
Distributed Training of Deep Neural Networks:
Convergence and Case Study

Jacques M. Bahi1, Raphaël Couturier1, Joseph Azar1, and Kevin Kana
Nguimfack1

Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
{jacques.bahi,raphael.couturier,joseph.azar,kevin.kana_nguimfack}@univ-fcomte.fr

Abstract. Deep neural network training on a single machine has be-
come increasingly difficult due to a lack of computational power. For-
tunately, distributed training of neural networks can be performed with
model and data parallelism and sub-network training. This paper in-
troduces a mathematical framework to study the convergence of dis-
tributed asynchronous training of deep neural networks with a focus on
sub-network training. This article also studies the convergence conditions
in synchronous and asynchronous modes. An asynchronous and lock-free
training version of the sub-network training is proposed to validate the
theoretical study. Experiments were conducted on two well-known pub-
lic datasets, namely Google Speech and MaFaulDa, using the Jean Zay
supercomputer of GENCI. The results indicate that the proposed asyn-
chronous sub-network training approach, with 64 GPUs, achieves faster
convergence time and better generalization than the synchronous ap-
proach.

Keywords: Distributed Deep Learning · Asynchronous convergence ·
Subnet Training · Parallelism.

1 Introduction

The work presented in this paper concerns distributed and parallel machine
learning with a focus on asynchronous deep learning model training. Model par-
allelism and data parallelism are the two primary approaches to distributed
training of neural networks [1,2]. In data parallelism, each server in a distributed
environment receives a complete model replica but only a portion of the data.
Locally on each server, a replica of the model is trained on a subset of the en-
tire dataset [3]. Model parallelism involves splitting the model across multiple
servers. Each server is responsible for processing a unique neural network por-
tion, such as a layer or subnet. Data parallelism could be deployed on top of
model parallelism to parallelize model training further. In a deep convolutional
neural network, for instance, the convolution layer requires a big number of cal-
culations, but the required parameter coefficient W is small, whereas the fully
connected layer requires a small number of calculations, and the required pa-
rameter coefficient W is large. Consequently, data parallelism is appropriate for

2 J.M. Bahi et al.

convolutional layers, while model parallelism is appropriate for fully connected
layers.

Nevertheless, data and model parallelism approaches have numerous draw-
backs. Data parallel approaches suffer from limited bandwidth since they must
send the whole model to every location to synchronize the computation. A huge
model with many parameters cannot meet this requirement. Model parallel ap-
proaches are not viable in most distribution settings. When data are shared
across sites, model parallel computing requires that different model components
can only be updated to reflect the data at a specific node. Fine-grained commu-
nication is required to keep these components in sync [4].

1.1 Objective

The study has two main objectives. Given a neural network and its partition
into sub-networks, the first objective is to establish the mathematical relation-
ship between deep learning on the complete network and deep learning on the
partitioned sub-networks. The second is to use this mathematical model to clar-
ify sufficient conditions that ensure the effective convergence, after training of
the sub-networks, towards the solution that would have been obtained by the
complete neural network. The research question RQ is “whether, by training and
combining smaller parts of a full neural network, the convergence of the global
solution to the original problem is obtained. In other words how to ensure that
weight parameters obtained by training the partitioned parts of the full network
reconstitute the correct weight parameters that tune the full network."

The mathematical model we introduce is general; indeed, it covers both sub-
network training and federated learning approaches, as well as their execution in
both synchronous and asynchronous modes. To validate our model, we conduct
synchronous and asynchronous implementations of sub-network training with a
coordinator and several workers and compares their performance.

Our implementation aims to validate the proposed mathematical model and
its necessary conditions, rather than to offer a novel deep learning architecture
for distributed deep learning. For this purpose, we present an implementation
based on the Independent Subnet Training (IST), an approach proposed by
Yuan et al. [5]. The experiments we conducted 1 demonstrate how asynchronous
distributed learning leads to a shorter waiting time for model training and a
faster model updating cycle.

1.2 Methodology

We introduce a general mathematical model to describe the sequences generated2

by sub-networks partitioning-based approaches. The model considers the depen-
1 Experiments are conducted on GENCI’s Jean Zay supercomputer in France, which

contains 64 GPUs
2 The generated sequences, or produced sequences, are in fact the sequence of iterations

and therefore the computation of the weights at each update by the backpropagation
algorithm.

Distributed Training of Deep Neural Networks: Convergence and Case Study 3

dencies of the unknown variables (weights parameters) that the original neural
network must tune. Consequently, different techniques can be modeled, includ-
ing independent sub-network training and federated learning methods. Specif-
ically, this mathematical model is based on a fixed-point function defined on
an extended product space, see [6]: the sequences generated by the extended
fixed-point function describe the aggregation of iterations produced by gradient
descent algorithms applied to neural sub-networks. Using the fixed point theo-
rem, it is possible to study the numerical convergence of sub-network-based ap-
proaches running back-propagation algorithms to the actual solution that would
be obtained by original neural network.
The numerical convergence of sub-network partitioning algorithms in asynchronous
mode is then examined. To this aim, we apply a classical convergence theorem of
asynchronous iterations developed in [7], and in other papers such as [8], [9], to
the aforementioned fixed-point function. The convergence conditions and cau-
tious implementation details are then specified.

The rest of the paper is organized as follows: The related work to this pa-
per is presented in Section 2. Section 3 recalls preliminaries on successive ap-
proximations, fixed-point principle and their usefulness to modelize sequential,
synchronous and asynchronous iterations. The general mathematical model and
the convergence study of the algorithms proposed by this paper are presented
in Section 4. We first introduce the fixed-point mapping that models the be-
havior of a certain number of backpropagations on sub-networks of the original
network. Then we prove thanks to proposition 1 and 2 the convergence result
of synchronous and asynchronous sub-networks training algorithms. Section 5 is
devoted to the empirical validation of the results, the experimental use case is
also presented. Section 6 discusses this paper’s results and presents future work
and perspectives and section 7 concludes the paper.

2 Related Work

Stochastic gradient descent (SGD) uses a randomly chosen sample to update
model parameters, providing benefits such as quick convergence and effective-
ness. Nodes must communicate to update parameters during gradient calcula-
tion. However, waiting for all nodes to finish before updating can decrease com-
puting speed if there is a significant speed difference between nodes. If the speed
difference is small, synchronization algorithms work well, but if the difference
is significant, the slowest node will reduce overall computing speed, negatively
impacting performance. Asynchronous algorithms most effectively implement
it [10]. Google’s DistBelief system is an early implementation of async SGD.
The DistBelief model allows for model parallelism [11]. In other words, different
components of deep neural networks are processed by multiple computer proces-
sors. Each component is processed on a separate computer, and the DistBelief
software combines the results. It is similar to how a computer’s graphics card
can be used to perform certain computations faster than the CPU alone. The
processing time is decreased because each machine does not have to wait its turn

4 J.M. Bahi et al.

to perform a portion of the computation, but can instead work on it simulta-
neously. Async SGD has two main advantages: (1) First, it has the potential
to achieve higher throughput across the distributed system: workers can spend
more time performing useful computations instead of waiting for the parameter
averaging step to complete. (2) Workers can integrate information from other
workers (parameter updates), which is faster than using synchronization (every
N steps). However, a consequence of introducing asynchronous updates to the
parameter vector, is a new issue known as the stale gradient problem. A naive
implementation of async SGD would result in a high gradient staleness value.
For example, Gupta et al. [12] show that the stale value of the average gradi-
ent is equal to the number of workers. If there are M workers, these gradients
are M steps late when applied to the global parameter vector. The real-world
impact is that high gradient staleness values can greatly slow down network
convergence or even prevent convergence for some configurations altogether.
Earlier async SGD implementations (such as Google’s DistBelief system) did
not consider this effect. Some ways to handle expired gradients include, among
others, implementing “soft" synchronization rules such as in [13] and delaying
the faster learner if necessary to ensure that the overall maximum delay is less
than a threshold [14]. Researchers have proposed several schemes to parallelize
stochastic gradient descent, but many of these computations are typically im-
plemented using locks, leading to performance degradation. The authors of [15]
propose a straightforward technique called Hogwild! to remove locks. Hogwild!
is a scheme that enables locking-free parallel SGD implementations. Individual
processors are granted equal access to shared memory and can update memory
components at will using this method. Such a pattern of updates leads to high
instruction-level parallelism on modern processors, resulting in significant per-
formance gains over lock-based implementations. Hogwild! has been extended
by the Dogwild! model in [16]. Dogwild! has extended the Hogwild! model to
distributed-memory systems, where it still converges for deep learning problems.
To reduce the interference effect of overwriting w at each step, the gradient ∇w
from the training agents is transferred in place of w. The empirical evaluation of
this paper is inspired by the Independent sub-network Training (IST) model [5],
which decomposes the neural network layers into a collection of subnets for the
same goal by splitting the neurons across multiple locations. Before synchroniza-
tion, each of these subnets is trained for one or more local stochastic gradient
descent (SGD) rounds. IST is better than model parallelism approaches in some
ways. Given that subnets are trained independently during local updates, there
is no need to synchronize them with each other. Still, IST has some of the same
benefits as model parallelism methods. Since each machine only gets a small
piece of the whole model, IST can be used to train models that are too big to
fit in the RAM of a node or a device. This can be helpful when training large
models on GPUs, which have less memory than CPUs. The following sections
provide proof of convergence for partitioning-based networks in synchronous and
asynchronous modes. The empirical evaluation section considers the IST model
as a use case and proposes an asynchronous implementation.

Distributed Training of Deep Neural Networks: Convergence and Case Study 5

3 Preliminaries: successive approximations. Synchronous
and asynchronous algorithms

In the sequel, xk
i denotes the kth iterate of the ith component of a multi-

dimensional vector x.
A Numerical iterative method is usually described by a fixed-point application,
say T . For example, given an optimization problem minx f(x), the first challenge
is to build an adequate T , such that the iterative sequence xk+1 = T (xk) for
k ∈ N converges to a fixed point x∗, solution of minx f(x). Successive iterations
generated by the numerical method are then described by:

Given x0 = (x0
1, ..., x

0
n)

T ∈ Rn

for i = 1, ..., n
for k = 1, 2... until convergence

xk+1
i = Ti(x

k
1 , ..., x

k
n)

(1)

Suppose that x is partitioned into m blocks xl ∈ Rnl so that Σm
l=1nl = n and

that m processors are respectively in charge of a block xl of components of
x, then let us then define sets S(k) describing the blocks of x updated at the
iteration k. The other blocks are supposed not to be updated at iteration k.
Asynchronous algorithms, in which the communications between blocks are free
with no synchronization between the processors in charge of the blocks, are
described by the following iterations:

Given x0 = (x0
1, ..., x

0
m)T ∈ Πm

l=1Rnl

for k = 1, 2... until convergence
for l = 1, ...,m

xk+1
l =

{
Tl(x

ρ1(k)
1 , ..., x

ρm(k)
m) if l ∈ S(k)

xk
l if l /∈ S(k)

(2)

Here ρi(k) is the delay due to processor i at the kth iteration. Note that with
this latter formulation, synchronous per-blocks iterative algorithms are partic-
ular cases of asynchronous per-blocks iterative algorithms. Indeed, one has to
simply assume that there is no delay between the processors, i.e., ∀i, k ρi(k) = k,
and that all the blocks are updated at each iteration, ∀k, S(k) = {1, ...,m}. In
this paper, T (β) will denote the fixed-point mapping describing the gradient de-
scent method or its practical version SGD with learning rate β. Under suitable
conditions and construction, the fixed-point application T describing the gradi-
ent descent method converges to a desired solution. In what follows, a fixed-point
mapping T will also be introduced, this is a key function of our study on train-
inig deep neural netwoks. This function involves the computation of weighted
parameters associated with network training, as well as combination matrices
that model the aggregation of partial computations from sub-networks.

6 J.M. Bahi et al.

4 Convergence study

4.1 Mathematical modeling

Consider the general case of a feedforward neural network of some number of
layers and neurons. Suppose that the number of interconnections between neu-
rons in the network is n, so that the network is tuned by n weight vectors.
Let us consider a training set composed of inputs and targets. Consider a loss-
function f (e.g. Mean Squared Error, Cross Entropy, etc.) that should be min-
imized on the traing set in order to fit the inputs to their targets. To do so,
let x ∈ Rn be the weight vector that the neural network must tune to min-
imize f . Suppose that the gradient descent algorithm is used to perform this
minimization. The gradient descent algorithm performs the iterations:

xk+1 = xk − β∇xf(x
k), k ∈ N, x0 ∈ D(f) (3)

Under the right conditions on the function f and the learning rate β, the
function I−∇xf is contractive on its definition domain D(f) and the successive
iterations (Eq-3) converge to x∗ satisfying the solution:

x∗ = argminxf(x), x∗ ∈ D(f) (4)

Here ∇xf(x) = (∂fi
∂xj

)
ij

is the Jacobian matrix consisting of the partial deriva-
tives of f with respect to weight vector x of the interconnections of the network.
A Backpropagation with a learning rate βi applied to the network consists in
computing successive iterations associated to the Descent gradient algorithm:

x0 being the initialization weights

xk+1 = xk − βi∇xf(x
k), k ∈ N, (5)

Let T (βi) denotes the fixed point application describing the iterations (Eq-5):

y = T (βi)(x) = x− βi∇xf(x)

Consider m backpropagation algorithms on the neural network Net with learning
rates βi, i = 1, ...,m. The learning rates β1, ..., βm are chosen in such a way that
the gradient descent algorithms converge to x∗, solution of (4), i.e.

T (βi)(x∗) = x∗,∀i ∈ {1, ...,m} (6)

For a network Net with n weighted vector, and m backpropagation algorithms,
let us introduce the following fixed-point mapping which is called aggregation
fixed point mapping:

T : (Rn)
m −→ (Rn)

m(
x1, ..., xm

)
−→

(
y1, ..., ym

)
yl = T (βl)

(
m∑

k=1

Ekx
k

)
(7)

Distributed Training of Deep Neural Networks: Convergence and Case Study 7

where Ek are diagonal matrices called weight matrices so that

m∑
k=1

Ek = I (8)

I is the identity matrix ∈ Rn×n. Since the weight matrices are diagonal, the
aggregation fixed-point mapping modelizes the execution of m backpropagations
on m sub-networks. It should be noted that condition (8) is essential for the
formal convergence study.

Proposition 1. T is a contractive function
The aggregation fixed-point mapping T is contractive with constant of contraction
α satisfying, α ≤ maxml=1(αl), where αl are the constants of contraction of T (βl)

Proof 1 Let yl = T (βl)(Σm
k=1Ekx

k)
From (6) each gradient descent converges to x∗ the solution of (4), so each fixed-
point mapping I − β∇xJ is contractive.
For l ∈ {1, ...,m}, denote by αl the constant of contraction of T (βl) with respect
to the l2 norm ∥x∥2.
By (7) we have

∥yl − x∗∥2 = ∥T (βl)(Σm
k=1Ekx

k)− T (βl)(x∗)∥2 ≤ αl∥Σm
k=1Ekx

k − x∗∥2

Since Ek are diagonal matrices and Σm
k=1Ek = I, we have

∥Σm
k=1(Ekx

k − x∗)∥2 = ∥Σm
k=1Ek(x

k − x∗)∥2 ≤ m
max
k=1

∥xk − x∗∥2

Thus, ∥yl − x∗∥2≤ αl maxmk=1 ∥xk − x∗∥2
Hence we obtain, maxml=1 ∥yl − x∗∥2 ≤ (maxml=1 αl) maxmk=1 ∥xk − x∗∥2
Let’s define the norm, ∥(y1, ..., ym)∥∞ = max1≤l≤m ∥yl∥2, then

∥T
(
x1, ..., xm

)
− (x∗, ..., x∗)∥∞ ≤ (

m
max
l=1

αl)∥
(
x1, ..., xm

)
− (x∗, ..., x∗) ∥∞

This proves the claimed result.

Proposition 2. Asynchronous convergence of T
The asynchronous iterations generated by the fixed-point mapping T converge to
(x∗, ..., x∗)T .

Proof 2 Proposition 1 implies that we are in the framework of contractive fixed-
point mapping with respect to a maximum norm on a product space. Indeed,
T is a contractive mapping with respect to the maximum norm ∥..∥∞, on the
product space Πm

i=1Rn = (Rn)
m. These are the required sufficient conditions

for the convergence of asynchronous algorithms associated to T . see [7]. Thus
Proposition 2 is proved.

8 J.M. Bahi et al.

Remark 1 The aggregation fixed point mapping modelizes Independent Sub-
network Training, indeed, if the neurons are disjoint then ∀i, (Ek)ii is equal to
either 0 or 1. It should be noted that we don’t use the notion of compressed iter-
ates and the assumptions related to the expectancy of the compression operator
M(.) as in [5]. We prove the convergence of the iterates values instead of their
convergence on expectation. To modelize federated learning like algorithms the
weighted matrices become ∀i, (Ek)ii = 1/M .

5 Empirical validation

5.1 The links between the mathematical model and the
implementation

- To obtain asynchronous iterations produced by the aggregation of the compu-
tations of m sub-networks, it is sufficient to consider that T = T in (2).
- Synchronous per-blocks computations correspond to S(k) = {1, ...,m}, and
ρi

k = k, ∀k (no-delays and all the blocks are updated at each iteration).
- A sub-network l is defined by all nodes j corresponding to the non-zero entries
of El: (El)jj ̸= 0, so the aggregation of the weight vectors computed by the
sub-networks must be done carefully so that

∑m
k=1 Ek = I is satisfied.

- Even if in the mathematical formulation T is defined on the product space
Πm

i=1Rn, each sub-network l updates at each iteration only its own components,
this is because the weight matrices El are diagonal matrices and (El)jj = 0 if
node j does not belongs into sub-network l.
- To execute the computations in asynchronous mode, it should be noted that the
convergence theory requires some conditions on the block-component updates
and the delays between the processors. These are listed below.

– ∀i ∈ {1, ...m} the set {k ∈ N/i ∈ S(k)} is infinite. This simply means that
any sub-network i is guaranteed to update its computations, i.e. not to be
permanently inactive.

– The delays must "follow" the iterations, the mathematical formulation for
that is ∀i, limk→∞(ρi(k)) = ∞.

For more precision see the literature on asynchronous iterations, e.g. [7], [17],
[18], [9], [19],

It can be noticed that in a practical implementation these assumptions are
realistic.

5.2 Use case: Independent Subnet Training

As a use case, let us consider the IST model for this research. Note that the pro-
posed mathematical model is general and could also cover dependent partitioning-
based networks. The publicly available Github implementation3, the clarity of
3 https://github.com/BinhangYuan/IST_Release

Distributed Training of Deep Neural Networks: Convergence and Case Study 9

the code, and the recent date of publication were among the reasons to consider
this model for our use case.

In the original work, the authors suggest to regularly resample the subnets
and to train them for fewer iterations between resamplings. This paper proposes
that the coordinator distribute subnets only at the beginning of training to
prevent blockage. Similarly to the original IST model, the following constraints
are respected:

– Input and output neurons are common to all subnets.
– Hidden neurons are randomly partitioned via uniform assignment to one of

n possible compute nodes.
– The complete Neural Network (NN)’s weights are partitioned based on the

number of activated neurons in each subnet.
– No collisions occur because the parameter partition is disjoint.

Worker 1
Local SGD

Worker m
Local SGD

Delayed neighbours' weights

Local Gradients ∇W1

Coordinator

- Collecting the newly available parameters calculated by the subnets
and sharing them at the request of the subnets that need them.

The coordinator is responsible for:

- Performing the global convergence test.

- Performing the forward and backward
 passes and computing the gradients
 of the subnet.

Workers are responsible for:

- Sharing the parameters with the
coordinator.

Neural network architecture

Local model

Local model

Reassemble (∇W1,...,∇Wm)

Delayed neighbours' weights

Local Gradients ∇Wm

Fig. 1: The architecture of a distributed asynchronous training based on the
partitioning-based framework.

The training process of the asynchronous IST training is as follows: (1) The
coordinator distributes the sub-networks to the workers at the beginning of the
training process. Contrary to the original IST, no new group of subnets is con-
structed to avoid synchronization. Note that during the training process, the
coordinator trains a subnet, not the full neural network. (2) Each cluster (coor-
dinator and workers) computes the loss of its local model based on its local data
(i.e., forward pass). (3) Each cluster computes the gradients based on the loss
(i.e., backward pass). (4) Each worker sends its parameters to the coordinator.
In our asynchronous version, it is done using Pytorch’s isend method that sends

10 J.M. Bahi et al.

a tensor asynchronously. (5) Given that the partition is disjoint, the coordina-
tor copies the parameters into the full neural network without collisions. The
asynchronous version is considered using Pytorch’s irecv method that receives
a tensor asynchronously.

The architecture and training procedure considered in this research (Figure
1) are comparable to frameworks such as the parameter server with centralized or
federated learning techniques [20]. The local models, however, are subnets of the
full model and not a replica. Note that Figure 1 illustrates a general partitioning-
based framework described by the proposed mathematical model and not nec-
essarily the particular IST model. To represent the async IST implemented by
this paper, one could ignore the transmission of the delayed parameters from the
coordinator to the workers after the first partition, given that each worker has
an independent subnet that does not require the parameters of other workers.
One of the challenges of asynchronous training is that the asynchronous commu-
nication will be rendered meaningless if one continues to allow communication
between workers: This issue is solved by avoiding parameters exchange between
subnets and avoiding synchronization during local updates or the coordinator’s
updates.

5.3 Experiments

The Google Speech [21] and Mafaulda4 [22] datasets were considered to demon-
strate the advantage of asynchronous distributed training of neural networks over
synchronous training. The Google Speech dataset describes an audio dataset of
spoken words that can be used to train and evaluate keyword detection sys-
tems. The objective is to classify 35 labeled keywords extracted from audio
waveforms. In the dataset, the training set contains roughly 76,000 waveforms,
and the testing set has around 19,000 waveforms. The Mafaulda dataset is a
publicly available dataset of vibration signals acquired from four different indus-
trial sensors under normal and faulty conditions. This database is composed of
1951 multivariate time-series and comprises six different states. Similarly to [5],
a three-layer MLP (multilayer perceptron) has been developed. The number of
neurons in each layer is a parameter. Using subnets as mentioned in [5], the MLP
is distributed across all processes and GPUs. To simplify, links between neurons
are divided among all the nodes, and each link is controlled exclusively by a
single node. Consequently, the coordinator node (which also participates in the
training computation) and the worker node share link weights during parallel
training.

In contrast to [5], where all tasks are synchronized, an implementation with
asynchronous tasks and iterations has been built. In this version, there is no
synchronization following the initialization. The coordinator node has a heavier
workload compared to other nodes in the implementation of the IST code. It
is responsible for coordinating workers, performing tests with the test dataset,
4 Dataset: https://www02.smt.ufrj.br/∼offshore/mfs/page_01.html, last visited: 20-

10-2022

Distributed Training of Deep Neural Networks: Convergence and Case Study 11

sending and receiving the link weights of other nodes’ neurons. Additionally,
the coordinator is also responsible for a subnet (local gradient descent) in this
implementation, leading to a higher amount of calculations.

For the experiments, the French supercomputer Jean Zay of GENCI was
used. This supercomputer contains more than 2,000 GPUs (most of them are
NVIDIA V100).

The experiments compare the performance of three different versions of a
neural network training algorithm: the old synchronous version (the training
version implemented by [5]), the synchronous version with partitioning at the
first iteration, and the asynchronous version with no synchronizations between
the workers. The main point that the experiments aim to prove is that the
asynchronous method provides better testing accuracy in a shorter time and
lower execution times compared to the synchronous methods.

0 20 40 60 80 100
Iterations

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Testing curve

synchronous
asynchronous
synchronous old

(a) Testing curve for the syn-
chronous and the asynchronous
cases (limited to 100 epochs).

0 200 400 600 800 1000
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Testing curve

synchronous

(b) Testing curve for the syn-
chronous case (limited to 1,000
epochs).

Fig. 2: Experiments with the Google Speech dataset.

Table 1: Execution times for the Google Speech dataset.
Algorithm Number Execution Accuracy Asynchronous

of epochs times (in s) acceleration
Synchronous old version [5] 100 531 0.56 1.08
Synchronous version 100 550 0.67 1.11
Synchronous version 1,000 5,501 0.80 11.18
Asynchronous version 100 492 0.84 1

The training of three models was executed ten times with 64 GPUs. A super-
computer with specialized architecture was used, resulting in minimal variations
in execution times. Testing accuracy was averaged and plotted to assess the

12 J.M. Bahi et al.

convergence of the models. Results from Figures 2a and 3a indicate that the
asynchronous method outperforms the synchronous mode due to worker nodes
completing more iterations than the coordinator node (workers don’t wait for
the coordinator to synchronize at the end of each epoch), while in synchronous
mode, the number of iterations completed is equal to the number of epochs.
The number of epochs was fixed at 100 for the Google Speech dataset and 200
for Mafaulda based on several experiments, as those values better show the
difference in performance between synchronous and asynchronous training. Ad-
ditionally, the average testing accuracy for 1,000 epochs was computed only for
the synchronous model with one partitioning at the beginning to compare the
performance of the asynchronous model with a smaller number of epochs against
the synchronous model’s accuracy after 1,000 epochs. Figures 2b and 3b demon-
strate that the synchronous case has lower testing accuracy even with 1,000
epochs compared to the asynchronous case. Table 1 shows the average execution
times rounded to the nearest second of three versions. The maximum accuracy
is shown. The last column shows the asynchronous acceleration compared to the
other versions. The asynchronous training was faster than the other synchronous
approaches on both Google Speech and Mafaulda datasets. The code used for
the experiments is available5.

0 50 100 150 200
Iterations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Testing curve

synchronous
asynchronous

(a) Testing curve for the syn-
chronous and the asynchronous
cases (limited to 200 epochs).

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Testing curve

synchronous

(b) Testing curve for the syn-
chronous case (limited to 1,000
epochs).

Fig. 3: Experiments with the Mafaulda dataset.

6 Discussion and Perspectives

This paper aims to address numerical convergence in deep learning frameworks
for large problems. To achieve this, the neural network is partitioned into sub-
nets and back-propagation algorithms are applied to these subnets instead of
the original network. The paper also raises questions about reconstituting the
5 https://github.com/rcouturier/async_mlp

https://github.com/rcouturier/async_mlp

Distributed Training of Deep Neural Networks: Convergence and Case Study 13

global solution from partial solutions of subnets and the differences between
synchronous and asynchronous algorithms during convergence.

The paper presents a mathematical model that describes the behavior of
partitioning-based network methods in synchronous and asynchronous modes,
and proves the convergence of such methods. To validate this approach, the spe-
cific case of Independent Subnets Training is considered, and the asynchronous
mode is implemented and compared to the standard synchronous mode. The
study concludes that the asynchronous mode has better performance in terms
of execution time and accuracy.

The presented mathematical model is general and describes various scenarios,
including federated learning with workers possessing the same network architec-
ture. Future works will investigate different concepts and distributed architec-
tures to broaden the scope of the study.

7 Conclusion

This paper proposes a general model to investigate the convergence of distributed
asynchronous training of deep neural networks. The model addresses the ques-
tion of whether partial solutions of sub-networks can be used to reconstitute the
global solution. Two experimentations based on the Independent sub-network
Training model on different datasets are provided, demonstrating that using the
asynchronous aggregation sub-networks model is interesting for reducing execu-
tion time and increasing accuracy, even on a supercomputer. The study expects
a better performance from asynchronous aggregation algorithms in contexts with
weak computation time to communication time ratios.

Acknowledgment

This work was partially supported by the EIPHI Graduate School (contract
”ANR-17-EURE-0002”). This work was granted access to the AI resources of
CINES under the allocation AD010613582 made by GENCI and also from the
Mesocentre of Franche-Comté.

References

1. T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis,” ACM Computing Surveys (CSUR), vol. 52,
no. 4, pp. 1–43, 2019.

2. J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Reller-
meyer, “A survey on distributed machine learning,” Acm computing surveys (csur),
vol. 53, no. 2, pp. 1–33, 2020.

3. S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith,
B. Vaughan, P. Damania et al., “Pytorch distributed: Experiences on accelerating
data parallel training,” arXiv preprint arXiv:2006.15704, 2020.

14 J.M. Bahi et al.

4. D. Podareanu, V. Codreanu, T. Sandra Aigner, G. C. van Leeuwen, and V. Wein-
berg, “Best practice guide-deep learning,” Partnership for Advanced Computing in
Europe (PRACE), Tech. Rep, vol. 2, 2019.

5. B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and C. Jermaine, “Distributed
learning of fully connected neural networks using independent subnet training,”
Proceedings of the VLDB Endowment, vol. 15, no. 8, pp. 1581–1590, 2022.

6. J. Bahi, J.-C. Miellou, and K. Rhofir, “Asynchronous multisplitting methods for
nonlinear fixed point problems,” Numerical Algorithms, vol. 15, no. 3, pp. 315–345,
1997.

7. M. El Tarazi, Nabih, “Some convergence results for asynchronous algorithms,” Nu-
merische Mathematik, vol. 39, no. 3, pp. 325–340, 1982.

8. G. Baudet, “Asynchronous iterative methods for multiprocessors,” J. Assoc. Com-
put. Mach., vol. 25, pp. 226—-244, 1978.

9. J. Bahi, “Asynchronous iterative algorithms for nonexpansive linear systems,” Jour-
nal of Parallel and Distributed Computing, vol. 60, no. 1, pp. 92–112, 2000.

10. X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel
stochastic gradient descent,” in International Conference on Machine Learning.
PMLR, 2018, pp. 3043–3052.

11. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Se-
nior, P. Tucker, K. Yang et al., “Large scale distributed deep networks,” Advances
in neural information processing systems, vol. 25, 2012.

12. S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff in dis-
tributed deep learning: A systematic study,” in 2016 IEEE 16th International Con-
ference on Data Mining (ICDM). IEEE, 2016, pp. 171–180.

13. W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd for distributed
deep learning,” arXiv preprint arXiv:1511.05950, 2015.

14. Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger,
and E. P. Xing, “More effective distributed ml via a stale synchronous parallel
parameter server,” Advances in neural information processing systems, vol. 26,
2013.

15. B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach to par-
allelizing stochastic gradient descent,” Advances in neural information processing
systems, vol. 24, 2011.

16. C. Noel and S. Osindero, “Dogwild!-distributed hogwild for cpu & gpu,” in NIPS
Workshop on Distributed Machine Learning and Matrix Computations, 2014, pp.
693–701.

17. D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and distributed computation: numer-
ical methods,” 2003.

18. P. Spiteri, “Parallel asynchronous algorithms: A survey,” Advances in Engineering
Software, vol. 149, p. 102896, 2020.

19. A. Frommer and D. Szyld, “On asynchronous iterations,” Journal of Computational
and Applied Mathematics, vol. 123, no. 1, 2, pp. 201–216, 2000.

20. A. M. Elbir, S. Coleri, and K. V. Mishra, “Hybrid federated and centralized learn-
ing,” in 2021 29th European Signal Processing Conference (EUSIPCO). IEEE,
2021, pp. 1541–1545.

21. P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018. [Online]. Available: https://arxiv.org/abs/1804.03209

22. F. M. Ribeiro, M. A. Marins, S. L. Netto, and E. A. da Silva, “Rotating machin-
ery fault diagnosis using similarity-based models,” XXXV Simpósio Brasileiro de
Telecomunicações e Processamento de Sinais-sbrt2017, 2017.

https://arxiv.org/abs/1804.03209

	Distributed Training of Deep Neural Networks: Convergence and Case Study

