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ABSTRACT2

Proteins are essential biological molecules to use as biomarkers for early disease diagnosis.3

Therefore, their detection is crucial and, in recent years, protein sequencing has become one of4

the most promising technique. In particular, Solid-State Nanopores (SSNs) are powerful platforms5

for single biological molecule sensing without any labeling and with high sensitivity. Atomically6

thin two-dimensional (2D) materials with nanometer-sized pores, such as single-layer MoS2,7

represent the ideal SSN because of their ultimate thinness. Despite the benefits they offer, their8

use for protein sequencing applications remains very challenging since the fast translocation9

speed provides short observation time per single molecule. In this work, we performed extensive10

Molecular Dynamics simulations of the translocation of the twenty proteinogenic amino acids11

through single-layer MoS2 nanopores. From ionic current traces, we characterized peptide-12

induced blockade levels of current and duration for each of the twenty natural amino acids. Using13

clustering techniques, we demonstrate that positively and negatively charged amino acids present14

singular fingerprints and can be visually distinguished from the neutral amino acids. Furthermore,15

we demonstrate that this information would be sufficient to identify proteins using coarse-grained16

sequencing technique made of only three amino-acid categories depending on their charge.17

Therefore, single-layer MoS2 nanopores have a great potential as sensors for the identification of18

biomarkers.19
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1 INTRODUCTION

Single-molecule protein sequencing has been very recently identified as one of the seven technologies ”to21

watch” in the coming year (Eisenstein, 2023). It is due to the fact that the proteome, which represents22

the complete set of proteins made by a cell or organism, contains information about health and disease.23

However, it remains extremely challenging to characterize. Compared to DNA, single-molecule protein24

sequencing is crucial for early disease diagnosis due to the fact that DNA sequencing of living cells does25

not fully define human diseases (Cressiot et al., 2020). For instance, protein sequencing technologies could26
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be used to identify tumor biomarkers, which can help to determine the presence, absence, or evolution of27

cancer (Borrebaeck, 2017). Still, the protein ensemble is by far more complex than the DNA ensemble. First,28

to sequence a protein, it necessitates the recognition of twenty naturally occurring (proteinogenic) amino29

acids, compared with the four nucleotides forming the building blocks of DNA molecules, which results in30

a much larger chemical diversity (charge, hydrophobicity, polarity, etc.). Moreover, the proteome includes31

proteins with post-translational modifications (Stierlen et al., 2023), as for example the phosphorylation32

which may alter the location, the function and even the folded state of a protein (Bah et al., 2015). Finally,33

in contrast to the negatively uniformly charged double strands of nucleotides which is the common shared34

structure of DNA molecules, proteins occur in many different folded structures with various heterogeneous35

charge states. Nowadays, single molecule sensors inspired by the techniques used for DNA, that could36

sequence proteins in an electrolyte sample could be a major breakthrough on the horizon. Among existing37

technologies, nanopore sequencing has an immense potential due to the fact that this technology presents a38

high sensitivity since single molecule can be detected. Nonetheless, there are still considerable challenges39

to overcome (Bandara et al., 2022; Yang and Dekker, 2022; Nicolaı̈ and Senet, 2022).40

Solid-State Nanopores (SSNs), fabricated from stimuli responsive materials, have been widely studied41

in the past decade for the detection and characterization of single proteins (Lee et al., 2018; Luo et al.,42

2020; Xue et al., 2020). The physical principle behind SSN sensing experiments is the measurement43

of the ionic current variations when charged molecules, initially immersed in an electrolyte, translocate44

through a nanometer-sized channel in response to an external voltage applied across the membrane (Fig.45

1a). Therefore, as the passage of the single molecule through the nanopore is driven by an electric field, an46

appropriate control of the total charge of the molecule of interest is required (Nicolaı̈ and Senet, 2022).47

During that time, the ionic current is monitored to detect the passage of single molecules through the48

pore at a sub-microsecond temporal resolution. By analyzing the features of the ionic current trace, one49

can extract crucial structural information about the biological molecule including its primary structure,50

i.e. its sequence. In comparison with biological nanopores such as α-Hemolysin (Song et al., 1996) or51

Aerolysin (Strack, 2020) for example, SSNs are mechanically robust and durable in time, with tunable52

pore sizes, geometries and chemistry (Pérez-Mitta et al., 2019), and compatible with various electronic53

or optical measurement techniques. However, they particularly suffer from critical limitations such as54

the high translocation speed (Fragasso et al., 2020), the low spatial resolution and stochastic motion of55

biological molecules which remain as challenges for the accuracy and sensitivity (Meyer et al., 2021) or56

the non-specific interaction between proteins and the walls of the SSN, which can clog the pore and block57

the translocation of other molecules (Eggenberger et al., 2019).58

Two-dimensional (2D) SSNs such as graphene (Garaj et al., 2010; Schneider et al., 2010; Merchant59

et al., 2010), hexagonal boron nitride (Liu et al., 2013; Zhou et al., 2013), transition-metal dichalcogenides60

MoS2 and WS2 (Liu et al., 2014; Feng et al., 2015; Danda et al., 2017) or MXenes (Mojtabavi et al., 2019)61

nanopores have been extensively studied experimentally for DNA sequencing (Arjmandi-Tash et al., 2016;62

Qiu et al., 2021). Nevertheless, protein sequencing using 2D SSNs are much less advanced, particularly63

compared with silicon nitride SSNs (Kennedy et al., 2016; Kolmogorov et al., 2017; Dong et al., 2017).64

To the best of our knowledge, only a few theoretical and one experimental studies about MoS2 SSNs for65

protein sequencing applications have been reported (Chen et al., 2018; Barati Farimani et al., 2018; Nicolaı̈66

et al., 2020; Wang et al., 2023). Among those, a very recently published experimental work demonstrates67

the identification of amino acids with sub-1-Dalton resolution using MoS2 nanopores (Wang et al., 2023).68

The authors present the use of 41 different sub-nanometer engineered pores, with effective diameters69

ranging from sub-nm to 1.6 nm, to directly identify 16 out of 20 types of natural amino acids. Among70

the 20 natural amino acids, 18 of them were negatively charged by controlling the pH of the electrolyte.71
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Figure 1. (a) Structure of the MoS2 nanopore sensor simulated in the present work. The membrane is
shown in ball and stick (Mo, blue and S, yellow) plus surface (gray) representations. The peptide is shown
in cartoon representation (red) with the positions of the center of mass of each amino acid with spheres.
The electrolyte is represented with transparent spheres, the water molecules being not represented for
more clarity. (b) Model peptide sequences XK7 studied in the present work. The twenty proteinogenic
amino acids are grouped by family: positively (blue) and negatively charged (red), polar neutral (violet),
hydrophobic aromatic (cyan) and non-aromatic (green) and special cases (orange).

However, using such heterogeneous sub-nm pores and electrolyte properties might be an obstacle for72

protein sequencing applications, particularly for the threading of polypeptides through the nanopores. In73

this case, the use of larger pores (> 1 nm) and polycationic charge carrier is one solution (Nicolaı̈ and74

Senet, 2022). Moreover, one of the major challenges for protein sequencing using 2D SSNs is that the fast75

translocation speed of the biological molecule through the nanoporous membrane of ultimate thickness76

provides only a short sensing period, i.e. dwell time, per single molecule (Nicolaı̈ and Senet, 2022). It77

makes the assignment of fingerprints to each of the twenty proteinogenic amino acids from ionic current78

time series measurements very challenging. For example, several distinct features in the recorded ionic79

current time series can be detected within a blockade event and algorithms in pattern recognition and80

machine learning can be very helpful to identify specific fingerprints associated to the single molecule81

detected (Nicolaı̈ et al., 2020; Diaz Carral et al., 2021; Mittal et al., 2022; Taniguchi et al., 2022; Xia et al.,82

2021; Farshad and Rasaiah, 2020; Misiunas et al., 2018; Taniguchi, 2020; Tsutsui et al., 2021; Arima et al.,83

2021; Barati Farimani et al., 2018; Meyer et al., 2020; Jena and Pathak, 2023). Finally, in addition to signal84

analysis techniques, Molecular Dynamics (MD) is also a very powerful tool to help: i) understanding85

the origin of these features and ii) assigning these features to amino acid properties (chemical, charge,86

hydrophobicity, etc.) since, from MD, the positions of all the atoms of the system are known at each time87

step, which is an additional crucial information about the sensing of single biological molecule, compared88

to experiments.89

In the present work, we performed extensive unbiased all-atom MD simulations for a total duration of90

250 µs of the translocation of the twenty proteinogenic amino acids through a single-layer MoS2 nanopore91

of effective diameter D = 1.3 nm (Fig. 1). Individual amino acids were chemically linked to a short92

polycationic charge carrier Lysine heptapeptide allowing transport of the peptide through the nanopore.93

This probe was designed to guide the target peptide toward MoS
2

nanopores (Nicolaı̈ et al., 2019). It allows94

us to control peptide translocation through solid-state nanopores and relate protein characteristics with95
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nanopore readouts. Furthermore, this probe has also been used experimentally (Arginine heptapeptide)96

using biological nanopores to distinguish among uniformly charged homopeptides and to assign signature97

ionic currents to the charged homopeptides. A transient current blockade is then induced by the passage98

of the peptide, whereby the characterizations of relative residual current and blockade duration was be99

used to reveal the identity of the linked amino acid (Ouldali et al., 2020). Moreover, as done in real life100

experiments, the peptide is initially placed above the membrane in the cis compartment to simulate its101

complete translocation through the nanopore to the trans compartment using a transverse electric field (no102

other bias). From ionic current time series extracted from MD, we show that each amino acid presents103

a large diversity of ionic current blockade levels and duration. Nevertheless, by applying unsupervised104

machine learning (clustering) to the segmentation of translocation events, specific fingerprints dependent on105

the charge of the amino acids were identified. Hereafter, we demonstrate that both positively and negatively106

charged amino acids present well-distinguishable distributions of blockade levels of ionic current and107

duration compared to all the other amino acids. Finally, ideal fingerprints associated to each of the twenty108

proteinogenic amino acids are presented, some of them being characteristic of more than one amino acid.109

These promising findings may offer a route toward protein sequencing using MoS2 solid-state nanopores110

via the identification of coarse-grained sequences of proteins, from the detection of the position of charged111

amino acids in the primary structure, the average coarse-grained sequence identity being around 10% only.112

2 MATERIALS AND METHODS

2.1 Atomistic Modeling of MoS2 SSNs113

SSN sensors simulated in the present work are composed of three distinct elements: a single-layer MoS2114

membrane, a biological peptide, both immersed in a KCl electrolyte (Fig. 1a). The atomic structure of the115

full system is comprised of around 100,000 atoms in total. Initially, MoS2 membranes were constructed116

using 2H-MoS2 orthorhombic unit cell lattice vectors a⃗ = (3.1, 0, 0) Å and b⃗ = (0, 5.4, 0) Å, comprised of117

6 atoms, 2 Mo and 4 S. The Mo-S bond length was taken as dMo−S = 2.4 Å and the S-S distance was taken118

as dS−S = 3.2 Å. It corresponds to the geometrical thickness h of the membrane, the effective thickness119

h∗ being around 0.7 nm (Nicolaı̈ et al., 2019, 2020). Pore of cylindrical shape were drilled at the center of120

the membrane by removing atoms whose coordinates satisfy x2 + y2 < R2, where R is the radius of the121

pore. We consider here MoS2 membranes of dimension 7.5× 7.5 nm2 and pores of diameter D = 1.3 nm.122

Last but not least, the membrane is considered globally neutral, with atomic partial charges qi for Mo and123

S computed from charge equilibration algorithm (Rappe and Goddard, 1991; Nakano, 1997) in vacuum124

using ReaxFF, available in LAMMPS software package (Ostadhossein et al., 2017). Partial charges, on125

average, are around +0.42 for Mo atoms and -0.21 for S atoms, the distribution of partial charges relative126

to the center of the pore is shown in Fig. S1. As expected, partial charges are strongly influenced by the127

presence of the pore (vacancies) at the center of the membrane, with a decrease of partial charges for S128

atoms at the mouth of the pore and a decrease or increase for Mo atoms partial charges depending on their129

S environment (see Fig. S1). The modeling of partial charges is essential to better electrostatic interactions130

between the peptide, the electrolyte with membrane atoms belonging to the edge of the nanopore.131

Biological peptides were built using AmberTools software. From the sequence of amino acids defining the132

peptide, the module leap creates the all-atom structure from a database. The initial structure of the peptide133

created that way does not exhibit particular 3-D shape and is linear (Fig. 1a). During MD simulations, the134

structure of the peptide is fully relaxed and can adopt any conformation. However, during the translocation135

process, the peptide is elongated in the nanopore due to its small diameter. In this work, we study the136

translocation of twenty distinct peptide sequences. This methodology based on the number of charge137
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carriers added and its impact into the ionic current traces measured during MD simulations has been138

discussed in a previous work (Nicolaı̈ et al., 2019). Other techniques have been tested theoretically such139

as applying a hydrostatic pressure gradient (Chen et al., 2018) or modifying of the chemical potential of140

the membrane (Luan and Zhou, 2018). The total charge of the peptide is +7 for neutral amino acids (A,141

G, I, L, P, V, F, W, Y, S, T, C, M, N, Q), +8 for positively charged amino acids (R, K, and H), and +6142

for negatively charged amino acids (E and D). Peptides are initially placed at a distance of 2.5 nm above143

the membrane. By doing that, we avoid a common biased threading when the peptide is originally placed144

inside the pore and it allows us to simulate the complete translocation process (5 steps) as shown in Fig.145

S2, i.e. i) diffusion in bulk electrolyte, ii) diffusion on the top surface, iii) passage through the pore, iv)146

diffusion on the bottom surface and v) diffusion in bulk electrolyte. Finally, water molecules, potassium K+147

and chloride Cl− ions (1 M) were added to the simulation box using GROMACS (Abraham et al., 2018).148

2.2 Molecular Dynamics Simulations149

All-atom classical MD simulations in explicit solvent were carried out using the GROMACS software150

package (Abraham et al., 2018) (version 2018.2 in double precision). Peptide translocation was enforced151

by imposing a uniform electric field directed normal to the nanoporous membrane (z-direction), to all152

atomic partial charges in the system. The corresponding applied voltage simulated is Vbias = −ELz,153

where Lz = 15 nm is the length of the simulation box in the z-direction. No other biases were applied154

in the present simulations, as done in other works (Barati Farimani et al., 2018), and the simulation of155

the full translocation process of the peptide through the membrane is performed here, i.e. from bulk156

solvent compartment above the membrane to the bulk solvent compartment below the membrane (Fig. 1a).157

MoS2 nanoporous membrane was modeled using harmonic potential for Mo-S bonds plus S-Mo-S and158

Mo-S-Mo angles (Sresht et al., 2017). As mentioned above, atomic partial charges qi for Mo and S were159

computed from charge equilibration in vacuum using ReaxFF. Finally, LJ parameters (ϵi, σi) for Mo and160

S atoms were adapted from (Gu et al., 2017). Peptides were modeled using the AMBER99sb*-ILDN-q161

force-field (Best et al., 2012). The water model used in the present work is TIP3P (Jorgensen et al.,162

1983). Potassium chloride K+ and Cl− ions non-bonded parameters (qi, ϵi, σi) were taken from (Joung163

and Cheatham, 2008), where specific parameters were developed for TIP3P water model. Neighbor164

searching was performed by using a pair list generated using the Verlet method (particle-based cut-offs) as165

implemented in GROMACS (Abraham et al., 2018). The neighbor list was updated every 5 steps (10 fs),166

with a cut-off distance for the short-range neighbor list of 1.0 nm. Moreover, electrostatic interactions were167

computed using a Coulomb potential and Van der Waals interactions using a Lennard-Jones (LJ) potential168

plus arithmetic mixing rules. Technically, Particle-Particle Particle-Mesh (PPPM) method (Isele-Holder169

et al., 2012) was used to describe long-range electrostatic interactions with a Fourier spacing of 0.16 nm170

and a PME order of 4. A cutoff of 1.0 nm was applied to both Coulomb and LJ potential for non-bonded171

interactions. Finally, a long-range analytical dispersion correction was applied to the energy and pressure.172

Similar MD parameters have been used in other works (Heiranian et al., 2015; Barati Farimani et al., 2018;173

Zhao et al., 2021; Shankla and Aksimentiev, 2020; Chen et al., 2018; Thiruraman et al., 2018; Nicolaı̈174

et al., 2019, 2020; Pérez et al., 2019).175

For each NEMD run, the simulation box built from modeling procedure was first minimized using176

steepest-descent algorithm with a force criterion of 1000 kJ/mol/nm. Then, the minimized structure was177

equilibrated in NVT ensemble for 100 ps (δt = 1 fs) using the V-rescale thermostat (Bussi et al., 2007)178

at T = 300 K (τT = 0.1 ps) and position restraints were applied to the membrane and the peptide. The179

NVT equilibrated structure was then equilibrated in NPT ensemble for 500 ps (δt = 1 fs) using a Parinello-180

Rahman barostat (Parrinello and Rahman, 1981; Nosé and Klein, 1983) at P = 1 bar (τP = 1.0 ps) and181
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position restraints were applied to the peptide. Finally, the NPT equilibrated structure is then simulated182

at Vbias = 1 V for 500 ns (production run) with a time step δt = 2 fs with constraints applied on183

chemical bonds involving H atoms using the LINCS algorithm (Hess et al., 1997). During production runs,184

xyz-coordinates of all the atoms of the simulation box were saved every 10 ps.185

In total, 12.5 µs of MD simulations were performed for each of the twenty proteinogenic amino acids,186

i.e. 250 µs simulation time in total. It represents more than 10 millions of hours of CPU time, performed187

on AMD EPYC 7302@3 GHz (2 processors, 16 cores/processor) with a scaling of 150 ns per day on 256188

cores.189

2.3 Data Analysis190

Effective Free-Energy Profiles and Surfaces191

From MD, we probed the position of the amino acid of interest X in peptides XK7 by computing the192

cylindrical coordinates (ρ, z) of the center of mass of the amino acid side chain at each time step, as done in193

a previous work (Nicolaı̈ et al., 2020). Effective Free-Energy Profiles Vz and Surfaces Vρ,z were computed194

by using:195

Vz = −kT log
Pz

Pmax
z

; Vρ,z = −kT log
Pρ,z

Pmax
ρ,z

(1)

where k is the Boltzmann constant, T is the temperature, Pz and Pρ,z are the 1-D and 2-D probability196

density functions (PDFs) of the normal z and both radial ρ and normal z coordinates, respectively and Pmax
z197

and Pmax
ρ,z are the maximum values of Pz and Pρ,z, respectively. PDFs were computed using cylindrical198

coordinates time series (1,250,000 points) extracted from concatenated MD trajectories for each of the199

twenty proteinogenic amino acids, as shown in Fig. 1b.200

Ionic Current201

Ionic current time series were computed from MD production runs using z-coordinates of K+ and Cl−202

ions as a function of time, as:203

I(t) =
1

∆tLz

Nions∑

i=1

qi [zi(t+∆t)− zi(t)] (2)

where ∆t is the time between MD snapshots chosen for the calculations (1 ns), Lz is the dimension of204

the simulation box in the z-direction, which is the direction of the applied electric field, Nions is the total205

number of ions in the electrolyte, qi is the charge of the ion i (+1 or -1) and zi(t) is the z-coordinate of206

the ion i at time t. In addition, ionic current time series were filtered in order to remove high frequency207

fluctuations by computing the moving mean of the ionic current over T = 1, 000 samples.208

Detection of Peptide-Induced Blockade Events209

The detection of peptide-induced blockade events from ionic current time series was performed using a210

two-threshold method, as applied elsewhere (Ouldali et al., 2020). First, a threshold th1 is applied to identify211

possible blockade events. The threshold th1 was defined as th1 =< I0 > −4σ0, where < I0 > is the mean212

value of open pore ionic current and σ0 its standard deviation. In the case of single-layer MoS2 nanopore213

of diameter D = 1.3 nm, the corresponding values are < I0 >= 3.55 nA and σ0 = 0.25 nA. A possible214

blockade event always starts when the ionic current decreases below th1 and ends when the ionic current215

first increases above th1 (see Fig. S4). The advantage of this threshold is to eliminate the overwhelming216
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majority of the open pore ionic current fluctuations monitored during translocation experiments. Second,217

from ionic current values below th1 for a given possible blockade event, we computed the corresponding218

probability distribution P (I) and a Gaussian distribution was then fitted to the data. If the mean value219

of the Gaussian fit < Ib > is below th2 =< I0 > −5σ0, the event is considered as a peptide-induced220

blockade event.221

Structural Break Detection and Clustering Analysis222

Structural break detection was performed using the Chow test, an algorithm used when a potential223

structural break in the time series may be recognized a priori. The principle is to evaluate the parameter224

stability, namely, to determine if the underlying regression model parameters have remained unchanged.225

In this case, peptide-induced blockade events ionic current data were split by one point in time, getting226

two different data sets. The null hypothesis of Chow test asserts that true coefficients in two linear227

regressions on these two data sets are equal. Structural changes take place in points where null hypothesis228

is rejected (Aronov et al., 2019; Sun and Wang, 2022).229

Clustering was performed using Gaussian Mixture Model (Reynolds, 2009) (GMM) for which Gaussian230

free parameters (πk,µk,Σk) representing the weight, the means and the covariances respectively being231

estimated from the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). To do so, we used232

scikit-learn, which is an open source Machine Learning Python Library. In addition, to estimate233

the number of sub-population for each amino acid, we used Bayesian Information Criterion (BIC) score234

to estimate the proper number of components K to GMM (Schwarz, 1978) (Fig. S13). In addition, full235

and tied covariances were set as a parameter of the model for 1 and 2-D clustering, respectively. Finally,236

the convergence threshold used was 0.001, which means that when the lower bound average gain falls237

under this limit, EM iterations will end. From GMM clustering outputs, i. e. cluster means < ∆Ib > and238

< τb >, we computed 2D probability densities P (< ∆Ib >,< τb >) using 20 and 30 bins, respectively.239

The convergence of GMM clustering techniques applied to 1D (Fig. 3) and 2D probability densities (Fig. 4)240

as a function of input data is presented in Fig. S14.241

3 RESULTS AND DISCUSSION

3.1 Translocation of the Twenty Proteinogenic Amino Acids through MoS2 Nanopores242

In translocation simulations, nanoporous membrane made of single-layer MoS2 with pore of diameter243

D = 1.3 nm separates two compartments, cis and trans, which contain both a 1M KCl electrolyte solution244

(Fig. 1a). In the cis compartment, a biological peptide XK7 with X being one of the twenty proteinogenic245

amino acids (Fig. 1b) is initially placed above the membrane, at a vertical distance of around 2.5 nm. The246

translocation simulation starts by applying an external voltage of 1 V across the membrane. After diffusing247

in bulk electrolyte for a few ns, the peptide starts diffusing on the top surface of the membrane and then248

translocates through the nanopore (Fig. S2). Once the translocation happens, the peptide diffuses on the249

bottom surface of the membrane in the trans compartment and detached at some point to go back to bulk250

electrolyte. This latter step is not observed in all translocation simulations and sometimes, only a partial251

translocation is achieved (Fig. S2).252

From MD, we computed the sensing time TS of each amino acid X belonging to the peptide XK7. As253

shown in Fig. 2a, negatively charged amino acids E and D present a TS one order of magnitude higher than254

that of the neutral amino acids and two orders of magnitude larger than that of the positively charged amino255

acids. It means that the charge property of the amino acids mainly dictates the sensing characteristics of256
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the amino acids in MoS2 nanopores using MD. Within a family, sensing time TS are very similar, except257

for: i) K in the positively charged family, which presents a TS 3-4 times larger than H and R; ii) S and258

Q in the polar neutral family, which present TS 3-4 times larger than T and N; iii) C in the special cases259

family, which presents a TS 2-3 times larger than G and P. In addition, from the position of the center of260

mass of each amino acid side chain, we computed the effective free-energy profiles Vz along the normal261

coordinate z in order to estimate the barrier for the passage of each amino acid through the nanoporous262

membrane. Fig. 2b shows the effective Free-Energy Profiles Vz (FEPs) for R (positively charged), E263

Figure 2. a) Sensing time TS (in ns) as a function of amino acids. The color code is the same as in Fig. 1. b)
Effective free-energy profiles Vz (in kT unit, T = 300 K) along the normal coordinate z of the amino acid
side chain center of mass. Gray rectangles represent the position of the MoS2 nanoporous membrane. c)

Effective free-energy barriers ∆Vz [in kT unit] as a function of the amino acid volume [in Å
3
]. d) Effective

free-energy surfaces Vρ,z [in kT unit] as a function of the radial and normal coordinates of the amino acid
side chain center of mass inside the nanopore (ρ < R = 0.65 nm and |z| < h/2 = 0.16 nm). The colormap
is terrain, from blue (0 kT) to green (2.5 kT) to yellow (5 kT) to brown (7.5 kT) to white (≥10 kT). The red
and yellow circles represent the global and local minima respectively, within 1 kT. e) Effective free-energy
profiles Vz along the normal coordinate z of the ions. f) Effective free-energy surfaces Vρ,z [in kT unit] as a
function of the radial and normal coordinates of the ions inside the nanopore.
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(negatively charged), S (polar neutral), W (hydrophobic aromatic), V (hydrophobic non-aromatic) and264

G (special cases). The other FEPs are available in Fig. S3. From MD and independently of the amino265

acid characteristics, the FEPs along the normal coordinates present an asymmetry due to the presence of266

the electric field and share two similar features: i) a local minimum in the cis compartment (z ∼ 0.5 nm)267

corresponding to the diffusion of the peptide on the top surface of the membrane and ii) a global minimum268

in the trans compartment (z ∼ −0.5 nm) corresponding to the diffusion of the peptide on the bottom269

surface of the membrane after translocation. However, the behavior of negatively charged amino acids (E,270

D) shows some differences compared to the others. In the cis compartment, there are two local minima271

centered around z ∼ 0.0 nm and z ∼ 1.0 nm. This comes from the fact that negatively charged amino acids272

interact with the electric field in the opposite direction of translocation and even after the full translocation273

of the peptide, these amino acids can go back individually to the pore during the diffusion process. It means274

that the free-energy barriers for all amino acids except the negatively charged ones correspond to the full275

translocation, whereas for negatively charged amino acids, it corresponds mainly to the exit of the pore, for276

which the barrier of the entrance is much smaller (Fig. 2b and Fig. S3a). For comparison, the profiles for277

cations K+ and anions Cl− are symmetrical and flat in the bulk region. The free-energy increases when278

approaching the MoS2 surface and being maximum (saddle point) at z ∼ 0 nm.279

From the 1-D FEPs Vz , we estimated the effective free-energy barrier for the translocation of each amino280

acid X. As shown in Fig. 2c, the free-energy barriers ∆Vz are correlated with the volume of the amino281

acids (Pearson correlation ∼ 0.7). This is particularly clear for amino acids with volumes below 150 Å
3

282

and even for larger amino acids (> 150 Å
3
), the tendency is increasing although other properties may283

influence the translocation, the charge property being one of them as shown by comparing amino acids284

with similar volumes and different charge properties, i. e. E and V or K and L in Fig. 2c. The correlation of285

free-energy barriers ∆Vz with the amino acid number of atoms is similar to the one with the volume of286

amino acids (Pearson correlation ∼ 0.7, Fig. S3b). For comparison, the free-energy barriers for the passage287

of K+ and Cl− ions are 4.9 and 4.4 kT, respectively (Fig. 2e).288

Finally, we computed the effective free-energy surfaces Vρ,z (FESs) of each amino acid during its passage289

inside the MoS2 nanopore. First, the FESs explored by the twenty proteinogenic amino acids are very290

heterogeneous (Fig. 2d and Fig. S3c). However, some observations must be highlighted. For instance, all291

the three positively charged amino acids K, H and R translocate through the pore far away from the vertical292

edges located at ρ ∼ R. It is also the case even if it is less pronounced for hydrophobic non-aromatic amino293

acids such as V, I, L and M. The opposite behavior is observed for negatively charged amino acids E and D,294

which reside inside the nanopore closer to the vertical edges due to the presence of Mo atoms in the pore295

throat, with their global minimum being inside the pore as explained above from FEPs Vz. It is also the296

case for Serine (S), which is characterized by the presence of an oxygen atom at the extremity of its side297

chain, as it is the case for E and D. For comparison, free-energy surfaces of K+ and Cl− ions present the298

same behavior, i.e. cations translocate in a narrower channel than anions due to the presence of positively299

charged Mo atoms at the mouth of the pore. However, compared to the amino acids, the translocation300

landscape of ions is more flat and spread over the entire pore channel. Second, as shown in Fig. 2d, some301

amino acids present wide, extended basin in their FESs such as H, N, W, G whereas some of them present302

narrower translocation channel such as R, Q, A, P. It is not surprising for G since it is characterized by the303

smallest side chain, i.e. an H atom. Nevertheless, it is surprising for W amino acid, which is the largest304

amino acid in terms of volume. It comes from the different orientations of the aromatic rings observed305

during MD. Therefore, hydrophobic aromatic amino acids W and Y present multiple minima in the radial306

direction ρ during their passage inside the nanopore. In wide translocation channel (H, N, W, G), FESs are307
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quite flat with only small barriers between the existing multiple local minima. In narrower channel, the308

barriers are much larger with uphill profiles inside the pore to enter it (K, Q) or to exit it (M, C, V, T).309

3.2 Detection of Peptide-Induced Blockade Events310

Fig. 3a shows ionic current variations monitored during MD and representing the translocation of the311

twenty different proteinogenic amino acids through MoS2 nanopores. The data are grouped according to the312

family to which amino acid X belongs, i.e. positively charged (blue), negatively charged (red), polar/neutral313

(violet), hydrophobic aromatic (cyan), hydrophobic non-aromatic (green) and a special case (orange). In314

the absence of peptide inside the nanopore, a steady ionic current of mean value I0 = 3.55 ± 0.25 nA315

flows through the pore. The threading of the peptide into the nanopore induces transient blockades of316

the ionic current, each ionic current blockade corresponding to the presence of an individual peptide317

in the nanopore (Nicolaı̈ et al., 2020). From ionic current time series, peptide-induced blockade events318

were extracted using a two-threshold method (Fig. S4) in order to proceed in a very similar way as319

done in experiments (Ouldali et al., 2020). Each peptide-induced blockade event is characterized by a320

blockade ionic current trace Ib(t) of duration τb (Fig. 3b). The total sensing duration per amino acid, which321

corresponds to tens of translocations, varies from 10% (T) to 25% (V) of the total simulation time per322

amino acid (12.5 µs), with an average around 17%. As shown in Fig. 3b and as observed experimentally,323

there is a very large variability of blockade ionic current traces that can be visually observed for all amino324

acids (Fig. S5 to S8). On the one hand, for a given amino acid, some events with similar duration τb are325

characterized by deep ionic current blockades and some traces are characterized by slight ionic current326

blockades, as shown in Fig. 3b for N and I amino acids. On the other hand, some events maintain fairly327

constant blockade current traces and others show switching levels and bumps as shown in Fig. 3b for R and328

F amino acids, depending on the radial position of the peptide in the pore (Nicolaı̈ and Senet, 2022). Finally,329

some blockade traces are characterized by very short duration (a few ns) whereas others are relatively long330

(a few hundreds of ns), as shown in Fig. 3b for D and C amino acids. To better characterize this variability331

of traces detected from translocation simulations, we computed probability densities of blockade ionic332

current P (Ib) and compared them between the twenty proteinogenic amino acids.333

3.3 Probability Densities of Blockade Ionic Current Traces334

Fig. 3c shows probability densities P (Ib) for each amino acid grouped per family. Overall, the335

superimposed densities do not exhibit well-separated populations between the amino acids within a family,336

as measured experimentally for biological nanopores (Ouldali et al., 2020). Nevertheless, some notable337

exceptions are observed and discussed below. In the present work, P (Ib) densities present multiple peaks338

for each amino acid, i.e. sub-populations which means that different fingerprints of blockade current exist339

during translocation simulations through MoS2 nanopores. Per amino acid, the number of sub-populations340

in the data was assessed by using the Gaussian Mixture Model (GMM) clustering technique associated with341

a Bayesian Information Criterion (BIC, see Methods section). In total, we identified 2 (P), 3 (H, R, D, W, V,342

I, L, M, C), 4 (K, E, S, T, Q, F, Y, A, G) or 5 (N) sub-populations per amino acid (Table S1), corresponding343

to four ranges of blockade current Ib: first, the range [0, 1.0] nA, corresponding to depths ∆Ib larger than344

around 70% of the open pore signal; second, the range [1.0, 1.5] nA, corresponding to depths ∆Ib between345

around 60% and 70%; third the range [1.5, 2.0] nA, corresponding to depths ∆Ib between 40% and 60%;346

and fourth, the range [2.0, 2.5] nA, corresponding to depths ∆Ib smaller than 40%. The two-threshold347

method imposed here do not permit to detect depths ∆Ib lower than 30% of the open pore current.348

For all twenty proteinogenic amino acids, the major sub-population of P (Ib) is comprised between349

1.7 nA (depth ∆Ib of 50%) for W amino acid and 1.9 nA (depth ∆Ib of 45%) for P amino acid, which is350
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Figure 3. a) Ionic current (in nA) as a function of time (in µs) recorded during MD simulations of the
translocation of the twenty amino acids through MoS2 nanopore. Dashed lines represent the average
open pore value < I0 >. The gray area represents the threshold used to detect peptide-induced blockade
events (see Methods section). For each amino acid, the same color code is used as in Fig. 1. b) Examples
of peptide-induced blockade ionic current traces Ib(t) recorded during translocation simulations. Depth
∆Ib ≡ 1− Ib/ < I0 > (in %) and duration τb (in ns) are indicated. The color code is the same as panel a.
c) Probability densities P (Ib) computed using a bin of 0.1 nA. The color code is the same as panel a.

close to be easily distinguishable (Fig. 3c). The associated weights of each sub-population (see Table S1)351

range from 34% (N) to 80% (P). Per family, for positively charged amino acids, 3 (H, R) and 4 (K)352

fingerprints of blockade current are detected, with major sub-populations centered around 1.7-1.8 nA. The353

main differences between the three positively charged amino acids are observed for K, which presents a354
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minor sub-population at 0.4 nA (depth ∆Ib of 90%) compared to H and R and for H, which presents a355

minor sub-population around 0.9 nA (depth ∆Ib of 70%). For negatively charged amino acids, 4 (E) and356

3 (D) fingerprints of blockade current are detected, with major sub-populations centered around 1.7 nA,357

these values being slightly smaller than the ones for positively charged amino acids. The main differences358

between E and D are observed for larger blockade ranges (depth ∆Ib > 60%), with minor sub-populations359

centered around 1.3 and 0.6 nA for E and around 1.0 nA for D.360

For polar/neutral amino acids, 4 (S, T, Q) and 5 (N) fingerprints of blockade current are detected, with361

major sub-populations centered between 1.7 and 1.8 nA, these values are comparable with charged amino362

acids, S and T closer to (K, H, R) and (N, Q) closer to (E, D), as shown in Fig. 3c. However, for minor363

sub-populations, polar/neutral amino acids present much more dissimilarities between them than charged364

amino acids. For instance, T amino acid shows a singular minor sub-population centered around 1.3 nA. In365

addition, singularities are also observed for N and S amino acids, which show a minor sub-population at366

2.0 nA and 1.5 nA, respectively.367

For hydrophobic/aromatic amino acids, 3 (W) and 4 (F, Y) fingerprints of blockade current are detected,368

with major sub-populations centered around 1.7 nA (F, W) and 1.8 nA (Y). For Y amino acid, a minor369

sub-population close to the major one at 1.5 nA is detected, which is not the case for F and W amino370

acids. Moreover, compared to W and Y, F amino acid presents a minor sub-population centered at 0.7 nA,371

which corresponds to depth ∆Ib of 80% (75% at maximum for W and Y). For hydrophobic/non-aromatic372

amino acids, 3 (V, I, L, M) and 4 (A) fingerprints of blockade current are detected, with the major sub-373

population centered around 1.7 nA with values being extremely close. Among all the amino acid families,374

the hydrophobic/non-aromatic is the one showing the least differences between amino acids except for L,375

which shows a singular behavior with two major sub-populations of similar weight at 1.8 and 1.1 nA. To a376

lesser extent, M amino acid shows the same sub-population at 1.1 nA but with a smaller weight, 20 vs.377

40% for L (Table S1).378

Finally, for special case amino acids, 2 (P), 3 (C) and 4 (G) fingerprints of blockade current are detected,379

with the major sub-populations being centered around 1.7 nA for C and G, and 1.9 nA for P, which is the380

largest value detected. Visually, the special case family is the one which reveals the largest dissimilarities381

with a major sub-population for P amino acid that is very wide compared with G and C but also compared382

to all the other amino acids. Moreover, C amino acid presents a second well-separated sub-population at383

1.2 nA (depth ∆Ib of 65%) compared to G and P. Last but not least, surprisingly, G amino acid, which384

is the smallest amino acid with an H atom as side chain, presents a sub-population at 0.4 nA (depth ∆Ib385

of 90%) as observed for K amino acid. This confirms that the volume of the amino acids (Perkins, 1986)386

is not the only physical mechanism underlying the dependence of blockade ionic current on amino acid387

type through MoS2 solid-state nanopores (Fig. S9). In fact, only Tryptophan (W) amino acid, which is the388

largest amino acid in volume (228 Å3), presents the largest major sub-population of blockade ionic current389

among all the twenty proteinogenic amino acids. On the contrary, Glycine (G), which is the smallest amino390

acid in volume (60 Å3), presents a minor sub-population in the same range as W (same weight), with a391

value centered at 0.35 nA for G compared to 0.94 nA for W.392

Compared to the experimental work mentioned in the introduction (Wang et al., 2023), we identified393

more sub-populations per amino acid than they do. For SSNs with diameters comparable to the size of394

the amino acids being detected (0.6 nm), the experimental distributions of current trace are bimodal,395

whereas in the present work it can vary from 2 to 5 sub-populations. It is due to the fact that we consider396

here a single device, compared to 41 experimental devices, with a pore diameter of 1.3 nm compared397

to sub-nm (0.6-0.8 nm) to 1.6 nm in experiments and the time scale of microseconds in MD compared398
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to seconds in experimental measurements. However, the overlap between the probability distributions399

P (Ib) of the different amino acids is similar between our theoretical work and the experimental one but the400

separation of the maximum peaks is more important in the latter than the ones presented in Fig. 3c and in401

Table S1. Finally, the correlation between means of blockade current and the volume of the amino acid is402

well-established experimentally for SSNs with diameters comparable to the size of the amino acids being403

detected whereas, in our simulations with larger pore diameters, other mechanisms such as the orientation404

of the side chains are important, as already demonstrated in a previous work (Nicolaı̈ et al., 2020). This405

mechanism is also observed experimentally for positively charged amino acids (Wang et al., 2023).406

To conclude, among the twenty proteinogenic amino acids studied here, peptides containing K, T, N,407

G, P or L amino acids produced distinct minor blockade sub-populations of ionic current compared to408

the other amino acids, whereas the major blockade sub-populations of ionic current are very similar to409

be differentiated. Therefore, additional information from blockade traces of ionic current is required to410

improve their recognition using MoS2 SSNs. A first guess is to include, in the clustering analysis, a better411

description of the depth and duration of the blockade traces of ionic current detected from translocation412

simulations.413

3.4 Clustering of Blockade Levels from Ionic Current Traces414

To quantify the depth ∆Ib and duration τb of each level of ionic current observed during peptide-induced415

blockade events and extracted from time series shown in Fig. 3a, we applied a structural break detection416

algorithm (see Materials and Methods section). It allows us to convert raw signals of blockade current417

traces into simplified step-wise signals as shown in Fig. 4a. It leads to: i) a better characterization of418

blockade events compared to the traditional methodology, i.e. using the mean values of ionic current during419

the associated blockade event, considering the events to be constant as a function of time and ii) an increase420

of the statistics of blockade events data. For instance, it reduces by a factor of 3 the mean-squared errors421

between the raw and the step-wise model signals compared to the constant model signal (Fig. S10). In422

addition, it increases by a factor of 6 the statistics of blockade events data, which is crucial for machine423

learning applications.424

Fig. 4b represents duration τb vs. depth ∆Ib of blockade levels of ionic current extracted from structural425

break detection. First, ∆Ib is comprised between 1.0 and 3.5 nA, which represents depths from 30% to426

100% of the total open pore conductance. Second, duration τb is comprised between a few hundreds of427

picoseconds to a few hundreds of nanoseconds. The visual comparison of 2-D maps (∆Ib, τb) per amino428

acid family is complex due to the existing overlap between blockade levels characteristics. However, we429

can observe some major differences between positively and negatively charged amino acids. For example,430

E and D amino acids present blockade levels with larger depths whereas K, H and R present blockade431

levels with shorter duration. Moreover, hydrophobic/non-aromatic amino acid family (A, V, I, L, M) shows432

similarity with positively charged amino acid family. Finally, for G amino acid which was presenting a433

non-negligible sub-population of depth ∆Ib 90% blockade in its probability density P (Ib) (Fig. 3c), we434

can observe in its 2-D map (∆Ib,τb) that only three very long blockade levels among the hundreds detected435

are, in fact, responsible for this behavior (Fig. 4b).436

To extract duration τb and depth ∆Ib fingerprints of blockade events associated to the twenty proteinogenic437

amino acids for further sequencing applications, we applied unsupervised learning (clustering) to the 2-D438

maps presented in Fig. 4b. GMM algorithm was employed repeatedly to detect a single cluster per amino439

acid, by modifying the data taken into account to initialize each cluster mean (see Methods section). As440

input data of GMM algorithm, each blockade level k was characterized by the three following features441
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Figure 4. (a) Structural break detection applied to ionic current blockade traces. The raw signal is converted
into a stepwise signal and each level of blockade ionic current is characterized by its duration τb and
its depth ∆Ib. (b) Blockade level duration τb [in ns] vs. blockade level depth ∆Ib [in nA]. The data are
grouped by amino acid family using the same color code as in Fig. 1. (c) 2-D Probability Density Functions
(PDFs) of cluster means < ∆Ib > and < τb >. Yellow circles represent the extrema. (d) Similarity matrix
between 2-D PDFs shown in panel (c). (e) Ideal representation of a blockade ionic current trace made of
the twenty proteinogenic amino acids and extracted from extrema shown in panel (c).
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(a.a labelk,∆Ib
k, τb

k). As output data of GMM algorithm, cluster means of duration < τb > and depth442

< ∆Ib > were extracted for each amino acid and 2-D probability densities P (< ∆Ib >,< τb >) were443

computed. As shown in Fig. 4c, the application of the clustering technique to depth and duration of444

blockade levels provides crucial information for the identification of the twenty proteinogenic amino acids445

using MoS2 SSNs. First, negatively charged amino acids E and D show very similar fingerprints within446

each other and very low similarity compared to all the other amino acids (except for T, W, F, I, and C447

with medium similarities, Fig. 4d and Fig. S11). In addition, they both present 2 distinct extrema (Fig. 4c448

and Table 1), which correspond to the 2 relevant blockade levels of current that can be associated with449

them. These two distinct fingerprints are not present for medium similarity amino acids (T, W, F, I, and C),450

for which only the levels having the smallest depths are observed. Second, a comparable observation can451

be made for positively charged amino acids K, H and R. They present the same number of fingerprints452

(2 extrema, Table 1) and show distinct fingerprints compared to all the other amino acids except with453

M, which is extremely similar to K. Moreover, the comparison between positively charged and neutral454

Histidine (Fig. S12) confirms that the presence of a second extremum at smaller duration τb is specific of455

positively charged amino acids. On the other hand, H and R present fingerprints with very high similarities456

within each other and with P, but with a different number of extrema (2 vs. 1). Compared to E and D,457

the two fingerprints observed for K, H and R are characterized by different duration for smaller depths458

(Fig. 4e).459

Overall, in addition to charged amino acids which present specific characteristics and can be easily460

identified, T and L amino acids also present singular behavior with 4 and 3 fingerprints (Table 1),461

respectively. These two amino acids can also be easily identified visually from clustering of levels duration462

and depth of blockade events. Within each amino acid family, starting with the polar/neutral family, only S463

and Q show high similarity, all the others presenting very low similarity within each other. It is noticeable464

that N amino acid, although being characterized by a single fingerprint as many other neutral amino acids465

(80% of them), differs by possessing the smallest and relatively short level of blockade current among466

all the amino acids. Then, for hydrophobic amino acids, only F and W present very similar fingerprints467

as well as A and V. Finally, for the special cases family, only G and P present medium similarity. To468

summarize and as shown in Fig. 4e, only two families of amino acids can be visually identified from their469

blockade levels of ionic current recorded from their translocation through single-layer MoS2 nanopores: the470

positively charged amino acids on one side and the negatively charged amino acids on the other side. For471

neutral amino acids, T and L can also be identified presenting singular fingerprints. This result is crucial to472

demonstrate the feasibility of using 2-D MoS2 nanopores for protein sequencing applications.473

4 CONCLUSION

In the present work, we demonstrated the ability of single-layer MoS2 nanopore sensors to differentiate474

positively and negatively charged amino acids from neutral ones using classical MD and unsupervised475

machine learning-based models. From the large variability of ionic current traces monitored during476

translocation simulations and shown in Fig. 3b and Fig. S5-S8, we developed a methodology to extract477

relevant blockade levels of ionic current based on multiple translocation (readouts) of a given amino acid.478

We used structural break detection applied to the different traces. Then, 2D clustering of blockade depth479

(drop) and duration (dwell) allows us to statistically identify relevant discrete blockade levels, called480

hereafter fingerprints specific to each amino acid. From this methodology, we showed that both positively481

and negatively charged amino acids are characterized by two fingerprints, when most of the neutral amino482

acids are characterized by a single one (except T, L, and M). In addition, the similarity between amino acids483

Frontiers 15



Sample et al.

Table 1. Characteristics of extrema per amino acid (a. a.) extracted from 2-D PDFs of cluster means
< ∆Ib > and < τb > shown in Fig. 4c. Ne corresponds to the number of extrema per a. a.

a. a. family a. a. Ne < ∆Ib > [nA] < τb > [ns]

Positively charged

K (Lysine)

2

1.65 5.6

H (Histidine)

1.95 1.4
R (Arginine)

Negatively charged

E (Glutamic acid)

2

1.85 14.1

D (Aspartic acid) 2.65 17.8

Polar Neutral

S (Serine) 1 1.75 8.9

T (Threonine) 4

1.85 11.2

2.65 14.1

2.75
2.8

8.9

N (Asparagine) 1 1.45 4.5

Q (Glutamine) 1 1.75 8.9

Hydrophobic Aromatic
F (Phenylalanine)

1 1.75
11.2

W (Tryptophan)

Y (Tyrosine) 7.1

Hydrophobic Non Aromatic

A (Alanine)
1 1.75

7.1

V (Valine) 8.9

I (Isoleucine) 11.2

L (Leucine) 3
1.95

1.1

2.8
2.75

M (Methionine) 2
1.65 5.6

1.95 1.4

Special Cases
G (Glycine)

1
1.75 8.9

P (Proline) 1.55 5.6

C (Cysteine) 1.85 11.2

fingerprints is very low, with 60% of the similarities between pairs of amino acids being below 30%, with484

30% being between 30 and 70% and with 10% larger than 70%. From the present conclusion, we propose485

the use of Coarse-Grained SEQuences (CGSEQs) of proteins for their identification. Hereafter, CGSEQs486

are made of three motifs A, B or C; A being positively charged amino acids (K, H, R), B being negatively487

charged amino acids (E, D) and C being neutral amino acids. For example, the CGSEQ of KTKEGV488

sequence, which is a specific motif of the protein α-synuclein, a biomarker of Parkinson disease (Dettmer489

et al., 2015), is ACABCC.490

As a proof of concept, we tested the CGSEQ protein sequencing hypothesis by using the protein sequences491

available from the ASTRAL database (Brenner et al., 2000), which provides representative subsets of492

proteins, after elimination of doublons and sequence identity larger than 95%. It corresponds to a total of493
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13,000 protein sequences instead of 35,000 available. For each pair of sequences of the same length, we494

computed the CGSEQ percentage identity as the normalized dot product between simplified sequences495

by assigning the value 1 for the product of two identical symbols and 0 otherwise. For example, the dot496

product of ACAB with BCAA is (0 + 1 + 1 + 0)/4 = 0.5. As shown in Fig. 5a, the average percentage of497

CGSEQ identity, computed considering at least 10 protein sequences of the same length for each length498

available, varies from 9.0 to 21.6%, with an average score of 13% which is very low. By comparison, the499

average percentage identity using the full sequence of amino acids is 6% (values range between 5.4 and500

17.2 %). In addition, if we consider one of the largest ensemble of protein sequences of the same length, i.e.501

N = 99 amino acids, we observe that 6% of CGSEQ identities are exactly zero (Fig. 5b). Moreover, 35%502

and 92% of the CGSEQ identities are below 10% and 20%, respectively (Fig. 5c). Therefore, present results503

and the CGSEQ identity analysis demonstrates that the differentiation of positively charged, negatively504

charged, and neutral amino acids using MoS2 nanopores would allow the identification of proteins from505

their sequences. This is a major finding for further protein sequencing applications as it seems that the goal506

of detection of every amino acid of a polypeptide for its identification is not necessary.507

Figure 5. a) Average CGSEQ percentage identity (left y-axis) as a function of sequence length computed
from protein sequences available in the ASTRAL database. Green and red dots indicate the identity values
using the full sequence and the coarse-grained sequence, respectively. Blue dots indicate the number of
sequences as a function of the sequence length from the database (right y-axis). b) CGSEQ identity matrix
computed between protein sequences of length N = 99 available in the ASTRAL database. c) Histogram
of CGSEQ identity computed between protein sequences of length N = 99 available in the ASTRAL
database.
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