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Abstract

We consider theoretically a network of directly coupled optical mi-
crocavities to implement a space-multiplexed optical neural network in
an integrated nanophotonic circuit. Nonlinear photonic network integra-
tions based on direct coupling ensures a highly dense integration, reducing
the chip footprint by several orders of magnitude compared to other im-
plementations. Different nonlinear effects inherent to such microcavities
are studied when used for realizing an all-optical autonomous computing
substrate, here based on the reservoir computing concept. We provide
an in-depth analysis of the impact of basic microcavity parameters on
computational metrics of the system, namely, the dimensionality and the
consistency. Importantly, we find that differences between frequencies
and bandwidths of supermodes formed by the direct coupling is the de-
termining factor of the reservoir’s dimensionality and its scalability. The
network’s dimensionality can be improved with frequency-shifting nonlin-
ear effects such as the Kerr effect, while two-photon absorption has an
opposite effect. Finally, we demonstrate in simulation that the proposed
reservoir is capable of solving the Mackey-Glass prediction and the optical
signal recovery tasks at GHz timescale.

1 Introduction

Artificial Neural Networks (ANNs) are a computing approach different from the
conventional algorithmic concepts. They are inspired by the most basic princi-
ples of human brains, where numerous neurons are connected with synapses to
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create a network. Currently, ANNs are mostly implemented on the von Neu-
mann architecture, i.e. on digital computers, and, while successful in many
fields, this approach has its own drawbacks, mainly a data bottleneck inher-
ent to the architecture as well as significant power requirements. In addition,
the latency between an input and a computed output presents a major con-
cern in some applications. One example is optical communications, where an
exponentially growing demand for internet connectivity requires increasingly
faster processing of optical signals [1]. A conventional approach is based on
the processing with digital algorithms [2, 3, 4] or more recent ANN-inspired
solutions [5]. However, at higher bandwidths, an efficient processing becomes
complicated. The development of ANNs in a physical layer can help overcome
this challenge [6, 7]. Besides analog electronics [8], the manipulation of optical
signals is highly relevant when a large bandwidth operation is important, as was
demonstrated in the field of microwave photonics [9]. For implementing such
computing systems, integrated photonics is a promising platform that provides
compactness and intrinsic nonlinear effects necessary for efficient and scalable
ANN in hardware [10, 11].

Reservoir Computing (RC) has attracted a lot of interest in the in-hardware
computing field as it provides an implementation-friendly ANN topology with
competitive performance and a simplistic training procedure [12]. Reservoir
Computing on integrated photonic platforms has been demonstrated in sim-
ulations [13, 14] and experimentally [15, 16]. These works considered optical
microcavities or splitters as neurons with long intra-neural connections, i.e. with
a non-negligible coupling delay. This was required to match the system’s inter-
nal transient timescales to available electronics [15]. However, these delay lines
are costly in terms of a chip footprint and optical losses and limit scalability.
As an example, a 280 ps delay requires 2 cm of silicon waveguide [15], which
results in approximately one neuron per square millimeter of the chip surface.

In this study, we consider evanescent, i.e. direct, coupling between adjacent
cavities as an alternative to create maximally compact integrated all-optical
computing systems. We propose a RC consisting of a rectangular grid of directly
coupled nonlinear microcavities and study the impact of cavity parameters and
reservoir geometry on its basic computational properties, namely the dimension-
ality [17, 18] and the consistency [19]. We found that a longer photon lifetime
allows for a better scalability due to more variability between coupling-induced
supermodes of the system. Importantly, we found that the nonlinear effects can
impact computing performance in opposite directions, where two-photon ab-
sorption (TPA) reduces the reservoir’s dimensionality, while free carrier disper-
sion (FCD) and the optical Kerr effect increase the dimensionality. Moreover,
unlike TPA, a sufficiently strong FCD and Kerr effect do induce chaotic dy-
namics in this purely dissipative network without gain. Finally, we evaluate the
RC’s performance in Mackey-Glass prediction and optical signal recovery tasks.
For simulations we used cavity and waveguide parameters accepted as standard
for GaAs integrated photonic circuits. We found that such integrated photonic
reservoirs show a comparable performance to other implementations found in the
literature, which shows a great potential of this maximum integration-density
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approach.

2 System of coupled nonlinear microcavities

The backbone of our photonic RC is a N‖ ×N⊥ square grid of directly coupled
nonlinear cavities (see Figure 1(a)). One side of the grid is coupled to the
input waveguide according to cavity-waveguide coupling coefficient κ. Through
this waveguide an optical input u(t) is injected. Assuming intra-cavity and
cavity-waveguide coupling strengths are weak, the coupled-mode theory can be
applied [20]. For a purely linear case, the electric field of microcavity modes
a(t) can be described with

da

dt
=

(

iω − Γo + Γe

2

)

⊙ a + (M̂µ + M̂κ)a + K
is(t), (1)

where ω are the cavities’ resonant frequencies, Γo are intrinsic optical losses,
Γe are optical losses to waveguide, ⊙ is the the Hadamard product, M̂µ, M̂κ

are direct and waveguide-assisted cavity-cavity coupling matrices, K
i is an

input waveguide-cavity coupling matrix (see A). Here, M̂µ
km = −(M̂µ

mk)∗ =
|µkm| exp(iϕkm) [21] (Section 7.5) if the k-th and m-th cavities are directly
coupled and K i

k = κi
k exp(iϕi

k), with k,m ∈ 1 . . .N , where N = N‖N⊥. For
simplicity, we assume that Γo

k = Γo, |µkm| = µ and κi
k = κi, if the k-th cavity

is coupled to the waveguide. While this is a good approximation, Γo
k, |µkm|

and κi
k can vary to some degree, e.g. due to fabrication tolerances. The phase

terms ϕkm and ϕi
k are defined by a chip geometry and are considered indepen-

dent and identically distributed (i.i.d.). The strength of intra-cavity and the
cavity-waveguide coupling is weak when fulfilling

|iω ⊙ a| ≫
∣

∣

∣

∣

−1

2
Γe ⊙ a + (M̂µ + M̂κ)a + K

is(t)

∣

∣

∣

∣

. (2)

Direct coupling can only induce an interaction between cavities when reso-
nances sufficiently aligned. For that reason, unless stated otherwise, we assume
ωk = ω0. Moreover, the direction of cavity modes should be taken into account.
For instance, each microring resonator (MRR) resonance is double-degenerate
with counter-propagating modes. If a MRR-based reservoir is implemented ex-
actly as in Figure 1(a), both modes of each cavity can be excited and a would
have 2N components. In photonic crystal (PhC) cavities, however, resonances
are nondegenerate and therefore a has N components. For simplicity we trans-
form the MRR reservoir such that only one mode of each MRR cavity is excited
(see Figure 1(b)).

In a fully integrated system, cavities would also be coupled to readout waveg-
uides. This, however, can be challenging to realize for cavities inside the grid,
since the compact cavity arrangement leaves no space for such waveguides. One
could consider using N‖×1 or 2×N⊥ grids, where all cavities are accessible. An
alternative could be the use of multiple photonic layers [22] or three-dimensional
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Figure 1: (a) Proposed photonic Reservoir Computer (b) MRR mode direction
matching and (c) Echo State Network.

waveguides [23]. Output signals of these waveguides are z(t) = Ko⊙a(t), where
Ko is a vector of output waveguide coupling coefficients, for which we assume
an uniformity according to Ko

k = κo. These waveguides introduce an additional
optical loss, which has to be included in Γe.

We consider three nonlinear effects commonly present in integrated photonic
microresonators: TPA, FCD and the Kerr effect. TPA can be described by
adding

−ΓTPA(ak)

2
ak = −1

2

β2c
2

n2V TPA
|ak|2ak (3)

to the right side of Eq. 1 [24]. Here, β2 is a TPA coefficient, c the speed of light,
n the refractive index and V TPA is a nonlinear effective volume [25]

V TPA =

(

ε20
4

∫

εrχr
2|U |4 + |U ·U |2

3
dV

)−1

, (4)

where εr = ε(r)/εmax, χr = χ(3)(r)/χ
(3)
max and U(r) is a cavity’s normal mode,

normalized such that 0.5
∫

ε0εr|U(r)|2dr = 1.
FCD causes a microcavity’s resonance to shift by ∆ωk as a function of free

electron density Nk [26]. This effect adds a term i(dω/dN)Nkak to the right
side of Eq. 1 [27]. Such free electrons could be generated via a linear photon
absorption or TPA. The former is possible in direct-bandgap semiconductors,
but causes high optical loss independent of the input power, unlike with TPA,
where it linearly increases with the optical energy stored in a cavity. Con-
siderable losses in systems without gain make large networks unrealistic. We
therefore exclude linear photon absorption as sustainable effect producing non-
linearity and only consider TPA for the free electron generation. The density
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of TPA-generated electrons is computed by [24]

dNk

dt
= −ΓcNk +

ΓTPA(ak)

2~ωV c
Ik, (5)

where Γc is a free electron recombination rate, V c is a volume across which
electrons spread through a diffusion, and Ik = |ak|2 is the optical intensity
inside the k-th cavity.

The Kerr effect causes a resonance frequency shift in response to a stronger
electric field inside a cavity and is described by adding i(dω/dI)Ikak to the right
side of Eq. 1. While the impact of the Kerr effect is typically weaker than FCD,
it is still useful to be considered as an isolated case, as, unlike FCD with TPA,
it provides a resonance frequency shift without an additional optical losses.

3 A Photonic Reservoir Computer based on di-

rectly coupled nonlinear cavities

A RC is often introduced as an Echo State Network (ESN) [28] (see Figure 1(c)):

xn+1 = (1 − α)xn + α tanh(Ŵxn + Ŵ in[1;un+1]), (6)

where xn and un are vectors of neuron activations and inputs at a time step
n ∈ [1, 2, . . . T ], α is a leaking rate, Ŵ and Ŵ in are a recurrent and an input
weight matrices. The ESN’s output is defined as yn = Ŵ outxn, where Ŵ out

is an output weight matrix. The readout training for software-based models
is typically performed using ridge regression [28], and here we use the same
approach for our simulation. Assume an ESN is being trained to solve a task
with input signals un and the ideal target outputs ytgt

n . First, compute update
equations for T steps to obtain a set of ESN state vectors xn, which are conse-
quently appended to create a matrix X̂. Similarly, from ytgt

n one creates Ŷ tgt.
The optimal output weight matrix is then given by

Ŵ out = Ŷ tgtX̂T
(

X̂X̂T + ζ〈|Xij |2〉ij Î
)−1

, (7)

where 〈. . . 〉ij is an average over all matrix indices ij, ζ is a regularization con-

stant and Î is the identity matrix, superscript (. . . )T is the matrix transpose
operation.

In the previous section, we proposed a photonic system that receives optical
signal s(t) as an input and provides a set of optical signals z(t). We suggest to
treat this system as a reservoir computer. In the integrated photonic hardware,
readout weights could be realized based on tunable attenuators with transmis-
sion wk, phase-shifters according to ϕk and a combiner tree to implement a
linear combination of zk(t) that creates the output optical signal y(t):

y(t) =
∑

k

wk exp(iϕk)zk(t) = W outz(t). (8)
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This way, the conversion of optical input s(t) to optical output y(t) is done fully
optically, as electronics are only controlling attenuators and phase shifters that
are constant during a computation.

4 Linear regime

We first consider the case when the input signal is not sufficiently strong to
induce a nonlinear response by the microcavities. An important value for the
following discussion is the input signal’s bandwidth BW that we define as the
span between its spectral half-power positions.

As we will show, computational properties of such photonic reservoirs de-
pend mostly on the microcavities’ spectral characteristics. In that regard, an
important consequence when directly coupling microcavities is a formation of
supermodes with split resonances (see Figure 2). Consider the linear part of
Eq. 1:

diag

(

iω − Γo + Γe

2

)

+ M̂µ + M̂κ, (9)

eigenvalues of which are λE
k . Then the average supermode bandwidth is ΓS/2π =

〈

−2Re
(

λE
k

)〉

k
/2π. Importantly, the coupling-induced supermode splitting ef-

fectively increases the reservoir’s response bandwidth significantly beyond the
bandwidth of a single resonator. We define the reservoir bandwidth (RBW)
as the maximum distance between the network’s supermodes measured at half
intensity. For example, without the input waveguide, two identical independent
cavities with resonances frequencies at ω0 and coupled with rate µ become split
ω0 ± |µ|, leading to RBW ≈ (2|µ| + ΓS)/2π. For multiple indentical cavities in
a chain, Eq. 9 is a tridiagonal Toeplitz matrix, eigenvalues of which are given
by [29]

λE
k =

(

iω0 +
Γo

2

)

+ 2
√

−|µ|2 cos

(

kπ

N + 1

)

, k = 1 . . .N, (10)

meaning that RBW ≈ (4|µ|+ΓS)/2π. For non-trivial connectivity architectures
an analytical derivation of RBW becomes non-trivial. However, in numerical
simulations we found that supermode resonances stay within a ω0 ± π|µ| inter-
val (see Figure 2). We therefore assume that RBW ≈ (2π|µ| + ΓS)/2π for such
directly coupled microcavity system. Furthermore, as will be shown later, in
the cases we are interested in ΓS ≪ |µ|, and hence RBW ≈ |µ|.

An important computing metric of reservoirs is dimensionality D, which
corresponds to the systems’ degrees of freedom. Since reservoirs, and ANNs in
general, perform a high-dimensional expansion of input signals [28], a higher
dimensionality usually leads to a better computing capacity. To determine the
dimensionality we generate a random sequence s̃0(tn) =

√
I0(tn) exp(iϕ0(tn)),

where
√
I0(tn) and ϕ0(tn) are randomly sampled according to a white noise

distribution. Then, an 8th-order Butterworth low-pass filter with a given band-
width BW is applied on s̃0(tn) to obtain s0(tn), which is then linearly interpo-
lated to s0(t). This signal is used to modulate an optical carrier that is injected

6



12x1

2x1

4x3

4x3 

waveguide

20x10

Figure 2: Supermodes of directly coupled microcavities for various grid geome-
tries. Bottom figure shows a histogram of supermode frequencies.
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into the reservoir as an input. Here and throughout the article the integration of
differential equations is carried out using the DifferentialEquations.jl library [30]
in the Julia programming language [31]. The photonic reservoir’s dimensionality
is then determined by applying the Principal Component Analysis (PCA) [32]
on zn. Importantly, for the PCA we split electric fields into a real and an imag-
inary part, which implies that the maximum dimensionality our reservoir can
have is 2N . It is therefore convenient to introduce a normalized dimensionality
D̃ = D/2N .

At this stage, it is beneficial to consider the supermode concept in more
detail. A supermode is an independent, i.e. an orthogonal oscillation of the
coupled system’s electric fields. Each supermode can be considered as a virtual
microcavity, that performs a pass-band filtering at its resonant frequency and
bandwidth. Crucially, the coupling-induced splitting of supermode resonances
makes their frequencies vary, promising high dimensionality.

To start, a supermode needs to receive an input. For that, we consider the
impact of the injection BW on the reservoir’s dimensionality. As we see in Fig-
ure 3(a), when BW ≪ RBW the dimensionality is low. In this case, a large
number of supermodes are off-resonance relative to the injected field, and hence
they cannot be excited. With an increasing BW, more and more supermodes
are able to interact with the injected information. As a consequence, the reser-
voir’s dimensionality increases until BW = RBW, when all supermodes become
excited. Accordingly, the physics of supermodes in coupled arrays result in a
necessary bandwidth matching condition for maximizing the system’s dimen-
sionality: BW ≥ RBW. Importantly, here the network was driven with white
noise, i.e. by a signal with a flat spectrum. However, in realistic and application-
relevant situations such a signal is unlikely. Certain supermodes will be excited
less than others and accordingly contribute less to the networks dimensionality.

The microcavity network’s dimensionality relies upon individual supermodes
being driven by different aspects of an input signal, which requires supermodes
to be sufficiently separated. Therefore, to quantify this metric, we consider
an average supermode spacing RBW/N , normalized by the average supermode
bandwidth

FΓ =
RBW/N

ΓS/2π
, (11)

which can be considered as a measure of spectral span available for individual
supermodes. In Figure 3(b), we see that the dimensionality is low for FΓ ≪ 1
and for FΓ > 1 dimensionality is maximized. This threshold may change de-
pending on system parameters, however, we find that it is typically comparable
to unity. Therefore a second requirement for a high dimensionality is FΓ ' 1.
Again, this is not a sufficient condition, since it does not ensure that all super-
modes are separated. Spacing between supermodes is typically inhomogeneous,
and supermodes can potentially overlap, even if FΓ is large. This effect can
be mitigated through a stronger coupling to the input waveguide κi, which can
shift resonances or increase the bandwidth of some supermodes, as can be seen
in Figure 2 for a 4 × 3 reservoir with and without the input waveguide. In Fig-
ure 3(c), we see that this approach can be effective when N⊥ is low, i.e. when
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overall coupling to the input waveguide is relatively stronger for the supermode
splitting.

Figure 3: Dimensionality of linear photonic reservoir w.r.t. (a) input signal
bandwidth, (b) average supermode spacing and (c) input waveguide coupling
strength. Reservoir parameters are given in Table 1 and by default BW > RBW,
but in (a) µ increased to 80 GHz to increase upper limit of dimensionality, in
(b) each point corresponds to specific µ and Γo. (c) different grid geometries,
see legend.

From FΓ a scaling behaviour of dimensionality can be determined. Since
FΓ ∝ N−1, a larger number of cavities leads to a lower FΓ, which leads to
a lower D̃. This, however, can be compensated by lowering optical losses, as
FΓ ∝ (ΓS)−1. Indeed, in Figure 4(a) we see that with a high µ/Γo (which
is analogous to FΓ), the dimensionality can reach the theoretical limit. Fur-
thermore, dimensionality varies for a given number of cavities depending on
their geometric arrangement. A minor fluctuation of dimensionality is due to a
seemingly random nature of supermode formation – supermode frequencies of a
24×1 grid are different from a 12×2 grid. However, there are also outliers with
a considerably lower dimensionality. In these cases N⊥ is high, which allows
supermodes to localize spatially further from the input waveguide. As a result,
these supermodes become too weakly coupled to the input and as a consequence
contribute less to the system’s dimensionality (see Figure 4(b)). In addition to
that, a lower N⊥ allows for a higher dimensionality even at a low FΓ, likely due
to the impact of input waveguide discussed above.

5 Nonlinear regime

In order to induce a nonlinear response from the photonic system, an optical
power of at least PNL needs to be injected into the cavities. This power depends
on material, cavity parameters and which particular nonlinearity is to be lever-
aged. We define PNL as an input power at which a nonlinear effect becomes
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Figure 4: (a) Scalability of linear reservoir dimensionality w.r.t. optical losses.
Dimensionalities of all possible combinations of N‖ and N⊥ for given N are
shown as histograms. Reservoir parameters are shown in Table 1, with µ =
80 GHz, reduced ko and BW > RBW. (b) Impact of FΓ and grid geometry on
dimensionality. Both figures use the same dataset.

Table 1: Default reservoir parameters. Most parameters are omitted as they
only impact the required input power.

Parameter Value Units Comments

Geometry 8× 3 grid GaAs MRRs
µ 25 GHz defines RBW
Γc 28.5 GHz [33]

Q-factor 3 · 105 provide a near-optimal ΓS/2π ≈ 0.9 GHz ≈ RBW/N
k2

i 4π GHz every other cavity next to input waveguide is coupled
k2
o π GHz provides sufficiently strong zk(t)
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equal to a related linear effect. Two-photon absorption increases losses inside
the cavities according to ΓTPA, and it is natural to place PNL where these non-
linear losses start matching linear optical losses, i.e. ΓTPA ≈ ΓS. FCD and the
Kerr effect cause resonance shift ∆ω, which, in turn, is natural to be compared
to an average bandwidth of supermodes, hence also ΓS. Therefore, an optical
loss rate is the normalization factor determining the cavity array’s nonlinearity
power threshold for all considered nonlinear effects.

For a single cavity injected with a monochromatic wave one can determine
PNL analytically (see supplementary material). The result is shown in Fig-
ure 5(a) for various integrated platforms for MRR and PhC cavities based on
a data obtained from literature (see Table 2), and the horizontal axis shows an
operating frequency that is BW/2. Assume a cavity with a bandwidth ΓS and
an electron relaxation rate Γc. This cavity can receive most optical power of an
injected signal if BW ≤ ΓS/2π. However, a low ΓS corresponds to higher loaded
Q-factor and allows for a stronger nonlinearity and, consequently, a lower PNL.
We therefore assume that BW ≈ ΓS/2π. Additionally the scale of BW relative
to Γc is also important. In the case when BW ≪ Γc, the generated free elec-
trons recombine too fast and FCD becomes negligible, whereas TPA becomes
the dominant nonlinearity. Then, PNL is computed w.r.t. ΓTPA, see dashed line
in Figure 5(a). When BW is comparable to Γc FCD becomes stronger than
TPA. Then, PNL is computed w.r.t. ∆ω and this case is shown as a solid line
in Figure 5(a). Finally, when BW ≫ Γc, the electron density can’t react to the
changes to the input signal in time and FCD becomes irrelevant, see dotted line
in Figure 5(a). Compared to MRRs, PhC cavities require less power and allow a
faster operation on the same material, as a smaller mode volume corresponds to
a stronger light confinement and a stronger nonlinearity, while a higher surface
area enhances Γc [34].

For a network comprised of a large number of cavities, analytical treatment
is not immediately tractable. We therefore resort to a numerical approach.
Consider a reservoir with TPA as a nonlinearity. Since its supermodes are split
due to direct coupling and, as we found in the previous section, ΓS ≪ RBW,
a low-bandwidth excitation of this nonlinearity is not suitable. Therefore, the
input changes in time and modulates ΓTPA

k on a potentially individual resonator
level. In order to then compare it to the scalar ΓS, we consider its standard
deviation across many input samples σt[Γ

TPA
k ]. Another natural option could

be an average over samples, however, consider a case when TPA is dominant
and ΓTPA

k (ak(t)) = 〈ΓTPA
k 〉t+δΓTPA

k (ak(t)) with δΓTPA
k (ak(t)) ≪ 〈ΓTPA

k 〉t ≈ ΓS,
then the loss terms in Eq. 1 for the k-th cavity is

dak
dt

=

(

−Γo
k − Γe

k

2
− 〈ΓTPA

k 〉t − δΓTPA
k (ak(t))

)

ak ≈
(

−Γo
k − Γe

k

2
− 〈ΓTPA

k 〉t
)

ak.

(12)
Here, 〈ΓTPA

k 〉t effectively increases the linear loss and hence the k-th cavity is
close to linear. However, averaging would still classify the cavity as a nonlinear,
since 〈ΓTPA

k (ak(t))〉t ≈ 〈ΓTPA
k 〉t ≈ ΓS, whereas with the standard deviation

σt

[

ΓTPA
k (ak(t))

]

= σt

[

δΓTPA
k (ak(t))

]

≪ ΓS. We then compute 〈σt[Γ
TPA
k ]〉k to
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obtain a scalar TPA rate for a given input power P . Repeating this process for a
range of P we obtain a largely monotonic curve P (〈σt[Γ

TPA
k ]〉k), through which

we can determine the input power necessary to induce a particular level of TPA-
induced nonlinearity. In that case PNL = P (ΓS). For FCD and the Kerr effect
the process to obtain a scalar characteristic capturing the network’s relevant
response is identical, except that ∆ωk is used instead of ΓTPA

k . In Figure 5(b)
we see that PNL scales linearly with the number of cavities, provided N⊥ is
limited. Indeed, for large N⊥ some supermodes can localize far from the input
waveguide and couple to input much weaker than those near it. This creates
a nonlinearity imbalance in the reservoir and to reach 〈σt[Γ

TPA
k ]〉k = ΓS, more

optical power is needed.
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Figure 5: (a) Comparison of material platforms w.r.t. PNL and an operating
frequency of a single MRR or PhC cavity, details in text. Here, ALD is atomic
layer deposition. For references see Table 2. (b) Scaling of PNL w.r.t. the
number of cavities. Reservoir parameters are given in Table 1, BW matches
RBW.

Nonlinearity can result in a reservoir operating in a chaotic regime, which for
most purposes is harmful to computation. Chaos corresponds to the situation
where a network’s state is sensitive to infinitesimal changes in the input, and
hence the unavoidable presence of noise in hardware would render computations
not reproducible for even perfectly identical inputs. For characterizing this effect
we carry out a consistency analysis [18]. Consistency is a property describing the
reproducibility of a dynamical system’s (here the reservoir’s) responses under an
injection of slightly different input signals [19]. We generate a set of inputs in the
form sn(t) = s0(t) + ∆sn(t) where s0(t) and ∆sn(t) are values sampled from
a complex-valued white noise distribution, which filtered with a Butterworth
8th order pass-band filter. s0(t) is the “true input”, while ∆sn(t) emulates an
impact of noise in an experiment and we attain a signal to noise ratio of 20 dB
by scaling the amplitude of ∆sn(t). Each sn(t) is injected into a separate, but
identical reservoir. The absolute value of correlation between trajectories of
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Table 2: References used in Figure 5.

Key Cavity Reference
GaAs

Ibrahim2002 MRR [35]
Combrie2008 L5 PhC [36]
Husko2009 H0 PhC [37]
Moille2015 2× H0 PhC + ALD [38]
Silicon

Xu2005 MRR [39]
Tanabe2005 L3 and L4 PhC [34]
Implanted silicon

Waldow2008 MRR [40]
Tanabe2007 H1 PhC [41]
InP

Ibrahim2003 MRR [33]
Heuck2013 H0 PhC [42]

k-th cavity of i-th and j-th reservoirs zik(t) and zjk(t) is then computed [43]

γij
k =

∣

∣

∣

∣

∣

∣

∣

∣

E
[

zik(zjk)∗
]

− E
[

zik

]

E
[

(zjk)∗
]

√

E
[

|zik|2
]

√

E
[

|zjk|2
]

∣

∣

∣

∣

∣

∣

∣

∣

, (13)

where E[A] is expected value of A. The consistency for this pair of reservoirs is

a root mean square (RMS) across all their cavities γij =
√

〈(γij
k )2〉k and equally

the consistency of system γ is the RMS of γij of all combinations of i and j. It
is typically desirable that the consistency is high [44].

In Figure 6 we show the consistency and dimensionality of reservoirs with
different nonlinearities as a function of input power. Noteworthy, we find that
a stronger TPA reduces the dimensionality, while the consistency remains con-
stant and close to unity. The drop of dimensionality is a consequence of the
FΓ reduction, as increasing TPA-induced losses effectively increase ΓS. A high
consistency could be explained by the negative-feedback nature of TPA, where
the system’s response to a stronger input is an increased damping that often
stabilizes the system. According to the data in Figure 6 FCD and the Kerr effect
increase the dimensionality, but eventually the system loses consistency for too
high input power. Generally, consistency decreases when 〈σt[∆ωk]〉k approaches
ΓS, i.e. when input power surpasses PNL. The effect causing the dimensionality
increase is the nonlinear shift of individual supermodes, which otherwise might
overlap in the linear regime. We found that generally other system parameters
have a relatively small impact compared to PNL.
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Interestingly, the nonlinear shift of supermode frequencies also compensates
to some degree the negative impact on dimensionality caused by a mismatch
between BW and RBW (see Figure 6(d)). This could be explained by the fact
that a cavity might belong to multiple supermodes. When a cavity resonance
shifts, it causes multiple supermodes to shift as well, even those that are not
excited in a linear regime. If the shift is strong enough, these supermodes can
end up inside the input bandwidth and receive input. Moreover, as BW reduces,
a stronger nonlinearity is needed to move resonances into the input bandwidth,
and at some point the concept of supermodes stops being applicable.

Figure 6: Effect of (a) TPA (b) TPA and FCD (c) the Kerr effect on reservoir
dimensionality and consistency. Reservoir parameters are given in Table 1. (d)
each point corresponds to an input power at which γ = 0.98.

To conclude, nonlinearity in general has a non-trivial effect on a reservoir.
Importantly, this sensitively depends on the particular nonlinear effect that is
leveraged. On one hand, dimensionality is reduced by TPA, but increased by
FCD and the Kerr effect. On the other hand, using TPA the reservoir stays
consistent, while FCD and the Kerr effect are harmful to consistency. However,
in the case of FCD and Kerr nonlinearities, the increase of dimensionality comes
before the loss of consistency. Hence, there is an interval of optimal input power
that allows for a better dimensionality with a high consistency.

6 Computing performance

We now turn to evaluating the performance when applying a direct coupled
cavity array reservoir to computing tests. Here, we consider the Mackey-Glass
prediction task, a commonly used benchmark in the RC literature, and the
optical signal recovery task that demonstrates a relevant practical application
of such a system [1].
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6.1 Mackey-Glass prediction task

The Mackey-Glass equation is a first-order time-delayed differential equation:

dξ

dt
=

αξ(t − τ)

1 + ξ(t− τ)g
− γξ(t), (14)

where we choose τ = 17, α = 0.2, g = 10 and γ = 0.1, with which ξ(t) exhibits
a moderately chaotic behaviour [45]. Integrating Eq. 14 with the Euler method
with a timestep of 0.17 and downsampling the result with a ratio of 3/0.17, we
obtain a discrete series ξ(tn). The task is to predict ytgtn = ξ(tn+δ) with ξ(tn)
as an input and a given δ > 0. Both, memory and nonlinearity are required for
a successful prediction, which made this task a popular RC benchmark. The
prediction performance is measured with the Normalized Root Mean Square
Error (NRMSE) [28]:

NRMSE
(

y,ytgt
)

=
1

σn[ytgtn ]

√

√

√

√

1

T

T
∑

n=1

∣

∣yn − ytgtn

∣

∣

2
. (15)

Nevertheless, the reservoir used is time-continuous, we then convert ξ(tn)
into a continuous signal by a zero-hold interpolation. This signal is used to
modulate an amplitude of optical carrier that is injected into reservoir as an
input. To find the output zk(t) are sampled at tn. Due to the nature of ξ(tn),
the Fourier spectrum of optical input is uneven (see Figure 7). As a result,
the excitation of supermodes is not uniform with a non-trivial impact on the
reservoir. To visualize the impact of nonlinearities, we consider a linearized

Figure 7: The normalized Fourier transform of input signal (blue) with reser-
voir resonances overlaid (orange). Here BW < RBW, which goes against the
conclusions of Section 4. High peaks in the input spectra correspond to a domi-
nating harmonic (ξ(t) largely oscillates, see in Figure 8(c)), however, for a close
prediction, it’s important to also capture high-frequency irregularities, despite
their weak amplitude.

Jacobian of the reservoir

Jkm = diag

(

iω − Γo + Γe

2

)

km

+M̂µ
km+M̂κ

km+

[

−1

2

β2c2

n2VTPA
Ik + i

dω

dN
Nk + i

dω

dI
Ik

]

δkm,

(16)
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where last three terms correspond to TPA, FCD and the Kerr effect, with δkm
as the Dirac delta. In Figure 8(d) we show trajectories of Ĵ eigenvalues of the
system while driven by the input. As expected, TPA increases eigenloss and
modifies eigenfrequencies, most likely due to modifications to the spatial shape
of the supermodes. With FCD these modifications become notably stronger,
and in the case of Kerr effect they are the dominant feature. This behaviour is
notably different from ESNs [46]. The inequality of nonlinearity strength is also
evident. A supermode near a Fourier peak with a strong connection to an input
waveguide is subject to several times stronger nonlinearity than others. This
poses a challenge for FCD and the Kerr effect as a nonlinearity concentration
in a few supermodes leads the reservoir to chaos before nonlinearity in other
supermodes becomes strong enough.

Besides the obvious relevance of the NRMSE for performance, the output
signal power also becomes a concern in noisy systems. Even though a noise was
not present in simulations, we also consider a power penalty as an additional
performance metric: Lp = 10 log(〈|y(t)|2〉t/〈|s(t)|2〉t), where 〈. . . 〉t is an average
over time.

In Figure 8(a) a considerable improvement with all three nonlinearities is
seen. However, with frequency-shifting nonlinearities the performance is lost
after the normalized average input power approaches unity. This is consistent
with Section 5 as with a loss of consistency the training becomes ineffective.
However, in Figure 8(b) we see that before the consistency is lost, the out-
put power is higher compared to TPA, which is likely due to an increase of
dimensionality (see Figure 6). For a 8 × 3 reservoir with TPA and FCD a
NRMSE of 1.5 · 10−1 was achieved (see Figure 8(c)), while for TPA 8 · 10−2,
considering power penalty restriction. For comparison, a performance baseline
is NRMSE(un, un+3) ≈ 1.1, an all-optical time-multiplexed reservoir with 330
virtual neurons based on a semiconductor laser experimentally achived NRMSE
of 0.23 [47], a simulated time-multiplexed reservoir based on a nonlinear MRR
with 25 virtual nodes had NRMSE of 7.2 · 10−2 [48]. However, an ESN with
400 neurons outperforms by a large margin, predicting approximately 20 steps
ahead with a NRMSE of 1.2 · 10−4 [49]. Nevertheless, the proposed reservoir
performs such computation fully-optically in real time.

Simulations have shown that prediction performance improves with the num-
ber of cavities (see Figure 9) for N⊥ = 1 or 3 and for all three nonlinearities.
With FCD and the Kerr effect N⊥ = 1 and N⊥ = 3 reservoirs have shown sim-
ilar performance, while for TPA N⊥ = 3 was better than N⊥ = 1. The lowest
error with an NRMSE of 0.037 and Lp of -25 dB is achieved for 48 cavities
with N⊥ = 3. We also note the importance of the direct coupling by compar-
ing our system with a set of independent cavities, a linear regime of which was
considered by [50]. For a fair comparison, resonances of cavities were set to
resonances of supermodes of a corresponding N × 1 reservoir. With all nonlin-
earities coupled cavities provided considerably better performance, likely due to
a nonlinearity-induced supermode mixing.
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Figure 8: Impact of nonlinearities on (a) prediction error and (b) power penalty
on a 3-step Mackey-Glass prediction. For all cases GaAs MRR parameters are
used (see Table 1), but for TPA-only dω/dN = 0, while for Kerr effect β2 = 0
and dω/dI < 0 is chosen arbitrarily. Regularization constant was increased until
power penalty reached -25 dB. (c) 3-step prediction with TPA+FCD case at an
optimal input power, here NRMSE is 0.15 and Lp ≈ −22 dB. (d) Trajectories
of linearized Jacobian Jkm for (c).

Figure 9: Scalability of 3-step prediction performance with various geometries
and (a) TPA (b) TPA with FCD and (c) the Kerr effect. For each point the
regularization constant was increased until power penalty reached -25 dB. Min-
imum NRMSE (a) 0.037 (b) 0.070 (c) 0.087.
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6.2 Optical signal recovery

An optical signal propagating through an optical fiber is subject to the chromatic
dispersion and the Kerr nonlinearity, among other effects. Electric field E(z, t)
in the fiber can be described with a nonlinear Schrödinger equation [51]:

i
∂E

∂z
+ i

αloss

2
E − β2

2

∂2E

∂t2
+ γ|E|2E = 0, (17)

where we choose αloss = 0.2 dB/km, β2 = 21.7 ps2/km, γ = 1.3 W−1/km,
E(0, t) = s0(t) and s0(t) is the transmitted signal. Because of distortion, after
propagating through a fiber of length L the signal at the receiver side E(L, t) =
s(t) differs from s0(t). Examples of the distortion are shown in Figure 10(a,b).
If s0(t) is a carrier of encoded symbols, the reservoir’s task is to recover them
from s(t).

We generate a random sequence s0(tn) of symbols encoded with on-off keying
at 25 GHz with 8 samples per bit and filter with a first order low-pass filter with
0.6 · 25 GHz cutoff frequency (see Figure 10(a)). The launch power is 10 dBm.
Then Eq. 17 is solved to obtain distorted signal samples s(tn), which are linearly
interpolated to s(t) and injected into the reservoir. The reservoir parameters
are the same as in the Mackey-Glass task (see Table 1) except for µ = 40 GHz,
chosen according to the s(t) spectrum (see Figure 10(b)) and nonlinear effects
disabled. As in the previous section, µ is increased for N‖ × 1 reservoirs to
equalize reservoir bandwidth. For RC training we set ytgt(t) = s0(t− τ) where
τ is an output delay and sample s0(t), s(t) and zk(t) once per bit in its middle
(see dots in Figure 10(a)). For RC testing y(t) and ytgt(t) are similarly sampled
to produce yn and ytgtn and a linear classifier C is used. Performance is measured
with the Symbol Error Rate (SER): SER(y, ytgt) =

∑

n 1 [C(yn) 6= C(ytgtn )] /Nt,
where Nt is a number of transmitted symbols. However, SER cannot be lower
than 1/minc {

∑

n 1[C(ytgtn ) = c]}, which in our case is approximately 2/Nt.
The presence of an output delay is motivated by group velocity dispersion

that causes different input signal frequencies to arrive to a receiver at different
times. By delaying ytgt(t) we allow the reservoir to accumulate more information
about the current symbol before producing an output. Simulations show that
it leads to a better separation of output samples at a given power penalty. For
used fiber parameters a delay of 4 bits is adequate and is used throughout the
section (see Figure 11).

A larger reservoir is capable of handling a distortion from a longer fiber (see
Figure 12). The performance of a N‖ × 1 grid of cavities was comparable to a
N‖ × 3 grid and outperformed independent cavities.

7 Discussion

The proposed setup can successfully be used as a RC. However, there are notable
differences that need discussion.
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Figure 10: (a) Timetraces of real part of original signal (dashed line) and
distorted signal after 150 km of optical fiber (solid line). Black dots show bit
middle and act as training target, blue and orange are only for visualization
and show distorted signal samples with color corresponding to each symbol. (b)
Normalized Fourier spectrum of distorted signal after 150 km of fiber (blue)
with 8× 3 reservoir resonances overlaid (orange). (c) Constellation of distorted
signal samples after 150 km of fiber, colors correspond to (a).

Figure 11: (a) Effect of output delay (shown on legend) on output symbol
separability measured with NRMSE at a given power penalty, controlled with
regularization parameter. Here L = 150 km and signal is processed with a 8× 3
linear reservoir. (b)(c) Constellations of output symbols at Lp ≈ −20 dB with
0 and 4 bit delay respectively. Figure 10c shows constellation of input signal
samples.
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Figure 12: Performance scaling of optical signal recovery w.r.t. reservoir size.
The reservoir is (a) N independent MRRs (b) N‖ × 1 grid (c) N‖ × 3 grid of
linear MRRs. For each computation the regularization parameter is increased
until the power penalty reached -25 dB.

First of all, an ESN connection matrix is typically random and sparse [28],
and two neurons are unlikely to have a connection equally strong in both direc-
tions. In the photonic case if two cavities are directly coupled, the connection
is reciprocal and coupling coefficients are negative complex conjugate of each
other (see Figure 13).

(a) (b)

Figure 13: Neuron connectivity graph of (a) a typical ESN and (b) a photonic
RC with a grid of cavities. Connection strength is represented with arrow
thickness.

Moreover in ESNs a nonlinear function encompasses the input and the neu-
ron connection terms (see Eq. 6). In our reservoir, however, a nonlinearity
depends only on the current reservoir state (see Eq. 1). Nonlinearities them-
selves are differrent as well. Typically, in ESNs a sigmoid or hyperbolic tangent
are used. They add a saturation of neuron activation, which is, effectively, an
increase of loss. During a typical computation, ESN’s linearized Jacobian eigen-
values largely move in the direction of the z-plane origin (corresponding to an
increase of loss) and go back with, perhaps, slight frequency deviations [46].
In the photonic case with TPA as the only nonlinearity, the behaviour is sim-
ilar, but with FCD and the Kerr effect the trajectories of eigenvalues change
considerably (see Figure 8(d)). Nonetheless, all three nonlinearities positively
contribute to performance (see Figure 8(a)).

In Section 4 a relation between cavity parameters and their effect on reservoir
dimensionality was proposed. Whether these requirements could be met with
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the available technology needs to be discussed. First, consider that Γo < ΓS,
FΓ ≈ 1 and RBW ≤ BW

N
Γo

2π
≤ N

ΓS

2π
≈ NFΓ

ΓS

2π
= RBW ≤ BW ⇒ Γo /

2π

N
BW. (18)

Another requirement demands of the reservoir to remember previous inputs: an
optical timescale should be larger than an input signal timescale, i.e.

1

BW
<

2

ΓS
<

2

Γo
⇒ Γo < 2BW, (19)

which is already satisfied by Eq. 18. For example, consider a reservoir with 20
cavities. To process a signal with BW = 20 GHz, an approximate lower bound
for Γo would be 2π GHz, which would correspond to an intrinsic Q-factor of
ω0/Γo ≈ 0.2 · 106. This is rather high, but not impossible. An intrinsic Q-
factor of 0.7 · 106 was demonstrated in passive GaAs PhCs with 106 considered
achievable [36]. In an AlGaAs MRR a Q-factor of 1.5·106 was demonstrated [52]
and in a silicon PhC a Q-factor of more than 11 · 106 [53]. The low-loss silicon
nitride allowed for even higher Q-factor of 37 · 106 in a MRR [54].

Next, consider a nonlinearity timescale. TPA and the Kerr effect respond
almost instantaneously to a change of electric field, similar to an ESN. However,
FCD is also affected by the free electron recombination rate (see Figure 5(a)),
which should be comparable to a rate at which of optical signal in a cavity
changes, i.e. half of its bandwidth. In our case each cavity belongs to multiple
supermodes and thus its bandwidth approaches the RBW, which is close to BW.
The electron recombination rate of silicon MRRs was shown to be approximately
2 GHz [55], i.e. BW / 4 GHz would be supported. The recombination can be
accelerated to almost 20 GHz with a reverse-biased p-i-n junction embedded in
a cavity [55]. Due to a higher surface area, in PhCs the recombination can reach
10 GHz for silicon [56] and 100 GHz for GaAs [36].

Until this point we assumed that cavities’s resonances are aligned ∀k =
1..N ωk = ω0. However, this might not be the case due to fabrication toler-
ances. In order for directly coupled cavities to interact, resonances should be
sufficiently close. A weak intercavity interaction leads to two issues, the first
being a dimensionality reduction when some cavities are not coupled to the in-
put waveguide directly (e.g. for N⊥ > 1). Since such cavities can only receive
signals through other cavities, without an interaction they stop receiving sig-
nals and hence cannot contribute to dimensionality. This is demonstrated in
Figure 14 for 8 × 3 and 24 × 1 linear MRR reservoirs. As a resonance disorder
is increased, at first D̃ increases as the supermode overlap is alleviated, but
decreases afterwards. The 24 × 1 reservoir is affected less than the 8 × 3 one,
since in the former 12 cavities are coupled to the waveguide (due to MRR mode
direction matching, see Figure 1(b)), but only 4 in the latter. If MRR mode
direction was not considered and both MRR modes were excited, all cavities
of a 24 × 1 MRR reservoir are coupled to a waveguide. In that case a further
increase of resonance disorder simply increases FΓ and D̃ will eventually reach
unity. A similar outcome is expected for a PhC reservoir.
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Figure 14: Impact of cavity resonance frequency disorder on dimensionality.
Reservoir parameters given in Table 1, BW > RBW. Each dot corresponds
to a N‖ × N⊥ (shown on legend) linear MRR reservoir with resonances ωk ∈
N (ω0, σω) with various σω . Insets represent supermode intensity distribution
over cavities Λ̂.

The second issue is a weakening of supermode mixing, i.e. delocalization.
When cavities interact well, supermodes span multiple cavities, otherwise, they
isolate in individual cavities. Because of that, a nonlinearity of an individual
cavity can only affect a single supermode. As was shown in Figure 8(d), in
this case nonlinearity could not contribute to computing performance as much.
Here, N⊥ > 1 cases could be affected to a lesser degree than N⊥ = 1, since for
N⊥ > 1 each cavity has 2-4 neighbouring cavities, while only 1-2 for N⊥ = 1 and
the probability of resonance mismatch with all neighbours is lower with more
neighbours. The weakening of supermode mixing is shown in inset of Figure 14.
Each heatmap represents a matrix Λ̂ where Λkm is an intensity of m-th super-
mode in the k-th cavity. For clarity, each m-th column of Λ̂ is normalized to
unity. We see that when σk[ωk/2π] < 0.5µ, supermodes span multiple cavities,
but only a few otherwise. The resonance disorder can be mitigated with the
thermo-optic effect, but for more cavities it becomes challenging. In addition to
that, a close proximity of cavities results in a strong thermal crosstalk. However,
the resonance disorder can be less severe when cavities are spatially close [57].
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8 Conclusion

We have applied a network of directly coupled nonlinear nanophotonic cavities
for a reservoir computing. Such coupling allows for a lower chip footprint by
several orders of magnitude, excluding readout. We have derived general con-
ditions under which such a system attains a high dimensionality, an important
property for RC. The role of nonlinear effects present in integrated microcavi-
ties, namely TPA, FCD and the Kerr effect were studied. While their impact
on the reservoir dimensionality and the consistency is different, all three nonlin-
earities positively contributed to the performance in Mackey-Glass prediction
task. The reservoir was also successful in recovery of OOK-encoded optical sig-
nal. In both cases the reservoir has shown a fully optical autonomous real-time
computation in the GHz range.

Several potential improvements of this design could be proposed. For ex-
ample, using multiple cavity resonances to operate on multiple channels at the
same time. An another option is to overcome dimensionality limitation due to a
finite Q-factor. If a reservoir has an upper limit of N cavities, one could consider
using two such reservoirs with one receiving a delayed copy of input. This way
the dimensionality of the setup could be expected to increase two-fold.
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A Derivation of waveguide-related differential equa-

tion matrices

A mode amplitude reduces exponentially outside a resonator, therefore we can
assume that each cavity-waveguide interaction happens in a restricted region
between two reference planes separated by dk (dashed lines in Figure 15) [20].
For a single cavity coupled to a waveguide the equations are known [20]:

s2-s1+

s1- s2+ s4-

s3+

s3-

s4+

d

a

L

Figure 15: Scheme of waveguide-cavity interaction. A rectangle with an repre-
sents a row of n cavities coupled to the waveguide.
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da

dt
= −

( |κ1|2
2

+
|κ2|2

2

)

a + κ1s1+ + κ2s2+, (20)

{

s1− = e−iβd(s2+ − κ∗
2a)

s2− = e−iβd(s1+ − κ∗
1a)

. (21)

Omitting waveguide-induced loss and generalizing for a row of n cavities coupled
to one waveguide

d ~an
dt

= M̂n ~an + ~Rn
1 s1+ + ~Rn

2 s2+, (22)





s1−

s2−



 =





0 T n
1

T n
2 0









s1+

s2+



 +





~Qn
1

~Qn
2



 ~an, (23)

where M̂n, ~Rn
1 and ~Rn

2 are assumed to be known. Adding a new cavity to the
row

da

dt
= κ1s3+ + κ2s4+, (24)



















s3− = e−iβd(s4+ − κ∗
2a)

s4− = e−iβd(s3+ − κ∗
1a)

s3+ = e−iβLs2−

s2+ = e−iβLs3−

, (25)

The goal is to find the matrix representation of a system with n + 1 cavities
based on a system with n cavities. We first eliminate the flux between the
cavities

{

s2+ = e−iβLe−iβd(s4+ − κ∗
2a)

s3+ = e−iβL
(

T n
2 s1+ + ~Qn

2 ~an

) . (26)

Then, cavity dynamics can be rewritten using only new inputs s1+ and s4+:

{

d ~an

dt = M̂n ~an + ~Rn
1 s1+ + e−iβLe−iβd ~Rn

2 s4+ − e−iβLe−iβd ~Rn
2κ

∗
2a,

da
dt = e−iβLT n

2 κ1s1+ + e−iβL ~Qn
2κ1 ~an + κ2s4+,

(27)

Consequently, new outputs are:

s1− = T n
1 s2+ + ~Qn

1 ~an =

= T n
1 e

−iβL
[

e−iβd(s4+ − κ∗
2a)

]

+ ~Qn
1 ~an =

= T n
1 e

−iβLe−iβds4+ + ~Qn
1 ~an − T n

1 e
−iβLe−iβdκ∗

2a,

(28)

s4− = e−iβd(e−iβLs2− − κ∗
1a) =

= e−iβd
[

e−iβL
(

T n
2 s1+ + ~Qn

2 ~an

)

− κ∗
1a
]

=

= e−iβde−iβLT n
2 s1+ + e−iβde−iβL ~Qn

2 ~an − e−iβdκ∗
1a.

(29)

24



Therefore, the differential equation and the output matrices can be build incre-
mentally:

d

dt

(

~an
a

)

=





M̂n −e−iβLe−iβd ~Rn
2κ

∗
2

e−iβL ~Qn
2κ1 0
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+





~Rn
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2
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2 κ1 κ2
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(31)

B Comparing evanescent and dissipative cou-

pling

Consider a linear case of two directly coupled lossless cavities. Their state will
be described with Eq. [21]:

d

dt

(

a1
a2

)

=

(

0 µ
−µ∗ 0

)(

a1
a2

)

, (32)

where µ is a coupling coefficient and ∗ is a complex conjugation. Then a1,2 ∝
exp(±i|µ|t), i.e. no loss was introduced regardless of µ. Comparing to a similar
case of waveguide coupling of two PhCs in simplified form (see A):

d

dt

(

a1
a2

)

=

(

−|κ|2 |κ|2 exp(iϕ12)
|κ|2 exp(iϕ21) −|κ|2

)(

a1
a2

)

, (33)

depending on ϕ12 and ϕ21 there could be an interaction ranging from the one
similar to direct coupling to its total absence, i.e. light escapes from cavities to
the input waveguide. In practice, however, phases are effectively random. As a
result, we choose the direct coupling as a neuron connectivity method.
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C Estimation of reference power for a single cav-

ity

Assuming a monochromatic excitation with an input power PNL and a steady-
state, a power that the cavity receives should be equal to a power lost:

PNL = −d|a|2
dt

= −da

dt
a∗ − c.c. =

[

ΓS +
β2c

2

n2V TPA
|a|2

]

|a|2. (34)

For a TPA-dominated case the reference power is found when ΓTPA(a) = ΓS,
then

|a|2 =
ΓSn2V TPA

β2c2
. (35)

For a FCD-dominated case in a steady state (assuming that a detuning does
not impact the power absorbed by the cavity):

∆ω =
∂ω

∂N
N =

∂ω

∂N

β2c
2

n2V TPA

1

2~ω0V cΓc
|a|4 = ΓS, (36)

|a|2 =

(

ΓSΓcn2V TPA2~ω0V
cΓc

(∂ω/∂N)β2c2

)1/2

. (37)
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