Finer is better: Abstraction Refinement for
Rewriting Approximations*

Y. Boichut!, R. Courbis? and P.-C. Héam?, and O. Kouchnarenko?

INRIA/PAREO INRIA/CASSIS
615 rue du Jardin Botanique LIFC / University of Franche-Comté
BP-101 16 route de Gray
F-54602 Villers-Les Nancy Cedex F-25030 Besancon Cedex
boichut@loria.fr lastname.firstname@lifc.univ-fcomte.fr

Abstract. Term rewriting systems are now commonly used as a mod-
eling language for programs or systems. On those rewriting based mod-
els, reachability analysis, i.e. proving or disproving that a given term
is reachable from a set of input terms, provides an efficient verification
technique. For disproving reachability (i.e. proving non reachability of a
term) on non terminating and non confluent rewriting models, Knuth-
Bendix completion and other usual rewriting techniques do not apply.
Using the tree automaton completion technique, it has been shown that
the non reachability of a term ¢ can be shown by computing an over-
approximation of the set of reachable terms and prove that ¢ is not in
the over-approximation. However, when the term ¢ is in the approxima-
tion, nothing can be said.

In this paper, we improve this approach as follows: given a term ¢, we
try to compute an over-approximation which does not contain ¢ by us-
ing an approximation refinement that we propose. If the approximation
refinement fails then ¢ is a reachable term. This semi-algorithm has been
prototyped in the Timbuk tool. We present some experiments with this
prototype showing the interest of such an approach w.r.t. verification on
rewriting models.

1 Introduction

In the rewriting theory, the reachability problem is the following: given a term
rewriting system (TRS) R and two terms s and ¢, can we decide whether s —7% ¢
or not? This problem, which can easily be solved on strongly terminating TRSs
(by rewriting s into all its possible reduced forms and compare them to t), is
undecidable on non terminating TRSs. There exists several syntactic classes
of TRSs for which this problem becomes decidable: some are surveyed in [?],
more recent ones are [?,?]. In general, the decision procedures for those classes
compute a finite tree automaton recognising the possibly infinite set of terms
reachable from a set E C 7 (F) of initial terms, by R, denoted by R*(E). Then,
provided that s € E, those procedures check whether t € R*(E) or not. On

* This work has been funded by the French ANR-06-SETI-014 RAVAJ project.

the other hand, outside of those decidable classes, one can prove s /4% t using
over-approximations of R*(E) [?,?] and proving that ¢ does not belong to this
approximation.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by TRSs. Some of
the most successful experiments, using proofs of s /4% t, were done on cryp-
tographic protocols [?,7,?] where protocols and intruders are described using a
TRS R, E represents the set of initial configurations of the protocol and ¢ a
possible flaw. Some other have been carried out on Java byte code programs [?]
and in this context, R encodes the byte code instructions and the evolution of
the Java Virtual Machine (JVM), FE specifies the set of initial configurations of
the JVM and t a possible flaw.

Then reachability analysis can prove the absence of flaws (if Vs € E : s /A% t).
In [?], the method we propose to improve, given a TRS R, a set of terms E and
an abstraction function 7, a sequence of sets of terms App], App7, ..., App)] is
built such that App] = E and R(App;) € App], . The role of the abstraction v
is to define equivalence classes of terms and to allot each term to an equivalence
class. The computation stops when on the one hand, the number of equivalence
classes introduced by the abstraction function is bounded, and on the other
hand, each equivalence class is R—closed, i.e. when there exists N € N such
that R(App);) = App),. Then, App}; represents an over-approximation of terms
reachable by R from E. The abstraction function v should be well designed in
such a way that on one hand App); exists, and on the other hand ¢ ¢ App};.
However, the main drawback of this technique based on tree automata, is that
if t ¢ R*(E) then it is not trivial (when it is possible) to compute a such fix-
point over-approximation App},. Indeed, a high-level expertise in this technique
is required for defining a pertinent abstraction function. At the same time, it is
easy to define simple abstraction functions leading to inconclusive analyses. So,
the question is : Is it possible to obtain conclusive analyses starting from simple
abstraction functions? This problem becomes crucial when approximations are
used to prove security and safety properties and when a large community of
users is targeted.

This paper addresses this question and proposes a solution that automatically
attempts to show that a term ¢ is not a term of R*(E). We proceed as follows.
For a simple abstraction function v, we compute a sequence App7, ..., App]
such that: either App/ is a fix-point automaton whose language is an over-
approximation of reachable terms and t ¢ App], or App] recognises t. For the
former, everything is fine and we are done. For the latter, we first detect in the
sequence Appy, ..., App] where the abstraction function has been too coarse.
Second, we automatically refine ~, i.e., we fix v in order to remove ¢ from the
over-approximation. The construction of the sequence restarts from the prob-
lematic set App, with the refined abstraction function and so on. Moreover, if
the algorithm fails for finding the reason concerning the abstraction function
which makes ¢ be in App] then the term ¢ is a term in R*(E).

Note that this solution is a semi-algorithm and it has been prototyped in the
Timbuk tool [?]. For a lack of space, the proofs of this paper are available at
http://www.loria.fr/ boichut/Materials/proofs0fRTAO8.pdf.

Layout of the paper The paper is organised as follows. After giving pre-
liminary notions on tree-automata and TRSs, we introduce in Section 2 the com-
pletion technique we want to improve. Section 3 presents the main contributions
concerning the refinement of abstraction functions, the backward completion for
the computation of the ancestors of a set of terms by rewriting. A semi-algorithm
including those both processes is also given. Finally, before concluding, Section 4
reports on experimental results showing the feasibility and the interest of the
proposed approach.

2 Preliminaries

2.1 Terms and TRSs

Comprehensive surveys can be found in [?,?] for term rewriting systems, and
in [?,?] for tree automata and tree language theory.

Let F be a finite set of symbols, associated with an arity function ar : F — N,
and let X' be a countable set of variables. 7 (F, X') denotes the set of terms, and
T (F) denotes the set of ground terms (terms without variables). The set of
variables of a term ¢ is denoted by Var(t). A substitution is a function o from X
into 7 (F, X), which can be extended uniquely to an endomorphism of 7 (F, X).
A position p for a term ¢ is a word over N. The empty sequence € denotes the
top-most position. The set Pos(t) of positions of a term ¢ is inductively defined
by Pos(t) = {e} if t € X and by Pos(f(t1,...,tn)) = {efU{ip |1 < i <
n and p € Pos(t;)} otherwise. If p € Pos(t), then t|, denotes the subterm of ¢
at position p and ¢[s], denotes the term obtained by replacement of the subterm
t|p at position p by the term s. We also denote by t(p) the symbol occurring
in ¢ at position p. Given a term ¢t € 7(F,X), we denote Posa(t) C Pos(t)
the set of positions of ¢ such that Posa(t) = {p € Pos(t) | t(p) € A}. Thus
Posr(t) is the set of functional positions of . A TRS R is a set of rewrite rules
l — r, where l,r € T(F,X) and | € X. A rewrite rule [— r is left-linear (resp.
right-linear) if each variable of [(resp. r) occurs only once within ! (resp. r).
A TRS R is left-linear (resp. right-linear) if every rewrite rule I — r of R is
left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation —x on terms whose reflexive transitive
closure is written —7%. The set of R-descendants of a set of ground terms E is
R*(E)={t € T(F)|3s € E s.t. s =% t}. Symmetrically, the set of R-ancestors
of a set of ground terms F is R™'*(E) = {s € T(F) | 3t € E s.t. s =% t}.

2.2 Tree Automata Completion

Note that R*(F) is possibly infinite: R may not terminate and/or E may be
infinite. The set R*(F) is generally not computable [?]. However, it is possible to

over-approximate it [?] using tree automata, i.e. a finite representation of infinite
(regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, of arity 0, called states such that QNF = ().
T(F U Q) is called the set of configurations.

Definition 1 (Transition and normalised transition). A transition is a
rewrite rule ¢ — q, where ¢ € T(FUQ) is a configuration and ¢ € Q. A
normalised transition is a transition ¢ — q where ¢ = f(q1,.-.,qn), f € F,
ar(f) =mn, and q1,...,q, € Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = (F,Q,Q7,A), Q; C Q and A is a finite set of normalised
transitions.

The rewriting relation on 7 (F U Q) induced by the transition set A of A is
denoted — . When A is clear from the context, — » is also written — 4.

Definition 3 (Recognised language). The tree language recognised by A in
a state q is L(A,q) = {t € T(F) | t =% q}. The language recognised by A is
L(A) = quQf L(A,q). A tree language is regular if and only if it is recognised
by a tree automaton.

Let us now recall how tree automata and TRSs can be used for term reach-
ability analysis. Given a tree automaton A and a TRS R, the tree automata
completion algorithm proposed in [?] computes a tree automaton .A% such that
L(A%) = R*(L(A)) when it is possible (for the classes of TRSs where an exact
computation is possible, see [?]), and such that £(A%) D R*(L(A)) otherwise.

The tree automata completion works as follows. From A = A% the com-
pletion builds a sequence A%, AL ... A% of automata such that if s € £(A%)
and s —x t then t € L(AF"). If there is a fix-point automaton A% such that
R*(L(AR)) = L(AR), then L(AR) = R*(L(A%)) (or L(Af) D R*(L(A)) if R
is in no class of [?]). To build A" from A%, a completion step is achieved. Tt
consists of finding critical pairs between —x and — 4: . To define the notion of
critical pair, the substitution definition is extended to terms in 7 (F U Q). For
a substitution o : X — Q and a rule I — r € R such that Var(r) C Var(l),
if there exists ¢ € Q satisfying lo —>f45-2 q then lo —>f45-2 q and lo —x ro is a
critical pair. Note that since R and A%, are finite, there is only a finite number of
critical pairs. Thus, for every critical pair detected between R and A%, such that
ro 74;% q, the tree automaton A;;rl is constructed by adding a new transition
ro — q to Al. Consequently, Agl recognises ro in q, i.e. ro =it ¢

lo —> ro

. I
7
AR\\/ * /
* /
7 pi+1
q <—’/AR

However, the transition ro — ¢ is not necessarily normalised. Then, we use
abstraction functions whose goal is to define a set of normalised transitions

Norm such that ro —%,,,, ¢ Thus, instead of adding the transition rc — ¢
which is not normalised, the set of transitions Norm is added to A, i.e., the
transition set of the current automaton A%a. Notice that the completion
process introduces new states. We give below a very general definition of
abstraction functions which allot a state in @ to each functional position of ro.
The role of an abstraction function is to define equivalence classes of terms where
one class corresponds to one state in Q.

Definition 4 (Abstraction Function). An abstraction function v is a func-
tion v : (R x (X — Q) x Q) +— N*) = Q such that y(l — r,0,q)(e) = q.

Thus, given an abstraction function -, the normalisation of a transition ro —
q is defined as follows.

Definition 5 (y—normalisation). Let v be an abstraction function, A be a
transition set, | — r € R with Var(r) C Var(l) and o : X — Q such that lo —7%,
q. The y—normalisation of the transition ro — ¢, written Norm. (I — r,0,q),

is defined by:

Normw(l —T,0, Q) = {r(p)(ﬁp-lv cee vﬁp.n) -3 |
p € Posg(r),
f=0—r04(p)
g .= {U(T(p.i)) if r(pi)e X
P v(l = r,0,q)(p.i) otherwise.

Ezample 1 (Normalisation of a transition using an abstraction function).
Let A= (F,Q, Qs, A) be the tree automaton such that F = {a,b,c,d, e, f,w}
with ar(s) = 1 with s € {a,b,c,d,e, f} and ar(w) =0, Q@ = {@w, qr,qu}, Qf =
{¢r}and A = {w — ¢u,b(qw) — @, a(q) — qs}. Thus, L(A) = {a(b(w))}. Given
the TRS R = {a(x) — c(d(z)), b(z) — e(f(x))}, two critical pairs are computed:
alg) =% a5, alay) —r c(d(gp)) and b(q) =7 b(qw) —r e(f(qw)). Let v be
the abstraction function such that vy(a(z) — c(d(z)),{z — @}, qr)(€) = gy,
Ya(@) — (@), iz — @} a)(1) = a7, 1Wb@) — (@), {7 — @ha)e) =
g and v(b(z) — e(f(2)).{z — ¢}, @)(1) = g

So, Norm, (a(z) — e(d(@)), 4z — @} as) = {d(a) — a7, clar) — as} and
Norm (b(z) — e(f(2)),{z — g}) = {f(qw) = @, e(a) — @}

Now we formally define what a completion step is.

Definition 6 (One Completion Step). Let A = (F,Q, Qr, A) be a tree au-

tomaton, v an abstraction function and R a left-linear TRS. We define a tree

automaton C'Zf(A) =(F,Q, QAN withQ' ={q|c—qge A’} (and QC Q'),
/f = Qf and A" = A U Ul—>r€7€, g:X—Q, lO’—>j4q,T‘O'7L>j4q NOTm’Y(l —T,0, q)

Example 2. Given A, R and v of Example 1, performing one completion step
on A gives the automaton CJ(A) such that CT*(A) = (F,Q, Qf, 4’) where
A" = AUNormy(a(z) — c(d(z)), {z — @}, qr) U Norm, (b(z) — e(f(z)), {z —
QW) = {w = u,b(qw) — @, ala) — a5 dla) — ar.clar) — ar, flaw) —

av, e(qp) — g} Notice that C? (A) is R-close, and in fact an over-approximation
of R*(L(A)) is computed. Indeed, the tree automaton CT*(A) recognises the term
a(e(e(f(w)))) when R*(L(A)) = {a(b(w)), a(e(f(w))), c(d(b(w))), c(d(e(f (w))))}-
Proposition 1 (Adaptation of [?, Theorem 1]). Let A be a tree automaton
and R be a TRS such that A is deterministic or R is left-linear, and for every
I — r e R, Var(r) € Var(l). One has L(A) UR(L(A)) € CF(A), for any

abstraction function .

However, abstraction functions can be defined in such a way that only ac-
tually reachable terms are computed. We call this class of abstraction functions
(A, R)—exact abstraction functions.

Definition 7 ((A, R)—exact abstraction function). Let A = (F,Q, Qs, A)
be a tree automaton and R be a TRS. Let Im(y) ={¢ | I —r € R, Ip €
Posr(r), p#£e Jo: X = Q. ~v(—r,o,q)(p) =q¢}. An abstraction function
v is (A, R)—exact if v is injective and Im(y) N Q = 0.

By adapting the proof of Theorem 2 in [?] to the new class of abstractions, we
show that with such abstraction functions, only reachable terms are computed.

Proposition 2 ([?, Theorem 2]). Let A be a tree automaton and R be a left-
linear TRS such that A is deterministic or R is also right-linear. Let « be an

(A, R)—ezact abstraction function. One has: CR(A) C R*(L(A)).

Ezample 3 (Ezact automaton with (A, R)—ezact abstraction functions).

Let A, R be the tree automaton and the TRS from Example 1. Let a be the
(A, R)—abstraction function such that Normg (a(z) — c(d(z)),{z — @}, qf) =
{e(ar) — a7» d(@) — a1} and Norma(b(z) — e(f(2)), {z — a.}, 06) = {€(az) —
@, f(qw) — g2}. Note that ¢; and g2 are not states of A. Then, C(A) is the tree
automaton (F, QU {q1, ¢}, Qr, 4’) where A" = {w — ¢u,b(qw) — @, alq@) —
ar,d(a) — q1,¢(q1) — a5, f(qw) — g2, e(q2) — qv}-

Figure 1 gives a graphical representation of Example 3 and Example 2 using
word automata. Indeed, considering the symbol w as the empty word, the term
a(b(w)) can be read as the word ab. The state ¢y of A becomes the initial state of
the word automaton, and ¢, is its final state. Note that we do not consider the
empty word w in our representation. So, CZf(A) from Example 2 is represented
by the word automaton without non dashed transitions implying ¢; and go.
It recognises, for example, the word aeef because of the abstraction. Using
(A, R)—exact approximation function a gives C(A), the word automaton in
Fig. 1 without dashed transitions.

We now give the general result in [?] saying that, if there exists a fix-point
automaton, then its language contains all the terms actually reachable by rewrit-
ing, at least.

Theorem 1 ([?, Theorem 1]). Let A and R be respectively a tree automa-
ton and a left-linear TRS. For any abstraction function, if there exists N &€
N and N > 0 such that (CT)M(A) = (CF)NTV(A), then R*(L(A)) C
LUCTHN(A)).

Fig.1. C(A) and CR(A) as simple

word automata Fig. 2. Word automaton for C*

YDisc

3 Approximation Refinement

Let consider a tree automaton .4, a TRS R and an abstraction function 7 such
that there exists N € N for which (CT)™)(A) = (CF)N+D(A). Let A, be a
tree automaton recognising a set of unwanted terms, i.e., we want that terms
to be unreachable. Let suppose that the intersection between the languages of
(C’Zf)(N) (A) and A, is not empty; the method in [?] cannot conclude. In this
section we refine v to show that: either a term recognised by A, is actually
reachable by rewriting from a term in £(.A), either all terms recognised by A, are
actually unreachable. For the former, we present in Section 3.1 how to refine an
abstraction function when that function gives rise to the non-empty intersection.
For the latter, in Section 3.2, we describe the computation of the ancestors of
a set of terms by rewriting, using a completion on TRSs whose rewrite rules
are reversed. Then, in Section 3.3, the backward analysis is used for refining
abstraction functions when the assumptions in Section 3.1 are not satisfied.

3.1 Abstraction Refinement

In this section, A = (F, Q, Qf, A) and Ap are two tree automata, R is a TRS,
« is an abstraction function and « is a (A, R)—exact abstraction function. The
tree automaton 4, recognises a set of forbidden terms. We assume that: (1)
E(C?(A)) NL(A,) #0, LIA) N L(A,) =0 and (2) L(CR(A))NL(A,) =0. In
other words, these assumptions mean that the abstraction function is too coarse
since a term of £(A,) is reachable using 7, while it is not with an exact com-
putation. So, it means that some transitions introduced by = are problematic,
i.e., lead to the non-empty intersection. The following definition allows the re-
finement of a given abstraction function according to a given set of problematic
transitions.

Definition 8 (Refined abstraction function). Let lo —x 70, lo —% ¢ be a
critical pair where ¢ € Q, I — 1 is a rewrite rule and o a substitution from X
into Q. Let Ag be a set of transitions. For any functional position p of r, the

refined abstraction function ya, is built as follows:

_ def [a(l = r,0,q9)(p) if Normy(l —r,0,q) N Ag#0
120l = 1,0,9)(p) = {’y(l —7r,0,q)(p) otherwise.

For the abstraction function + (resp. a), we denote by A, (resp. A,) the set
of transitions occurring in C7*(A) (resp.CJ(A)) but not in A, and by Q. (resp.
Qo) the set of states occurring in the transitions of A, (resp. A,). The following
proposition claims that, given v and A, we are able to refine v in such a way
that no unwanted term is recognised by the tree automaton resulting from one
completion step on A when using R and the refined abstraction function.

Proposition 3 (Refined automaton existence). Considering assumptions
(1) and (2), there exists Disc C A, such that L(CT, (A)) N L(Ap) = 0.

VDisc

Ezample 4 (Refined Automaton). Let A, v and « be respectively the tree au-
tomaton, the two abstraction functions defined in Example 3. In Sect. 2.2,
the word aeef is recognised by the word automaton representing C?(A). Let
Disc C A, be a set of transitions such that Disc = {e(¢,) — ¢»}. Indeed, this
transition gives rise to infinite terms of the form e*(b(w)) or e*(f(w)) (infinite
words of the form e*b or e* f). So, ypisc uses a and ~y for normalising respectively
the transitions e(f(qw)) — @ and ¢(d(gp)) — ¢s. A word automaton representing

R
Ol 1s given in Fig 2. Note that the word aeef is not recognised anymore.

For applying Proposition 3 in practice, it could be more efficient to fix only

problematic transitions instead of performing an exact completion step by taking
Disc = A,.

3.2 Backward Reachability Analysis by Completion

The backward analysis we expose in this section can be viewed as an exact
completion performed on an automaton A, using a TRS R whose rules have
been reversed and an (A, R)-exact abstraction function. Let R! be a TRS built
from R in the following way: R* = {r — I|l — r € R}. So, for R?, some rules
may not satisfy the conditions of Propositions 1 and 2, in particular that for each
Il —reRY, Var(r) € Var(l). This is why we extend the completion definition
in Section 2.2. Before, we establish the relation between R!(E) and R~!(FE) for
a given set of terms E C T (F).

Proposition 4. For every set of terms E C T(F), RY(E) = R (E).

A consequence of this proposition is that (RY)*(E) = (R D*(E). So, we can
now define the completion algorithm in order to analyse (R~!)*(E). For a given
set of functional symbols F, we introduce a set of transitions T'(¢) reducing each
term of 7 (F) to the single state ¢g. T'(¢) is built as follows: T'(¢) = {s — ¢ | s €
T(F),s = f(q1s---yqn), f €F, ar(f) =n, n>0, and ¢ = q fori=1...n}.
This set is useful for handling variables occurring in the right-hand side of a rule
but not in its left-hand side.

In the following definitions, a substitution is transformed according to a given
set of variables and a given state.

Definition 9. Let q be a state andY C X. Given a substitution o : X — Q and
T € X,

olx)ifzeY

q otherwise.

Chg(o)(a) = {

In the remainder of this section we do not assume anymore that for each
rule | — r € R, Var(r) C Var(l). Using Definition 9, Definition 10 extends the
completion algorithm for handling such TRSs.

Definition 10 (Backward Completion). Let A = (F,Q,Qy, A) be a tree
automaton, v an abstraction function and qqy o state such that quu ¢ Q. Let
R be a left-linear TRS. We define a tree automaton KJX(A) = (F,Q', Q) A')
where:

A= AU U (Norm (I — r, C'hg?}‘z;q(l)(a), AT (qanr)s

lﬂTGR,laﬂlq,r(Chgi‘zlim(cr))%»jtq

Q' ={q|lc—qge A} and Q) = Qy.

Note that there is a particular processing for variables occurring in the right-
hand side of a rule which do not appear in its left-hand side. Indeed, each of
these variables is substituted by the special state g,;; because it is impossible
to determine terms substituting these variables. Actually, considering the set
T(qau) of transitions, g,y is such that for each term t € T(F), t —>*T(qa”) Gall-
So, for the rule f(z) — g(z,y), y is replaced by quu, ie., f(z) — g(z, quu).
Roughly, we can say that a term of the form f(z) can be rewritten into g(x,t)
where ¢ is any term of 7 (F).

Finally, using an (A, R)—exact abstraction function, we can perform a back-
ward analysis of the set of reachable terms thanks to the new backward comple-
tion given above.

Proposition 5 (Extension of Propositions 1 and 2). Let A be a tree
automaton, R be TRS and « be an abstraction function. Thus, one has:

1) if A is deterministic or R is left-linear: L(A) U R(L(A)) C LIKE(A));
2) if R is linear and o be an (A, R)—exact abstraction function: L(KF(A)) C
R (L(A))-

3.3 Semi-Algorithm

In Sect. 2.2, reachability analysis can be performed by computing either an over-
approximation of reachable terms with a fine tuned abstraction function or an
under-approximation using an (A, R)—exact abstraction function. The former
may allow the proof of unreachability of terms and the latter may show that
terms are reachable. Nevertheless, using the completion algorithm of [?], a choice
must be done according to the kind of analysis we want to perform.

We propose in this section a new semi-algorithm which attempts to perform
both analyses automatically using abstraction refinement. More precisely, let A,

R, v, @ and A, be respectively a tree automaton, a linear TRS, an abstraction
function, an (A, R)—exact abstraction function and a tree automaton recognising
a set of unwanted terms. A sequence of automaton Ao, . .., A, where Ag = A, is
computed by completion until Ay where Ay, is either a fix-point automaton such
that £L(Ax)NL(Ap) =0, or L(Ar)NL(Ap) # (. For the former, by Proposition
1 each term of L(Ap) is unreachable. For the latter, an exact completion step on
Api_1 is performed using o (CT(Ag_1)). If LICR(Ax—1))NL(Ap) = () then the
abstraction function v has been too coarse at k" completion step. So, according
to Proposition 3, a new abstraction function «’ is obtained by refining v to ensure
that L(CT(Ax-1)) N L(Ap) = 0. Otherwise, the backward analysis following
Proposition 5 is performed from Ap in order to detect the completion step
which is guilty of this non-empty intersection. The completion step 4 is guilty if
L(A)NL(KR)F=D(Ap)) # 0. As soon as the incriminated completion step is
detected, the abstraction function -y is refined and the completion restarts from
this completion step and using the new abstraction function, and so on. If no
completion step is guilty then R*(L(A)) N L(Ap) # 0.

In Algorithm 1 and for the remainder of this section, A¢ denotes CX(A). A;
is the i*" element of the list aut_list. Let aut_list be a list of n elements [e1s. .. en),
aut_listfi] denotes the sublist [e1,. ..,e;] with ¢ < n. The function aut_list::z adds
x at the end of the list aut_list.

Algorithm 1 (Refinement semi-algorithm) Given R a linear TRS, A a
tree automaton, Ap a tree automaton recognising a set of unwanted terms, v an
abstraction function and o an (A, R)—ezxact abstraction function, Comprey(A,

R,Ap,v,) is defined as follows:

Variables

AP = Ap;

aut_list := [A;CT(A)]; (* list of automata *)

i:=1; (* completion step number *)

result := true;

00 Begin

01 While (A; # Ai—1) and (result = true) do

02 If L(A;))NL(Ap) =0 then If the intersection is empty between
08 autlist := aut_list:: CT(A;); L(A;) and L(Ap) then a normal

04 1:=1+ 1; completion step is performed.

05 Else

06 status := L(CF(Ai—1)) N L(Ap); While the intersection between L(AF)
07 While (status # 0) and (i > 0) do and L(Ap) is not empty, and while
08 AL = K;zt (AP, © > 0, Definition 10 is used

09 1 i=14-1; to compute a new automaton Ap.
10 If i > 0 then

11 status := L(CF(Ai—1)) N LIAS™);

12 EndIf

13 Done There are 2 cases to make while stop:
14 AFT™P = Ap; =i =0 (and L(AS) N L(Ap) £ 0).
15 If (i = 0) then In this case we can conclude that

16 result := false ; R*(L(Ao)) N L(Ap) # 0;

17 Else - LA NL(Ap) =0 (and i > 0).
18 Find Disc C A; \ Aj_1;

19 Y = YDisc In this case ~y is refined and

20 aut_list := aut_list[i-1]::CT (A;); a completion step is performed.

21 EndIf

22 EndIf

23 Done

24 return result;

25 End

Theorems 2 shows that the semi-algorithm above is sound.

Theorem 2 (Soundness of Algorithm 1). If Compgres(A, R, Ap,v,a) =
true then R*(L(A)) N L(Ap) = 0 else if Comppres(A, R, Ap,v,a) = false then
R*(L(A)) N L(Ap) # 0.

Proof. Algorithm 1 terminates when either a fix-point automaton is computed
or result = false. If result = false then line 16 has been executed. Moreover,
according to lines 7, 8,9 and 11, R*(L(A)) N L(Ap) # 0. Indeed, if i = 0 at line
9 then ¢ has been equal to 1 either at line 6 (before entering in the while) or at
line 9 (at the previous iteration). Consequently, £L(CR(A))NL(AS™) # () since
i becomes 0 next, at line 9. Consequently, as A" represents (KX')*(Ap),
according to Propositions 5 and 4, one deduces that R*(L(A)) N L(Ap) # 0.

If result = true and A; is a fix-point automaton then line 15 has never been
executed. So, to break while at line 7, status needs to be (. So, there exist
n € N and an abstraction function «' built from + such that (CZ;‘;)(") (A) =
(C]f,)("“)(A). According to Proposition 1, E((Cﬁ)(") (A)) D R*(L(A)). Conse-
quently, R*(L(A)) N L(Ap) = 0.

The case when result = false and A; is a fix-point automaton, reduces to the
first case handled in this proof.

Finally, Theorem 3 claims that our semi-algorithm is complete in the sense
that if an unwanted term is reachable then Algorithm 1 returns false.

Theorem 3 (Partial Completeness of Algorithm 1). If R*(L(A))NL(Ap) #
0 then Comppres(A, R, Ap,~, o) = false.

Proof. Suppose each time, at line 18 Disc is set such that Disc = A; \ A;_1.
Thus 7 tends to behave as a. So, let v be a. Since R*(L(A)) N L(Ap) # 0,
there exists n € N and n > 0 such that E((C?)(”)(.A)) N L(Ap) # 0 and
E((C?)(”fl)(A)) N L(Ap) = 0. Consequently, in this setting, status at line 6 is
different from () and ¢ = n. Consequently, K ;’ft (Ap) is computed. According to
Propositions 2 and 5, one can deduce that £((CT)"~1(A)) NL(KR (Ap)) # 0.
So, by a simple induction, one trivially obtains E((ijz)(o) (ANNL((KR) ™ (Ap))
() that corresponds to the value stored in status at line 11 after n — 1 iteration
in the while at line 7. Since i = 1 and status# (), a new iteration is performed.
Finally, ¢ = 0 and status# (). Thus, result is set to false, the while at line 1 is
broken and Alg. 1 returns false.

An advantage of our approach is that the abstraction function « given as in-
put to Compprey does not require to be very pertinent. As explained at the very
beginning of this paper, it is very easy to generate abstraction functions leading
to inconclusive analyses. Our algorithm attempts to fix this kind of abstrac-
tion functions in order to perform an unreachability analysis. If the inconclusive
analysis is not of the abstraction function concern then our algorithm states
that some of the unwanted terms are actually reachable. This algorithm has
been prototyped in the Timbuk tool [?].

4 Experiments

Our abstraction refinement technique for completion has been applied for the
verification of a simple two processes counting system. The following TRS de-
scribes the behaviour of two processes each one equipped with an input list and
a FIFO. Each process receives a list of symbols '+’ and ’—’ to count, as an input.
One of the processes, say P, , is counting the '+’ symbols and the other one,
say P_ is counting the '—’ symbols. When Py receives a '+’, it counts it and
when it receives a '—’; it adds the symbol to P_’s FIFO. The behaviour of P_
is symmetric. When a process’ input list and FIFO is empty then it stops and
gives the value of its counter.

Here is a possible rewrite specification of this system, given in the Timbuk
language, where S(_,_,_,) represents a configuration with a process Py, a pro-
cess P_, P.’s FIFO and P_’s FIFO. The term Proc(_,_) represents a process
with an input list and a counter, add(_,_) implements adding of an element
in a FIFO, and cons, nil, s, o are the usual constructors for lists and natural
numbers.

Ops

S:4 Proc:2 Stop:1 cons:2 nil:0 plus:0 minus:0 s:1 0:0 end:0 add:2
Vars Xyzucmn
TRS R1

add(x, nil) -> cons(x, nil)

add(x, cons(y, z)) -> cons(y, add(x, z))

S(Proc(cons(plus, y), ¢), z, m, n) -> S(Proc(y, s(c)), z, m, n)
S(Proc(cons(minus, y), c), u, m, n) -> S(Proc(y, c), u, m, add(minus, n))
S(x, Proc(cons(minus, y), c), m, n) -> S(x, Proc(y, s(c)), m, n)

S(x, Proc(cons(plus, y), c), m, n) -> S(x, Proc(y, c), add(plus, m), n)
S(Proc(x, c), z, cons(plus,m), n) -> S(Proc(x, s(c)), z, m, n)

S(x, Proc(z, c), m, cons(minus,n)) -> S(x, Proc(z, s(c)), m ,n)
S(Proc(nil, ¢), z, nil, n) -> S(Stop(c), z, nil, n)

S(x, Proc(nil, c), m, nil) -> S(x, Stop(c), m, nil)

The set of initial configurations of the system is described by the following
tree automaton, where each process has a counter initialised to 0 and has an
unbounded input list (with both +’ and ’—’) and with at least one symbol.

Automaton Al
States q0 qinit qzero gnil qlist gsymb
Final States q0
Transitions
cons(qsymb, qnil) ->qlist cons(gsymb, qlist) -> qlist o -> gzero
Proc(qlist, gzero) -> qinit S(qinit, ginit, gnil, gnil) -> q0 nil -> gnil
plus -> gsymb minus -> gsymb

On this specification, we aim at proving that, for any input lists, there is no
possible deadlock. In this example, a deadlock is a configuration where a process
has stopped but there are still symbols to count in its FIFO. This property is
specified by a tree automaton Bad_state recognising a system for which one of
the two processes has stopped and whose FIFO is not empty.

Before computing an over-approximation of the reachable configurations of
the two processes and according to Def. 4, we give the simple abstraction func-
tion v that satisfies the following property: Let o1, 02 be two substitutions from
X into Q such that o1 # 02. Let | — r be a rule of the TRS R of the Tim-
buk specification. Then, for any state ¢ and for each functional position p of
r, y(l — r01,9)(p) = v(I — r,02,¢)(p). With such an abstraction function,
the completion converges to a fix-point automaton A within 8 completion steps.
Unfortunately, the intersection between the tree automata A and Bad_state is
non-empty. No conclusion can be drawn since A is an over-approximation.

Using the abstraction refinement technique, the following scenario sets: Three
completion steps are performed and a non-empty intersection is found. So, the
backward analysis is run and finally reaches the initial tree automaton. In con-
clusion, there exists a deadlock for this system.

The problem found here can be fixed by adding an additional symbol: ’end’
which has to be added by process Py to P— FIFO when P, has reached the
end of its list, and symmetrically for P_. Then, a process can stop if and only
if it has reached the end of its list and if it has read the ’end’ symbol in its
FIFO. Then, the TRS of the previous specification is modified a little. For the
new specification, we use the same kind of abstraction function as in the first
experiment. Timbuk finds a fix-point automaton A’ within 9 completion steps.
Unfortunately, the intersection between the tree automata A’ and Bad_state
is non-empty anew. Using the abstraction refinement, Timbuk finds another fix-
point automaton A” whose language contains no term recognised by the tree au-
tomaton Bad_state. Consequently, we have managed to prove that the patched
system is actually deadlock free.

5 Conclusion

The paper describes a new approach for automatically generating abstraction-
based over-approximations guided by a set of unwanted terms. In the infi-
nite state system verification framework, our work can be considered as an
abstraction-based approach guided by a safety/security property which either
can conclude that a safety property is satisfied or can detect a violation of the
given property or may not terminate. The last point is not surprising since the
reachability problem is undecidable on non terminating TRSs. Furthermore, in
[?], we show that in some cases, unreachable terms are in all computable over-
approximations. So, refinement may be unfruitful in the rewriting approximation
framework. However, our first experimental results are promising. Moreover, the
positive results obtained in the framework of security protocols and Java pro-
grams analysis, let us think that our refinement approach can work in practice

and then, can make the reachability analysis detailed in [?] available to a larger
community of users. More experimentations are needed to compare the
technique in this paper and the abstraction technique in [?], and to de-
termine our interactive backward reachability analysis efficiency and
pertinence on, e.g., Java programs. In many system analyses, back-
ward analysis provides better results than forward analysis.

Related works The notion of abstraction function presented in [?] is not
so far from the basic definition used in the framework of the abstraction-based
verification of infinite-state systems.

Abstraction refinement is already used to make the definition of a good
abstraction function easier and, consequently, to make the system verification
easier. In [?], the CEGAR (Counterezample-Guided Abstraction Refinement)
paradigm has been summarised and a general algorithm consisting in refining
an abstraction function by analysing a spurious counterexample has been given.
Our work fits almost exactly with this framework.

In [?,?], the authors use abstraction refinement on Kripke structure and
ACTL specification. When an abstract counterexample is found, the correspond-
ing concrete counterexample is computed. If it does not correspond to a path
in the concrete model, it means that it is a spurious counterexample, and the
abstraction function is then refined to make the concrete model correspond to
the given specification. The spurious counterexample analysis is done with a
forward method.

In [?], an abstraction refinement method is used on transition systems for
verifying invariants with a technique combining model checking, abstraction and
deductive verification. Contrary to the three previous articles, the authors do not
consider liveness properties, and the spurious counterexample analysis is done
with a backward method. In [?], as part of predicate abstraction, predicates are
automatically discovered by analysing spurious counterexamples. The method
exposed in this paper is close to the above methods, but it works on different
data structures.

In the field of tree automata, [?] computes an over-approximation with the
help of an initial tree automata, tree transducers, and by merging states which
either recognise the same language for a given depth or satisfy a given predi-
cate. This merging is the origin of the over-approximation. A refinement can be
done either by increasing the depth or by extending the predicate with a spu-
rious counterexample. In our case, term rewriting systems are used instead of
transducers. Moreover, the states fusion is guided by a safety/security property
together with an abstraction function.

