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Abstract

We developed two thermal concentrators, one with a 2D design of uniform thickness and another with a
3D design, using the coordinate transformation technique and metamaterials. By structuring the thermal
conductor, we were able to achieve the desired local density-heat capacity product ρC and anisotropic thermal
conductivities. Homogenized thermal conductivities were obtained from the boundary heat fluxes of the
unit cells computed with finite element simulations and taking into account the cylindrical symmetry. We
fabricated the 3D concentrator using 3D metal printing and used a thermal camera for characterization. By
designing the unit cells to obtain the (ρC) values given by the coordinate transformation, the time evolution
characteristics of the metadevice are closer to those of an ideal concentrator when compared to devices that
solely consider anisotropic conductivities.
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1. Introduction

Metamaterials are engineered materials designed
to possess properties that are rarely observed in na-
ture such as negative refractive index [1, 2] or nega-
tive Poisson ratio [3]. They are typically composite
materials structured on a scale much smaller than the
relevant dimension (e.g. the wavelength of the propa-
gating waves). They have gained popularity for their
applications in various domains, such as electromag-
netics [4], acoustics [5], thermal [6]. In the field
of manipulating heat flow, metamaterials have been
proposed for numerous applications such as thermal
cloaks [7, 8, 9, 10], thermal concentrators [7, 8, 11],
heat flux reversers [8], macroscopic thermal diodes
[12] and thermal encoding [13] among others. One
of the tools to design such metamaterials is transfor-
mation thermodynamics [7, 14, 15]. It leads to po-
sition dependent density-heat capacity product and
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anisotropic thermal conductivities. Thermal cloaks
[6, 16] and thermal concentrators [17, 18, 19, 20, 21]
have already been experimentally demonstrated and
tested. However, they only considered the desired
thermal conductivities but not the density-heat ca-
pacity product ρC, which is crucial for non-steady
state applications.
In this paper, we propose a methodology for incor-
porating the density-heat capacity product in the de-
sign of such devices. We specifically focus on a ther-
mal concentrator, but our approach can be applied to
other applications utilizing the coordinate transfor-
mations. The classical method of discretization has
been employed to achieve position dependent prop-
erties. In contrast to previous works [17], we did not
use the two-scale homogenization theory to calcu-
late the homogenized thermal properties; we instead
used an approach based on boundary fluxes, while
considering the circular symmetry. The ρC product
was adjusted by adding material in regions where it
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has minimal impact on heat flow. Here, we present
two examples: one with a constant thickness and one
with a varying thickness. To demonstrate the feasi-
bility and effectiveness of our designs, we fabricated
the second design using 3D metal printing. We char-
acterized it and compared the results with finite ele-
ment (FE) simulations.
The subsequent sections of this paper are structured
as follows. Section 2 describes the methodology
used in our design process. It begins with a brief
overview of the coordinate transformation principle
applied to a concentrator using a linear function.
Next, we present our approach for computing the
homogenized anisotropic thermal conductivities and
the homogenized ρC of a unit cell of our metade-
vice. We then explain the two different methodolo-
gies (2D and 3D) used to not only obtain the desired
local anisotropic conductivities but also the desired
local density-heat capacity product ρC. The fabrica-
tion process and characterization are also presented
in section 2. Section 3 presents the results, including
a comparison between simulations and experimental
results.

2. Methods

2.1. Coordinate transformation
Let us consider the two-dimensional transforma-

tion (r′, θ′) = ( f (r), θ) in polar coordinates. The heat
equation resulting from this transformation applied
to a homogeneous isotropic material can maintain its
form as:

∇ ·
( ¯̄K
′

∇T
)
= ρC′

∂T
∂t
, (1)

with T the temperature, t the time, ¯̄K
′

the trans-
formed conductivity tensor and ρC′ the transformed
density-heat capacity product written as [7, 9]

¯̄K
′

= K R(θ)
(
K′rr 0
0 K′θθ

)
R(θ)T , (2)

K′rr
(
r′
)
=

g (r′)

r′ dg
dr′ (r′)

, K′θθ =
1

K′rr(r′)
, (3)

ρC′ = ρC
g (r′) dg

dr′ (r′)

r′
. (4)

K and ρC are the conductivity and density-heat ca-
pacity product of the homogeneous material, g is the
reciprocal function of f (i.e. g(r′) = r), R(θ) is the ro-
tation matrix through an angle θ and RT its transpose.
The choice of the function f can lead to a cloaking
device or a concentrator for instance. We chose to
design a concentrator using a linear function, stretch-
ing the annular space comprised between the radii R2

and R3 into the annular space between the radii R1

and R3:

f (r) =


R1

R2
r, f or r ∈ [0,R2],

αr + β, f or r ∈ [R2,R3],
(5)

with α =
R3 − R1

R3 − R2
> 0 and β = R3

R1 − R2

R3 − R2
< 0.

Although K′ depends on r′ in the area r′ ∈
[R1,R3], this function has the advantage to have a
smaller variation of ρC′ compared to a function of
the type r′ = R3( r

R3
)2 used in [11, 17].

2.2. Homogenization

Since no common material has the desired
anisotropic space-dependent values of ¯̄K

′

and ρC′,
we use metamaterials. The device consists of struc-
tured cells, whose effective properties correspond to
the desired values. One possibility to compute the
effective properties is to use the two-scale homoge-
nization theory [11, 22], where the averaged proper-
ties of a periodic unit cell far smaller than the size of
the sample are used to determine the global behavior.
As the unit cell is defined in polar coordinates, it is
preferable to avoid using Cartesian rectangular unit
cells. To eliminate the need for a coordinate trans-
formation between Cartesian and polar coordinates,
we propose instead an original method for comput-
ing the effective thermal conductivity tensor directly
in the polar system (values of Kr and Kθ) from the
fluxes obtained with FE simulations.

Let us consider the unit cell of a homogeneous
material depicted in Fig.1. In order to calculate
Kr, we impose the following boundary conditions:
T (r = ri) = Ti, T (r = ri+1) = Ti+1 and no flux for
θ = θ1 and θ = θ2. In a steady state regime with no
heat source, the heat equation simplifies to (no de-
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pendence on θ):

d2T
dr2 = −

dT
rdr

(6)

The temperature is therefore given by:

T (r) = T (ri) − A · ln
(

r
ri

)
, (7)

with A = Ti−Ti+1

ln
(

ri+1
ri

) obtained from the boundary con-

ditions. The radial flux Φr is therefore:

Fig. 1. Schematic representation of the heat transfer in a 2D
shape cell in polar coordinates. Qα is the integration of the flux
Φα along the considered boundary.

Φr = −K
dT
dr
= K

A
r
. (8)

We can thus compute the effective radial conductiv-
ity of a structured unit cell from the average of the
normal flux Φri at r = ri or from the average normal
flux Φri+1 at r = ri+1:

Kr = Φriri

ln
(

ri
ri+1

)
Ti+1 − Ti

= Φri+1ri+1

ln
(

ri+1
ri

)
Ti+1 − Ti

. (9)

In the same way, to calculate Kθ, we consider the fol-
lowing boundary conditions: T (θ = θ1) = T1,T (θ =
θ2) = T2 and no flux for r = ri and r = ri+1. For a
homogeneous material, the temperature does not de-
pend on the radius r and its derivative according to
θ is a constant. The integration of the azimuthal flux
Φa along the radius is a constant Qθ:∫ ri+1

ri

Φadr =
∫ ri+1

ri

−K
∂T
r∂θ
= −K

[
∂T
∂θ

ln (r)
]ri+1

ri

= Qθ

(10)

The temperature follows a linear relationship with θ:

T (θ) = T1+
∂T
∂θ
·(θ−θ1) = T1+

Qθ
K · ln

(
ri

ri+1

) ·(θ−θ1) (11)

The T2 boundary condition provides the relationship
between Qθ and the other parameters. Consequently,
the effective azimuthal conductivity of a structured
unit cell can be determined based on Qθ (which can
be obtained through FE simulations on either bound-
ary θ = θ1 or θ = θ2):

Kθ = Qθ
(θ2 − θ1)

(T2 − T1). ln
(

ri
ri+1

) (12)

For the background cells, which are in the Carte-
sian system, the conductivity is derived from the
same methodology. For Kw (where w represents ei-
ther x or y), we apply the Dirichlet condition with
the temperature T0 for w = 0 and T1 for w = a,
with a the cell’s period. For the other two bound-
aries, we use the Neumann conditions (no flux). Kw

is then determined according to the formula Kw =

abs( f lux/(T0 − T1) ∗ a), where flux is the average of
the heat flux at one of the Dirichlet boundaries and
abs() is the absolute value function. In our designs,
x and y play the same role within the background
cells.
The effective density-heat capacity product depends
on the frequency. Indeed, in a structured design, the
thermal resistance to reach some component can be
higher compared to other components (for instance,
some metal surrounded by insulating material will
take longer to heat than the rest of the device). How-
ever, if in the considered time scale, there is suffi-
cient heat flow between all the conductive material
parts to establish a pseudo equilibrium, this effective
parameter can be approximated by taking the surface
average of the density-heat capacity product for unit
cells in the 2D design, for the unit cells in the 3D de-
sign, by multiplying the metal ρC value and the ra-
tio between the volume of metal (including the metal
above the unit cell) and the volume of the 3D unit
cell. This implies that no conductive material should
be entirely surrounded by insulating material.
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Fig. 2. (a) 2D thermal concentrator design. Note that the radius R2 corresponds to a radius in the homogenous isotropic material
which is mapped into the radius R1 in this design

. Half of the concentric area’s second layer (b) and fifth layer unit-cells (c). (d) Background medium
unit-cell.
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Fig. 3. Design targets K′r (a) and normalized (ρC)′ (b) for the outer cell according to the design variables d1/R1 and α

2.3. Design

2.3.1. 2D Design
For our demonstrator, we have designed a heat flux

concentrator where R2 = 2R1 and R3 = 4R1. The
temperature that would normally be at r = R2 in a
homogeneous material is instead found at r = R1,
concentrating the heat flux towards the center. For
practical purposes, as a trade-off between precision
and ease of fabrication, the annular space between
R1 and R3 is divided in 5 radial layers and 20 tangen-
tial sectors, as shown in Fig.2a. The disk of radius

R1, where should be some useful energy harvester,
is left as the background medium. For the con-
ductive material, we have chosen copper (Kmetal =

400 W ·m−1 · K−1, ρCmetal = 3.44× 106 J · K−1 ·m−3),
while air is chosen as the insulating material (Kins ∼

0.026 W · m−1 · K−1, ρCins = 1212 J · K−1 · m−3).
As a unit cell of the metamaterial of the annular

space, we have chosen to fill it with the conduc-
tive material with a hole in the center (rectangle de-
formed to follow the polar coordinates) as seen in
Fig. 2c. In the case of multiple cells, it can also

4



Fig. 4. (a) 3D thermal concentrator design. Note that the radius R2 corresponds to a radius in the homogenous isotropic material
which is mapped into the radius R1 in this design

. (b) Concentric area’s second layer unit-cell (c) Background medium unit-cell.

be viewed as a unit cell filled with the insulating
material with a conductive cross (deformed to fol-
low the polar coordinates). As shown with Fig. 3a,
the radial conductivity K′r depends mainly on the an-
gle α defining the size of the insulating material. In
other words, it depends mainly on the width of the
radial arm. Since the width of the azimutal arm d1

is much smaller (as K′θ is much smaller than K′r), the
azimutal conductivity K′θ depends strongly on d1 but
α also plays a significant role (see Fig. 3b). We ad-
just (increase) the ρC′ value by incorporating metal
inside the insulating area (cf. fig. 2b). As it is
mostly surrounded by insulating material, the metal
will hardly contribute to the conduction process but
nonetheless increase the heat needed to increase the
temperature. However, as mentioned earlier at the
end of the homogenization section, this metal part
should be connected to the rest of the metal. Hence,
we utilize bridges in the radial direction, which is

the main direction of the heat flux (cf. Fig. 2b).
Adding this metal has a small influence on the ef-
fective conductivity tensor and must be taken into
account. The background is also constituted of a
metamaterial in order to achieve an isotropic ther-
mal conductivity of a third of the conductive mate-
rial (kb = 133 W.m−1.K−1). The unit cell is filled with
a conductive material that has a circular hole of in-
sulating material. The ρC value of the background
is increased and adjusted so that the outward cell of
the annular space has no metal inside the insulating
area. To increase the ρC value of the background, a
metallic disk is inserted inside the insulating area and
connected to the rest of the metal with four bridges
(cf. Fig. 2d). Figure 6a) shows the obtained nor-
malized values of ρC for the five unit cells of the
concentrating area and compares them to the ideal
values according to the radial position. Additionally,
for comparison, it also shows the values of a design

5



using the same linear function that only considers
the anisotropic conductivities and not the position-
dependent density – heat capacity product.
Although functional (see paragraph results and dis-
cussions), this design can be rather challenging to
fabricate with sufficient thickness to minimize the air
convection effect if not under vacuum. Another pos-
sibility is to use the third dimension which is nowa-
days easily accessible through 3D printing.

2.3.2. 3D Design
We have therefore also developed a 3D concen-

trator design. The heat flow is still predominantly
two-dimensional but the third dimension allows for
more flexibility in the lateral dimensions. In this de-
sign, we have introduced metal components on top of
the metal connections, varying their thickness, rather
than incorporating metals within the insulating area.
The added material on the top of one cell does not
directly connect to the material added on the top of
another cell: this, therefore, limits its influence on
the anisotropic conductivities but still has to be con-
sidered. The overall lateral dimensions of this de-
sign are 60 × 70 mm, with R1 = 6 mm, R2 = 12 mm,
and R3 = 24 mm. The thickness of the border parts
(also corresponding to the unit cells thickness used
to compute the homogenized ρC) is 4 mm. Once
again, as a trade-off between precision and ease of
fabrication, the annular space between R1 and R3 is
divided into 5 radial layers and 20 tangential sectors,
as depicted in Fig. 4a. We also used copper as the
conducting material. The insulating material (air)
is considered negligible, therefore the thermal con-
ductivity of the metal does not influence the design
but has an effect on the time scale and the sensitivity
to the air convection effect. To achieve an isotropic
thermal conductivity that is one-third of the conduc-
tive material for the background in the 3D device, we
used a metamaterial. The unit cell of the metamate-
rial consists of the conductive material filled with an
insulating material in the shape of a square hole, with
a periodic structure. Another way to consider the cell
is by shifting it by half a period in both directions,
resulting in a metal cross shape. We increased and
adjusted the ρC value of the background cell so that
the outer cell of the concentrating part does not need
adjustment of its ρC value. We achieved this by in-

troducing a metal cross on the top (when defining the
cell as a cross), with arms shorter than the period to
ensure they do not touch the other cells, as illustrated
in Fig. 4c. Equivalently, it can be seen as adding
metal L-shaped parts on top when defining the cell as
a square with a hole in the middle. In the concentrat-
ing area, similarly to the 2D design, the cells can be
viewed as metal crosses (deformed by the polar ge-
ometry) where the longitudinal arm is wider than the
azimuthal one because the conductivity is larger in
this direction. For the inner cell of the concentrating
area, in order to have an azimuthal arm wide enough
for fabrication, we reduced its thickness (cf. Fig. 4b).
We increased and adjusted the ρC values by adding
bumps on the top of the radial arm, not touching the
bumps of the other cells (in order to greatly reduce
the increase of Kr introduced by these bumps). Fig-
ure 7a presents the obtained ρC values for the five
cells in the concentrating area compared to the ideal
value according to the radial position.

2.4. Fabrication

We fabricated our 3D design by utilizing 3D metal
printing (cf. Fig 5). Copper was selected because it
has high thermal conductivity. The thickness needed
to limit the air convection effect is thus reduced.
For the Laser Power Bed Fusion (LPBF) machine,
we use a machine from the Trumpf company: the
TruPrint 1000 Green Edition which enables 3D print-
ing of materials such as copper. It works with a green
laser at 515 nm with a maximum power of 500 W
and a beam diameter of 200 µm. The level of oxy-
gen in the fabrication chamber was the lowest possi-
ble on the machine: 100 ppm (under an argon atmo-
sphere). We use a soft silicone scraper to spread the
powder and the layer thicknesses are 30 µm. We op-
erate with the standard parameters of the machine for
pure copper making it possible to obtain a density of
99.9% and an electrical conductivity of 101% Inter-
national Annealed Copper Standard (IACS), which
means the thermal conductivity of the copper was set
up ≃ 400 W · m−1 · K−1. The laser power was 485 W
with a velocity of 600 mm/s and a hatch distance of
120 µm. The base plate is a stainless steel (316L)
disk.

First, we made 3 small parts with different com-
pensation distances (150, 190, and 230 µm). The
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Fig. 5. Fabricated thermal concentrator by metal 3D printing

compensation distance is the distance between the
edge of the part and the center of the laser line. When
this compensation distance increases, it decreases the
thickness of the part. For the final part, a compensa-
tion distance of 210 µm was adopted.

2.5. Characterization

The 2D design was not fabricated but simula-
tions were performed using the commercial soft-
ware COMSOL Multiphysics, providing an insight
of its behavior. The overall lateral dimensions are
20 × 28 mm with R3 = 8 mm and the thickness is
500 µm. The air convection effect has been taken
into account with a coefficient h = 15 W ·m−2 ·K−1 on
one side which corresponds to the established value
in our previous work [17]. The radiation loss has also
been included. The boundary conditions on the left
and right borders are fixed temperatures at 64 oC and
4 oC, respectively. For the time evolution simulation,
the initial temperature of the device is at room tem-
perature, 23 oC.

To characterize the 3D design, we employed a sim-
ilar setup to the one used by Ji et al. [17]. To achieve
a nearly constant temperature on the hot side, we
used a regulated hot plate with an aluminum block
placed on it. On the cold side, our device was po-
sitioned on an aluminum block immersed in an ice-
cold water bath. We enhanced the thermal contact
by applying a thermal paste between the aluminum
blocks and our device. To measure the temperature
profile using Planck thermal emission, we used a
highly sensitive and large dynamics (14 bits) infrared

thermal camera (FLIR A6702sc) to capture thermal
images and movies. Since the additional components
used to increase the ρC value would also increase the
air convection effect and act as heat radiators (cf. Fig
5a), we covered it with a polystyrene block. The ther-
mal measurements were performed from the other
side (flat side). Furthermore, we applied dark tape
to this side to reduce reflection and increase emis-
sivity. We compared these measurements with sim-
ulations carried out using the commercial software
COMSOL multiphysics. The thermal paste was in-
cluded in the simulation of an ideal concentrator and
its thickness was adjusted to match temperatures on
the device sides with the experimental ones.

3. Results and discussions

3.1. 2D design

As previously mentioned, our method enables us
to obtain the desired local ρC values as depicted in
Figure 6a. We also obtained the desired anisotropic
thermal conductivities, which control the steady-
state heat fluxes and temperature distribution. Fig-
ure 6b illustrates the simulated steady-state temper-
ature distribution for both the ideal case (that is to
say the perfect anisotropic non-structured result of
the coordinate transformation) and the 2D design. In
the concentrating section, the iso-temperature lines
are stretched towards the center, indicating the con-
centration of the heat flow. The ones of the 2D de-
sign are distorted due to the alternating arrangement
of conducting and insulating materials, as observed
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Fig. 6. Simulation comparisons between the 2D design and the ideal concentrator. The air convection is included. (a) ρC value
versus the radial position. (b) The steady-state temperature of the 2D design (bottom) compared to the ideal case (top). The
white lines denote temperature iso-temperature lines. The black dash line denotes the observation line for Fig 6.c. (c) Steady-state
temperature evaluation of the device along the observation line. (d) Time evolution of the temperature in the middle of the devices
for the ideal one, the 2D design and a concentrator designed without taking into account ρC.

in a previous study[17]. To reduce this effect, the
size of the metamaterial cells should be reduced. To
facilitate the comparison between the ideal concen-
trator and the 2D design, a cut line passing through
the middle has been traced. In figure 6c, we plotted
the steady state temperature of our design and of the
ideal case along this cut-line. It clearly demonstrates
a very good agreement between the two designs, al-
beit with some discrepancies attributed to the influ-
ence of the air convection. Indeed, when removing
the air convection effect in the simulation or increas-
ing the thickness, the two curves nearly overlap each
other. An original aspect of our work is that we con-
sidered the modification of the density-heat capac-
ity product. This material property does not affect

the steady-state heat equation but is crucial in the
temporal one. Figure 6d shows the simulated tem-
poral evolution of the temperature at the center of
the device for the ideal concentrator and our design
when the hot and cold boundary conditions follow
a Heaviside function (multiplied to obtain the previ-
ous boundary temperatures), with the initial temper-
ature set as the room temperature. The two curves
are nearly the same. For comparison purpose, the
temperature evolution for a design not taking into ac-
count ρC is also plotted. It highlights the advantage
of our design compared to previous ones to respect
correct time evolution.
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3

Fig. 7. 3D design experimental results compared with simulations. (a) Comparison of theoretical and design’s ρC value according
to the radius r’. (b) Experimental thermal image of the device taken after the steady-state regime was reached. The black dashed
line denotes the observation line and the black dots are the points for time evaluation. (c) Experimental and simulated steady-state
temperature along the observation line. (d) Experimental and simulated time evolution of the temperature for the 3 points defined
in (b)

3.2. 3D design

Figure 7a demonstrates that our 3D design enables
us to obtain the desired local ρC values. Figure 7b
presents the experimental surface temperature of the
flat side of the device after reaching the steady-state
regime. It matches the desired mapping of the ideal
case (see Fig. 6b). In Figure 7c, we plotted the ex-
perimental and simulated ideal steady-state temper-
ature along a cut-line defined in Figure 7b. Like
the 2D design, the two curves are similar and the
differences are partially attributed to air convection
and radiation. According to our simulations, the heat
transfer is predominantly driven by conduction, ac-
counting for approximately 87% of the total heat ex-
change, complemented by a contribution of roughly
9% from air convection, while radiation plays a mi-

nor role at 4%. When the device was removed, we
measure the temperature of the air at its original lo-
cation. These measurements indicated a temperature
gradient between the hot and cold sides. While the
impact was minor, our simulations include this gra-
dient for air convection and radiation. During the
experiment, the temperature of the cold side bound-
ary was not constant. This can be attributed partly to
the thermal resistance between the cold bath and the
device, despite the use of thermal paste. It also may
come from the lack of stirring in the cold bath. As
mentioned in the characterization section, the thick-
ness of the thermal paste on both sides was adjusted
in the simulation to obtain a time evolution of the
boundaries temperature similar to the experimental
ones. Figure 7c shows the experimental and simu-
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lated steady-state temperature of the ideal concentra-
tor along the observation line defined in 7b. There
is a good agreement between the experimental and
simulated curves, denoting the expected behaviour
of our device. The increase of the slope in the mid-
dle area demonstrates the concentrating effect of our
device. Figure 7d presents the experimental and sim-
ulated time evolution of the temperature for the 3
points defined in Figure 7b. Once again, the ex-
perimental curves closely match the simulated ones
for an ideal concentrator. This demonstrates that a
metamaterial not only enables the achievement of the
right anisotropic thermal conductivity but also the
desired local density – heat capacity product.

4. Conclusion

We have successfully designed two thermal con-
centrators: a 2D design featuring uniform thickness
and a 3D design (with predominantly 2D heat flow).
These designs were developed based on the princi-
ples of coordinate transformation and metamaterials.
By structuring the thermal conductor, we achieved
the desired local anisotropic thermal conductivities
and density-heat capacity products (ρC). For the 2D
design, both steady-state and time-dependent simu-
lations demonstrate that the 2D device performs as
expected.
The 3D concentrator was manufactured using 3D
metal printing and characterized using a thermal
camera to analyze its steady-state and time evo-
lution characteristics. The experimental behaviors
closely match those of the simulated ideal concen-
trator. This demonstrates that not only a metamate-
rial can achieve the correct anisotropic thermal con-
ductivity but also the desired local density – heat
capacity product. This method can also be applied
to the design of thermal cloaks (invisibility cloak
for heat conduction for stealth applications for in-
stance) or any other heat flux manipulation where
both anisotropic K and ρC must be locally adjusted.
Whether in steady state, harmonic or time-dependent
cases, small perturbations next to the device would
unfortunately be seen. However, they would de-
crease as the distance from the device increases or
as the unit cells of the metamaterial become smaller.
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