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Abstract

The nonlinear propagation of ultrashort pulses in optical fiber depends sensitively on both input
pulse and fiber parameters. As a result, optimizing propagation for specific applications generally
requires time-consuming simulations based on sequential integration of the generalized nonlinear
Schrödinger equation (GNLSE). Here, we train a feed-forward neural network to learn the differential
propagation dynamics of the GNLSE, allowing emulation of direct numerical integration of fiber
propagation, and particularly the highly complex case of supercontinuum generation. Comparison
with a recurrent neural network shows that the feed-forward approach yields faster training and
computation, and reduced memory requirements. The approach is generic and can be extended to
other physical systems.

Neural networks (NNs) are a central subset of
machine learning techniques widely used in data
analysis, classification and prediction [1]. A cen-
tral aspect of NNs is their ability to link the in-
put and output of a multidimensional system, of
particular benefit for modeling complex and an-
alytically intractable relationships as is typically
the case with nonlinear systems. Indeed, several
studies have demonstrated the use of NNs to fore-
cast nonlinear evolution using including physics-
informed methods [2–4], data-driven approaches
[5–7], and hybrid techniques [8, 9]. In optics, NNs
are becoming increasingly applied to study mul-
tidimensional ultrafast and chaotic systems [10],
with recent applications including the optimiza-
tion of mode-locked lasers [11–13] and the analysis
of ultrafast instabilities [14–16].

A particular focus has been the use of NNs to
study nonlinear propagation and supercontinuum
(SC) generation in optical fibre [14,15,17], a com-
plex process involving multiple nonlinear and dis-
persive effects [18]. Both the propagation dynam-
ics and the output spectral and temporal charac-
teristics depend sensitively on the injected pulse

and fiber parameters, and matching input condi-
tions to achieve a desired output is a complex mul-
tivariate problem. The traditional approach for
optimization is based on parameter scanning using
step-by-step integration of the generalized non-
linear Schrödinger equation (GNLSE) [19]. Yet
whilst the GNLSE has been shown to accurately
model fiber nonlinear dynamics, direct simulations
are time consuming, especially with a large param-
eter space of potential boundary conditions.

To overcome this limitation, attempts have been
made to use machine learning techniques to op-
timize and control fiber dynamics, with one ap-
proach being the use of genetic algorithms to tai-
lor broadband SC spectra [20, 21]. More recently,
recurrent neural networks (RNNs) using only the
input temporal (or spectral) intensity profile of the
injected pulse have been shown to emulate fiber
propagation dynamics [15] with accurate predic-
tion of SC evolution maps in computation times as
short as one second. A limitation, however, is that
this approach requires an initial training phase of
several hours due to the multiple iterative loops
associated with the RNN internal memory.
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Here, we show how the full-field (intensity and
phase) evolution of ultrashort pulses in optical
fiber can be accurately modeled with a faster and
simpler feed-forward neural network (FNN) over a
wide range of input pulse properties (peak power,
duration, chirp), and fiber parameters (dispersion,
nonlinearity). The key conceptual novelty is that
we train the network to learn the differential prop-
agation dynamics of the GNLSE i.e. to accurately
replicate the change in intensity and phase of
the electric field between elementary steps. Once
trained on the differential dynamics, the network
then can model the long-term evolution from a
given input. We also perform a detailed compar-
ison with a RNN model, highlighting the benefits
of the FNN approach in terms of speed and mem-
ory.

The principle is illustrated in Fig. 1. We
first generate an ensemble of pulse propagation
data corresponding to highly complex broad-
band coherent SC generation. The dynami-
cal map is completely characterized by a vector
[In(zi, X),Φn(zi, X], where In and Φn represent
intensity and phase at some distance zi, express-
ible either in the temporal (X = T ) or spectral
domains (X = ω), and from which the complex
electric field can be reconstructed. The subscript
n = 1 . . . N indicates a particular map for a dis-
tinct set of input pulse and fiber parameters.

This data is generated by numerically integrat-
ing the GNLSE with the split-step method, seeded
by hyperbolic-secant input pulses at λ0 = 830 nm,
with peak power and duration (FWHM) in the
range P0 = 0.77–1.43 kW and TFMHM =70–130 fs
(±30% variation). The fiber dispersion param-
eters are: β2 = −5.90 × 10−27 s2m−1, β3 =
4.21 × 10−41 s3m−1, β4 = −1.25 × 10−55 s4m−1,
and β5 = −2.45 × 10−70 s5m−1 (zero-dispersion
wavelength at 767 nm), and the nonlinear coeffi-
cient is: γ = 0.1W−1m−1. The fiber length is L =
20 cm.

The key idea shown in Fig. 1(a) is to teach the
network the differential change in intensity and
phase associated with an elementary propagation
distance ∆z. To achieve a performance advantage
relative to direct integration, the aim is to use
a significantly larger step in the FNN compared
to that used in GNLSE integration. To this end,
the intensity and phase evolution are downsam-
pled at distances zi = (i−1)∆z (i = 1..M), where
∆z = L/M = 0.1 cm is 50 times larger than in
the GNLSE simulations used to generate the data.
The downsampled vectors are then used as the

FNN input. The network output vectors after an
elementary step ∆z are [In(zi+1, X),Φn(zi+1, X)].
The change in the intensity and phase modeled
by the FNN is then compared to that from the
GNLSE via an error function [14].

Once trained, the neural network acts as a
very fast and memory-efficient GNLSE integra-
tor. It can predict the intensity and phase
[I(z + ∆z,X),Φ(z + ∆z,X)] after an elemen-
tary propagation distance ∆z given the complex
field [I(z,X),Φ(z,X)] at distance z, from which
the dynamical evolution of the complex electric
field can be reconstructed. The trained FNN can
then be used to predict propagation dynamics
over an extended distance using a iterative loop
(see Fig. 1(b)) such that the intensity and phase
[I(zi+1, X),Φ(zi+1, X)] are fed back to the net-
work as a new input to predict the field amplitude
[I(zi+2, X),Φ(zi+2, X)] at distance z+ 2∆z. This
operation is performed over the full propagation
distance.

The neural network itself consists of 3 hid-
den layers of 2000 nodes with ReLU activation
(f(x) = max(0, x)) and a sigmoid output layer
with 2048 nodes. The codes were written in
Python using Keras with Tensorflow backend [22].
The network is trained for 80 epochs with RM-
Sprop optimizer and adaptive learning rate. The
network can be trained in the temporal or spectral
domain and with data input on either linear or log-
arithmic (dB) scales. In the results shown below
we used ensembles of spectral evolution maps in
logarithmic scale. Examples of time domain evolu-
tion using linear input are in the Supplementary
information (Fig. S1). The accuracy of the net-
work is tested with a separate set of propagation
maps not used in the training phase. We quantify
performance using the average (normalized) root
mean squared (RMS) error:

R =

√∑
d,i(xn,d,i − x̂n,d,i)2∑

d,i(xn,d,i)
2

, (1)

where xn and x̂n denote GNLSE simulation and
FNN prediction for a particular realization n.
Variables d and i indicate summation over inten-
sity (spectral or temporal) and propagation steps,
respectively. When evaluating performance over
an ensemble, the error is calculated over N dis-
tinct evolution maps.

We first show the ability of the FNN to predict
SC evolution developing from transform-limited
input pulses. Here, we used an ensemble of 1500
simulations: 1400 for training phase and 100 for
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Figure 1: Feed-forward neural nonlinear dynam-
ics integrator principle. a Training Differential
Dynamics. Training is done from multiple in-
put/output pairs generated by direct integration
of the GNLSE and corresponding to the tempo-
ral (X = T ) or spectral (X = ω) intensity I and
phase Φ of the propagating field at distances sep-
arated by an elementary step ∆z (see text for de-
tails). The network variables are adjusted via gra-
dient descent backpropagation. b Iterating Prop-
agation Prediction. Once trained, the network
effectively acts a GNLSE integrator and predict
iteratively the intensity and phase evolution via
feedback loop. The prediction is initialized from
the intensity and phase profile at the fiber input.

testing. Predicted spectral evolution maps are
shown in Fig. 2 for input peak power and pulse
duration of 1.32 kW and 120 fs (Fig. 2a). For
comparison, we also plot the evolution from direct
GNLSE integration. The RMS error for the real-
izations shown in Fig. 2a is R = 0.098, while the
average error computed over the 100 test evolution
maps is R = 0.094. The neural network accurately
predicts the SC development, with dispersive wave
and soliton dynamics reproduced over a ∼ 40 dB
dynamic range.

We next tested the ability of the network to
model SC development from chirped pulses. Here,
we performed 3000 simulations with the same pa-
rameters as above, except with peak power varia-
tion of ±20% and input pulse spectral bandwidth
varying from transform-limited (TL) to twice the
TL with random sign of chirp. The SC spec-
tral evolution predicted by the network for pulses
with 942 W peak power, 84 fs duration, and pos-
itive chirp of 1.53 times the TL bandwidth are
shown Fig. 2b. Again in this case we see how the
main features including the spectral interference

fine structure are well-reproduced (R = 0.190) by
the FNN model although we do note a small dis-
crepancy in the distance of maximum compression
at -20 dB bandwidth. The RMS error R = 0.383
(0.242 median) computed over the 100 test ensem-
ble shows that the network also accurately models
chirped pulse dynamics.

The results above correspond to the case of
anomalous dispersion regime SC generation, but
the network can be trained over a much wider
range of dynamics. To this end, one can use the
normalized form of the GNLSE to generate the
training ensemble of evolution maps (see Supple-
mentary information), and map dimensional pa-
rameters to normalized values to predict the evolu-
tion corresponding to a specific set of parameters.
For example, Fig. 3 plots examples of predicted
SC evolution for a pump wavelength in the nor-
mal dispersion region (see caption for parameters).
Specifically, Fig. 3a shows results for a TL limited
pulse injected near the zero-dispersion wavelength
while Fig. 3b shows the spectral evolution for a
pump wavelength further detuned into the normal
dispersion regime. We observe very good accu-
racy with R = 0.141 for Fig. 3a and R = 0.043 for
Fig. 3b. The RMS error over an ensemble of 200
realizations is R = 0.060. Predictions in the time
domain can be found in the Supplementary infor-
mation (Fig. S2).

To reduce computational memory and increase
the speed in the training phase, one can train
the network from convolved spectral intensity and
phase evolution maps. At first sight, a disadvan-
tage of using convolved data is that the result-
ing wavelength/frequency grid is no longer on a
Fourier grid, requiring separate training to pre-
dict spectral and temporal evolution. However,
this is in fact a major benefit, because it allows
to appropriately select the resolution in the spec-
tral or temporal domains to optimally capture the
relevant physical structure.

Results of predicted spectral evolution maps us-
ing convolved spectral intensity and phase training
data with a 8 nm FWHM super-Gaussian spectral
filter are shown in Fig. 4a,b. These results corre-
spond to the same input pulse and fiber parame-
ters as in Fig. 2a,b. We see how the network pre-
dictions remain accurate with a mean convolved
(logarithmic) spectral intensity RMS of 0.06 and
0.16 calculated over 100 distinct test evolution
maps for the transform-limited and chirped cases,
respectively. Other examples of predictions using
different spectral resolution can be found in the
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Figure 2: Comparison of supercontinuum spectral intensity evolution between GNLSE simulations (left
panel) and neural network prediction (FNN, middle panel). The right panel shows the spectral intensity
and phase at selected distances as indicated by the arrows. a shows the spectral intensity evolution
of transform limited input pulses for input peak power and pulse duration values of P0 = 1.32kW and
TFWHM = 120fs), respectively. b shows the spectral intensity evolution for a chirped input pulse for
input peak power and pulse duration values of P0 = 942W and TFWHM = 84fs) with initial positive
chirp of 1.53 times the TL bandwidth.

Supplementary information Fig. S3.

We then conducted a full comparison test of
the computation resources and performance be-
tween the FNN model and an RNN similar to
that used in Ref. [15]. The comparison was per-
formed over an ensemble of 12,000 (11,800 for
training and 200 for testing) convolved SC evo-
lution maps in the anomalous dispersion regime
with variations in peak power, pulse duration and
dispersion (see Supplementary information). Ta-
ble 1 summarizes the results, with examples of
predicted maps shown in the Supplementary in-
formation (Fig. S4). For completeness we also list
the computational resources used by the GNLSE
simulations. Both FNN and RNN used the same
number of free parameters/network variables, but
the RNN is trained from spectral intensity maps
which reduces by half the number of grid points
compared to the FNN that includes both inten-
sity and phase. The computational advantage of
the FNN is clear. Specifically, FNN training and
simulation times are reduced by a factor of four
and five respectively, while memory usage during
training is decreased by a factor of two. As might

GNLSE RNN FNN
RMS error N/A R = 0.09 R = 0.19
Training
time* N/A 7.7 h 1.9 h

Simulation
time** 38 min 1.6 s 0.35 s

Memory* 79 GB 7.7 GB 3.2 GB
Network var. N/A 600k 600k
Num. points 8,192 132 264

Table 1: Comparison between normalized GNLSE
numerical simulations, recurrent neural network
(RNN) [15], and feed-forward neural network
(RNN) for convolved spectral data. *11800 sims
**200 sims

be expected from the faster computation, the FNN
does show increased error compared to the RNN,
but this does not lead to any significant visual dif-
ferences in the evolution maps seen in the figures.

These results have shown model-free prediction
of the full-field dynamics of ultrashort pulse propa-
gation in optical fiber based on a feed-forward neu-
ral network trained to recognize differential propa-
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Figure 3: Spectral intensity evolution from sim-
ulations (GNLSE, left panel) and predicted by
the neural network (FNN, right panel) for nor-
mal near-zero-dispersion pumping in a (γ =
0.01 W−1m−1, β2 = 1.3 × 10−27 s2m−1, β3 =
2 × 10−41s3m−1, P0 = 2.0 kW, λ0 = 835 nm,
TFWHM = 100 fs) and far-normal pumping in b
(γ = 0.01 W−1m−1, β2 = 7.2×10−27 s2m−1, β3 =
2 × 10−41 s3m−1, P0 = 13.6 kW, λ0 = 835 nm,
TFWHM = 100 fs). The top panels show the spec-
tral intensity and phase at the fiber output.

gation dynamics within a GNLSE model. As com-
pared to the recently introduced RNN approach,
this FNN method is simpler and possesses signif-
icant advantages in terms of speed and memory.
We expect our results to be of significance for the
real-time optimization and control of nonlinear dy-
namics and we anticipate this approach could be-
come a standard tool in nonlinear physics.
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panel) when using convolved evolution maps for
training with parameters identical to those in
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Supplementary information

Supplementary results

Same evolution scenarios as in Figure 2 of the main manuscript but with training and
prediction performed in the time domain. The RMS errors for temporal intensity are R = 0.54
and R = 0.70 for the transform-limited and chirped supercontinuum cases, respectively.
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Figure S1: Temporal intensity evolution of supercontinuum from simulations (GNLSE, left panel),
predicted by the neural network (FNN, middle panel), and their comparison at selected distances
(right panel). a shows the evolution of a transform limited input pulse, and b shows the evolution for
a chirped input pulse (see main text for details).

Same evolution scenarios as in Figure 3 of the main manuscript but with training and
prediction performed in the time domain The RMS error is R = 0.17 over 200 test evolution
maps.
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Figure S2: Temporal intensity evolution of supercontinuum from simulations (GNLSE, left panel),
predicted by the neural network (FNN, right panel) for normal near-zero-dispersion pumping in a and
far-normal pumping in b. The top panels show the temporal intensity and phase at the fiber output

Same evolution scenarios as in Figure 4a,b but with training intensity and phase data
convolved with a 4 nm FWHM super-Gaussian filter. The (logarithmic) RMS error with the
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4 nm resolution is R = 0.06 and R = 0.17 for the transform-limited and chirped cases, respectively,
similar values as observed with the 8 nm resolution.
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Figure S3: Convolved spectral intensity evolution of supercontinuum from simulations (GNLSE, left
panel), predicted by the neural network (FNN, right panel) and corresponding to the cases illustrated
in Fig. 4a and b. The top panels show the spectral intensity and phase at the fiber output.

Comparison between recurrent and feed-forward neural network The (logarithmic) RMS
errors over 200 test realizations are R = 0.09 and R = 0.19 for the recurrent and feed-forward neural
networks, respectively.
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Figure S4: Convolved spectral intensity evolution of supercontinuum from simulations (GNLSE), pre-
dicted by the recurrent (RNN) and neural network (FNN), and their comparison at selected distances
(right panel). a shows the predictions for sech-type input pulse centered at 830 nm with 7.6 kW peak
power and 40 fs duration with fibre parameters of γ = 0.1 W−1m−1, β2 = −8 × 10−27 s2m−1 and
β3 = 9 × 10−41 s3m−1. b shows the results for an input pulse with 2.9 kW peak power and 120 fs
duration, and γ = 0.0184 W−1m−1, β2 = −5.1 × 10−27 s2m−1 and β3 = 4.3 × 10−41 s3m−1. c shows
the results for a realization with 3.0 kW peak power and 60 fs duration, and γ = 0.01 W−1m−1,
β2 = −1.7× 10−27 s2m−1 and β3 = 6.5× 10−42 s3m−1.
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Numerical simulations

GNLSE simulation. We model supercontinuum generation by injecting sech-type transform-limited
pulses with 0.77–1.43 kW peak power and 70–130 fs duration (FWHM) (±30% variation) at 830 nm
center wavelength are injected into the anomalous dispersion regime of a 20 cm nonlinear fibre, in-
cluding higher-order dispersion, self-steepening and Raman effect. The nonlinear coefficient of the
fibre is γ = 0.1 W−1m−1, and the Taylor-series expansion coefficients for dispersion at 830 nm
are β2 = −5.90 × 10−27 s2m−1, β3 = 4.21 × 10−41 s3m−1, β4 = −1.25 × 10−55 s4m−1, and
β5 = −2.45 × 10−70 s5m−1. The simulations use 1024 spectral/temporal grid points with tempo-
ral window size of 2 ps, and a step size of 0.02 mm (10,000 steps). For the neural network, the
propagation is downsampled at a constant propagation step of ∆z = 0.1 cm, yielding 200 propagation
steps. Shot noise is added via one-photon-per-mode with random phase in the frequency domain,
although noise does play no significant physical role in the regime of coherent propagation studied
here.
Normalized GNLSE. For generalization of the the prediction model, we used the normalized form
of the GNLSE:

i
∂ψ

∂ξ
− sgn(β2)

2

∂2ψ

∂τ2
− iq

6

∂3ψ

∂τ3
+

(
1 + is

∂

∂τ

)(
ψ

∫ +∞

−∞
r(τ ′)|ψ(τ − τ ′)ξ|2dτ ′

)
= 0,

where τ = T/T0, ξ = zT 2
0 /|β2| and ψ(ξ, τ) = NA(z, T )/

√
P0, q = β3/|β2|T0, s = 1/ω0T0, and r are

the normalized time, propagation distance, amplitude, third-order dispersion, shock-term, and Raman
response, respectively.

For the normal dispersion, we model the propagation of transform-limited hyperbolic-secant pulses
centered at 835 nm in the normally dispersive fiber (i.e. sgn(β2) = 1). Simulations included a variation
to the soliton number from 2 to 8 and dispersion parameter from 1 to 25 with the positive sign of β2.
We used 512 temporal grid points with temporal window size of 400 (normalized units) and normalized
distance set to 0.5 with 9,000 steps.

For the comparison with the recurrent neural network [15], we simulated the propagation of
transform-limited hyperbolic-secant pulses centered at 830 nm in the anomalous dispersion regime
(i.e. sgn(β2) = −1). The soliton number, pulse duration and third-order dispersion parameter were
randomly varied in the interval 2 to 8, 30 to 130 fs and 1 to 9, respectively. The simulations used 8192
temporal grid points with temporal window size of 350 (normalized units) and normalized distance
set to 2 with 9,000 steps.
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