  
is governed by the nonlinear Schrödinger equation: 
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with z being the propagation distance and t the time in a reference 
frame traveling at the group velocity. The group-velocity dispersion 
is 2 and the nonlinear Kerr coefficient is . We can write the NLSE 
in normalized form: 

 
2

2

2

1
0

2

A A
i A A
 

 
  

 
, (2) 

Here, normalized propagation and co-moving time variables  and 
 are linked to the dimensional quantities in fibre optics by 

/ NLz L   and 2/ NLt L  . The characteristic length 

scale is defined as: LNL = ( P0)-1 with P0 a power variable which in 
our case corresponds to the average power of the injected signal. 
The normalized field is related to its dimensional equivalent z,T 

by 0( , ) ( , ) /A z T P   . Note that this form of the NLSE that 

describes “focusing” dynamics is associated with a fibre dispersion 
parameter 2 < 0. 
 We discuss the fundamental wave mixing processes in the NLSE 
by considering the injection of a modulated pump wave A0 with two 
sidebands at frequencies ±: 
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Note that we omit the carrier frequency here, and the normalized 
frequency  is related to dimensional frequency fm in Hz by: 

2 02 /mf P    . In general, the injection of such a 

modulated signal in an optical fibre leads to the generation of 
multiple additional sidebands, but the ideal truncated FWM system 
which describes only pump and first sideband energy exchange 
with distance is described by only three coupled equations:  
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When 
1 0A A  , amplification of the lateral sidebands can 

occur for  < 2, with maximum gain at a frequency 
0 2   . 

This is of course the same condition for maximum gain that is 

derived in the linear stability analysis of modulation instability [3]. 

Note also that even though this system describes degenerate FWM, 

the fact there are only three frequency components involved has led 

to it being described (somewhat confusingly) as a “three wave” 

system.   

 From a dynamical perspective, this system can be associated 

with the one-dimensional conservative Hamiltonian:  

    2 23
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with canonical conjugate variables and  satisfying: 
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and where  and  are related to the amplitudes Ak()  and phases 
k() of the evolving sidebands (k = 0, ±1) by:  
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Here,  and  have physical interpretations as the fraction of the 
total power in the central frequency component and the sideband-
pump frequency component phase difference respectively. Tracing 
the dynamics in the ( cossin ) plane fully captures all the 
physics of this ideal system. 
 To illustrate the physics of this system [4], Fig. 1 shows 
modelling results for different initial conditions. The parameters 
chosen correspond to maximum gain with  = 0, and we assume 
initially equal sideband intensities A1(0)=A-1(0). In panels a and b we 
show results of numerical integration of the ideal FWM system in 
Eq. 4 (blue), results from simulation of the segmented approach 
(described below) which we use in our experiments (red), and 
results from numerical solution of the full multiwave interactions 
from the NLSE (yellow). In panels c we show the temporal evolution 
computed from Eq. 3 for the ideal FWM case. 
 We now discuss these results in detail. We first consider an 
initial value  = 0.9 and in-phase initial components (shown 
in panels a1, b1, c1. The periodic evolution of  in Panel 1a clearly 
shows reversible energy transfer from the central mode to the 
sidebands, associated with the expected Fermi-Pasta-Ulam 
recurrence [5, 6]. This recurrence is also seen in the corresponding 
temporal intensity profile (panel c1), and is reflected in the closed 
trajectories in the phase space portrait in panel b1. These orbits are 
localized on the right-hand side of the ideal FWM separatrix orbit 
(dashed black line, also computed from Eqs 4) which divides the 
phase space into two distinct regimes. 
 For  = 0.9 but with  , very different features are 
observed. This highlights the crucial role of the initial phase in this 
system. Although the power redistribution between modes 
remains periodic (panel a2), the amplitude variation is increased 
compared to the previous case. Moreover, the closed phase space 
trajectory (panel b2) is found on the opposite side of the separatrix. 
Physically, this is associated with modified temporal evolution as 
shown in panel c2, with a temporal phase-shift taking place in each 
recurrence cycle associated with longitudinal period doubling [6, 7].  

. 



 
Fig. 1.  Evolution properties of an strong pump and two lateral sidebands spaced by 

0 2   . Panels 1, 2 and 3 show respectively results for different 

initial conditions:  = 0.9 and   ,  = 0.9 and  ,  = 0.715  and   . Subpanels (a) show evolution of   for the ideal FWM system (blue), a segmented 

approach (red) and the full NLSE (yellow).   (b). Corresponding hase-space portraits. (c) Corresponding evolution of the temporal intensity profile for the ideal 

FWM system.   
 

 

As a final example, panels a3-c3 show the dynamics observed for  
= 0.715 and with  .  This leads to a near-stationary solution 
with very low amplitude variation in the side band ratio  (panel 
a3) and in the temporal intensity profile (panel c3). The phase space 
trajectory in this case is a closed orbit of very small effective radius, 
close to a fixed point of the system (panel b3).  
 Panels a1-a3 in Figure 1 also show the evolution of  computed 
from the numerical simulation of the full NLSE including multiple 
sideband generation (yellow). These results are clearly very 
different from the truncated ideal FWM system, with significantly 
more depletion of the central frequency component as additional 
sidebands are generated [8]. These differences are also very 
apparent when comparing the ideal FWM (blue) and NLSE (yellow) 
orbits in the phase space portraits in panels b1-b3.  In fact, we see 
that the NLSE orbits actually cross the separatrix associated with 
the ideal FWM system (this is in fact expected here given that the 
NLSE separatrix for this case is associated with the Akhmediev 
breather which possesses an infinite number of sidebands.) 
Moreover, for   = 0.715, the stationary solution is clearly not 

recovered and the orbit is much more complex than a fixed point.  
 
 These examples clearly show the difficulties in observing the 
canonical dynamics of ideal FWM in a NLSE system – the generation 
of additional sidebands in the full NLSE leads to major quantitative 
disagreement. However, a segmented approach to propagation 
with reinjection of power-adjusted initial conditions allows us to 
overcome this limitation, and to develop a practical system that 
yields close to ideal FWM dynamics.  The principle here is to replace 
a single long segment of fiber by a concatenation of segments that 
are sufficiently short such that additional sidebands cannot reach a 
significant level. Moreover, between sequential segments we cancel 
spectral components outside the four principle modes, and we use 
amplification to restore the same average power. Results 
illustrating this segmented approach are shown as the red lines in 
Fig. 1, and clearly show how this approach yields excellent 
agreement with the ideal FWM model: all the main features 
previously discussed are now quantitatively reproduced. Note that 
for these results, we use fiber segment lengths of L = 0.12, a choice 



which is motivated by our experiments described in Section  4. .

 

 

Fig. 2.  Experimental setup. The insets 0-4 in the bottom panels represent the optical spectrum generated at different stages of the experiment. 

 

3. EXPERIMENTAL SETUP 

 Attempts to measure the complex longitudinal NLSE wave 
mixing dynamics in optical fibre have been previously reported 
using various methods such as destructive cut-back measurements 
[8], distributed optical time domain reflectometry [9, 10] or 
evolution in a recirculating loop [11, 12]. However, deviation 
between experiments and ideal FWM dynamics becomes 
significant very quickly in these cases, and is dramatically impacted 
by even small amounts of distributed loss or gain [5, 9, 13]. 
 Our experimental setup is shown in Fig. 2 and is made of 
commercially-available telecommunications components. First, a 
laser operating at 1550 nm emits a continuous wave (CW). A phase 
modulator driven by a 40 GHz RF sinusoidal modulation converts 
the monochromatic laser spectrum into a set of equally spaced 
spectral lines [14]. The resulting symmetrical comb is then 
processed using a programmable filter (waveshaper device based 
on liquid crystal on silicon [15]) that simultaneously implements 
several operations: elimination of unwanted spectral components, 
and the precise adjustment of the ratio  between the central and 
lateral components as well as their relative phase . Special care has 
been devoted to ensure that no unwanted phase/intensity coupling 
occurs during this shaping. The tailored three-component signal 
with the target i and i is then amplified by an erbium-doped fiber 
amplifier that can deliver a tunable power. The amplifier runs in a 
power controlled mode so that the average power does not depend 
on the input spectral properties such that the system can be 
considered as quasi-conservative.  
 

 Nonlinear propagation takes place in single mode optical fiber 
with dispersion and nonlinear parameters being respectively -
7.6 ps2.m-1 and 1.7 W-1.m-1. The fiber length is 500 m, with this length 
selected as a tradeoff between the sensitivity of the detection stage 
of our setup and the appearance of Brillouin scattering: with 500-m 
of this fiber, the changes experienced by the optical field are 
significant enough to be conveniently detected and we have 
checked the absence of Brillouin backscattering for the range of 
powers under investigation. We can therefore work with CW 
signals without having to involve additional strategies of temporal 
pulse carving and associated synchronization. In order to limit 
polarization mode dispersion, the input state of polarization is 
optimized using polarization controllers.  
 The output signal is then attenuated and split into two in order 
to record both its spectral phase and intensity. An optical spectrum 
analyzer (OSA, resolution 0.1 nm) provides directly the ratio i+1. 
The spectral phase offset i+1 is retrieved from the temporal delay 
between the central and lateral sidebands as measured with a high-
speed sampling oscilloscope. The experimentally measured values 
can then be imprinted as new input values and the process can be 
iterated at will without any accumulation of deleterious amplified 
spontaneous emission and without any growth of unwanted 
spectral sidebands or noise. Potentially unlimited propagation can 
therefore be emulated, similarly to methods that have for example 
been implemented in the field of hydrodynamics [16].  

 

 



4. EXPERIMENTAL RESULTS 

A. Phase space and longitudinal reconstruction of the dynamics 

We first study the dynamics of the system at maximum gain with 

0 2   , i.e. for Pin = 21.5 dBm. In terms of normalized units, 

LNL = 4.1 km and the 500m length of our fiber segment corresponds 

to a normalized length L = 0.12, similar to the one used in the 

discussion of section 2C. The experimental phase space portraits 

obtained for different initial values 0 and 0 are shown in Fig. 3(a) 

with the orbits shown as circles connected by dotted lines.  Note that 

in these experiments, we checked that the energy contained in the 

unwanted sidebands located at ±2 fm always remained well below 

3% of the total energy of the signal.  

 For each value of 0, we examined the dynamics at two values of 

initial phase: 0 = 0 and 0 =  which yielded trajectories on the right 

and the left of the separatrix as expected from the results in Section 

2.  The dynamics were measured over 25 km (i.e. 50 iterations) and 

the results yield immediate insight into the phase space topology. 

The experimental orbits are seen to be in very good agreement with 

the predictions from the ideal system described in section 2 which 

are shown as thick solid lines. Indeed, many fundamental features 

of the ideal FWM dynamics can be seen from these results. 

Specifically, we clearly confirm the importance of the separatrix 

dividing the phase plane into two well-defined regions, with the 

measurements for 0 = 0.95 in particular providing a very clear 

indication of its location. We also see that the different experimental 

trajectories are nearly closed orbits and do not intersect. The slight 

discrepancies between experiment and prediction here are 

attributed to the accumulation of small errors in the 

phase/intensity measurements and residual depolarization effects 

not included in our scalar model. 
 Significantly, with complete experimental knowledge of the 
spectral phase and intensity of the three interacting frequency 
components of the evolving field, it is straightforward to fully 
reconstruct the evolving intensity profiles in the temporal domain. 
Over a propagation distance of 50 km (a normalized distance  = 12, 
100 iterations), Fig. 3(b) shows these results for an initial value of 
0 =0.9 and both initial values of phase 0 = 0 and 0 =  plotted 
beneath the corresponding orbits on the right and left side of the 
phase space plot.  These results show the expected recurrence 
dynamics as seen in Section 2, and for the case of 0 =, also highlight 
the evolution phase shift of half temporal period, leading, as 
expected by theory to a period doubling [7]. Note that these double-
periodic solutions have been the subject of particular recent interest 
[9, 17].   
 
 

 

Fig. 3.  Experimental results for 
0 2   . (a) Phase space portraits 

for initial values of 0 of 0.65, 0.85, 0.90 and 0.95 (green, yellow, red and blue 

lines respectively). Results are plotted for an initial phase offset 0 of 0 or . 

which appear respectively on the right and left side of the separatrix (dashed 

black line). The experimental results over 50 iterations (circles joined with 

dotted lines) are compared with the theoretical solution of system  (4) (solid 

thick line). (b) Longitudinal evolution of the temporal intensity profiles 

reconstructed from the experimental spectral measurements for 0 of 0.9 

and phases of 0 and  as indicated.  

B. Influence of the gain  

Tuning the input power, we can also explore the modulationally 
unstable dynamics for higher values of gain. Phase space portraits 
obtained for an average value of 23.7 dBm leading to  = 1.1 are 
plotted in Fig. 4. Once again, the experimental results are in good 
agreement with the theoretical predictions.  And when comparing 
with Fig. 3(a), we note how the dynamics at higher gain are 
associated with the change of the shape of the trajectories and the 
displacement of the separatrix.  
 



 

Fig. 4.  Experimental phase portraits obtained at an average power Pin = 23.7 

dBm and for initial values of 0 of 0.65, 0.85 and 0.95  (green, yellow and blue 

lines respectively). Results are plotted for an initial phase offset 0 of 0 or . 

which appear respectively on the right and left side of the separatrix (dashed 

black line).  The experimental results accumulated over 50 iterations (circles 

joined with dotted lines) are compared with the theoretical solution of (4) 

(solid thick line).  

 

 A more exhaustive study of the influence of the average power 
for a fixed value of 0 = 0.65 and 0 = 0.9 and phase offset 0  of 0 and 
 is shown in Fig. 5. Average powers between 19.7 and 23.7 dBm 
were tested, leading in terms of normalized frequency  of a range 
between 1.74 and 1.1.  
 The measurements of the instability process achieved at 0 =0.9 
(panels a) confirm that with increasing powers the separatrix 
progressively shifts: the intersection point between the separatrix 
and the horizontal axis  = 0 continuously decreases. Consequently, 
the phase space available for the evolution of initial conditions 0= 0 
gets larger and larger whereas initial conditions 0 =  evolve in 
more and more restricted areas.  
 Further measurements at 0 =0.65 (panels b) are also of 
interest, especially for 0 = 0. Indeed, we note that for the lowest 
powers (19.7 and 20.2 dBm), the initial condition 0 =.65 and 0 = 0 
leads to orbits that are on the left side of the separatrix. For these 
powers, the trajectory obtained for 0 =  is therefore surrounded 
within the trajectory for 0 = 0. When increasing the power, the 
separatrix is crossed and each initial condition evolves on a different 
side of the phase plane. For powers between 20.7 and 22.7 dBm, the 
orbits get smaller and smaller up to the stage where they reach a 
fixed point for 22.7 dBm. When further increasing the average 
power, the orbit becomes increasingly open.  
 
 

 

Fig. 5.  Influence of the input average power on the phase space portraits 
obtained for initial values of 0 of 0.9, and 0.65  (panels a and b respectively) 
and initial phase offset of 0 or . The theoretical predictions (panels 1) are 
compared with the experimental results (panels 2). 

C. Observation of a fixed point  

Finally, we investigate in more detail the properties observed at one 
of the two fixed points of the phase plane. For 0  = 0.65 and 0 = 0 
and Pin = 22.7 dBm (= 1.23), the longitudinal evolution of the 
temporal intensity reconstructed from the spectral measurements 
is plotted in Fig. 6(a) over 50 km. We clearly see in this case that the 
temporal profile is invariant with propagation. Panel (b) explicitly 
compares these results with temporal measurements made with a 
picosecond-resolution optical sampling oscilloscope and the 
agreement is such that they cannot be visually distinguished.  
Moreover, both experimental profiles agree with the expected 
temporal profile computed from Eq. 3 which in the case of a fixed 
point simply consists of a stationary temporal profile formed from 
three wave interference.   
 More generally, a fixed point of the ideal FWM system is 
predicted to exist at any value of gain for a particular choice of 
sideband ratio. Expressed in terms of normalized frequency , the 
dependence is given by [4]:  
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and this can be readily tested experimentally. Specifically, for 
different input powers, the waveshaper is used to experimentally 
determine the value of e associated with the fixed point, and the 
results are shown in Fig. 3(c). The agreement between 
experimental results (blue) and the prediction of Eq. 8 is excellent. 



 

Fig. 6. (a) Longitudinal evolution of the temporal intensity profile 
reconstructed from the spectral properties of the signal obtained for an 
average power of 22.7 dBm and initial conditions 0 = 0.65 and 0  = 0. 
(b) Comparison of the temporal intensity profile reconstructed from 
spectral measurements (blue line) and directly measured with an 
optical sampling oscilloscope (red dashed line). Results from theoretical 
predictions are also displayed with black circles.  (c) Evolution of the 
value of 0 leading to a fixed point. The experimental data (blue) are 
compared with the analytical prediction (dashed black line, Eq. (8)).  

5. CONCLUSION AND OUTLOOK 

Optical systems are well known to provide flexible testbeds 
with which to study the physics of diverse nonlinear systems, 
and the results here show the success of a new experimental 
approach allowing the dynamics of ideal four wave mixing to 
be fully explored. The use of iterated initial conditions in a 
short fiber segment mitigates against effects of loss, inelastic 
scattering and high-order sideband generation, allowing 
clear observation of the predicted evolution dynamics of the 
FWM system. Amongst the dynamics that are seen 
experimentally are Fermi-Pasta-Ulam recurrence, 
qualitatively different evolution on either side of a separatrix, 
and the existence of system fixed points.   
 It is important to stress the adaptability of this 
experimental technique. Although we have focused on 
spectrally-symmetric initial conditions, experiments can be 
readily adapted to asymmetric initial sidebands [4] and to 
evolution in fibers with normal dispersion. This opens up the 
possibility to study even more complex nonlinear wave 
mixing [17, 18]. Vector instability processes in birefringent 
fibers offer additional perspectives [19], and the principle of 
the technique can be extended into the spatial domain using 
spatial light modulators and phase-intensity characterization 
[20]. We also anticipate extension to other branches of 
nonlinear physics where discrete wave mixing plays a central 
role in the system evolution [21].  
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