

Revealing contextuality of quantum CONFIGURATIONS WITH A SAT SOLVER Axel Muller¹, Metod Saniga², Alain Giorgetti¹, Henri de Boutray³, Frédéric Holweck^{4,5}

Journées nationales du GDR GPL (Génie de la Programmation et du Logiciel), CNRS, groupe de travail LVP (Langages et Vérification de Programmes), 5-8 juin 2023, Rennes, France

> ¹ Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France ² Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranska Lomnica, Slovakia ³ ColibrITD, France ⁴ ICB, UMR 6303, CNRS, University of Technology of Belfort-Montbéliard, UTBM, 90010 Belfort, France ⁵ Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

Observables Pauli matrices (1-qubit *observables*): $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ matrix product: X | X I iZ -iY

• • •

Z Z iY -iX I

N-qubit Pauli operator (N-qubit observable): $G_1 \otimes G_2 \otimes \cdots \otimes G_N$, with $G_i \in \{I, X, Y, Z\}$ generalized Pauli group: $\mathcal{P}_N = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}^N, .)$

Contextuality Process A context is a finite subset c of mutually commuting N-qubit observables (eigenvalues) BC1.1 in $\{-1,1\}$, i.e. $(-1)^{b}$ for a Boolean variable $b \in \{0,1\}$) whose matrix product $\prod_{o \in c} o$ is $(b1 ^ b2 ^ b3 == F,$ $\pm I \otimes \ldots \otimes I$. A quantum configuration [1] is a finite set of contexts. $b4 \ b5 \ b6 == F$, $b7 ^{b8} ^{b9} == F$, $(-1)^{b1}$ $(-1)^{b2}$ $(-1)^{b3}$ $b1 \hat{b}4 \hat{b}7 == F$, $X \otimes I - I \otimes X - X \otimes X (1)I \otimes I$ $b2 \ b5 \ b8 == F$, b3 ^ b6 ^ b9 == T); $(-1)^{b4}$ $(-1)^{b5}$ $(-1)^{b6}$ **BC2CNF** [6] $I \otimes Y - - Y \otimes I - - Y \otimes Y \quad (1)I \otimes I$ p cnf 22 56 quantum configuration 1 18 -16 0 generator [4, 5] $(-1)^{b7}$ $(-1)^{b8}$ $(-1)^{b9}$ 1 -18 16 0 (C program) -1 18 16 0 $X \otimes Y - Y \otimes X - Z \otimes Z \quad (1)I \otimes I$ -1 -18 -16 0 2 14 -1 0 $(1)I \otimes I \quad (1)I \otimes I \quad (-1)I \otimes I$ 2 -14 1 0

Example: Mermin-Peres quantum configuration [2, 3], with 9 two-qubit observables and 6 contexts, either positive $(o_1 - o_2 - o_3)$ or negative $(o_1 = o_2 = o_3)$, for instance $(X \otimes X).(Y \otimes Y).(Z \otimes Z) = (X.Y.Z) \otimes (X.Y.Z) = i.I \otimes i.I = -I \otimes I.$

Results [4, 5, 8]			
Contextuality checked [*] for several configurations	Proofs and $conjectures$, for an arbitrary of qubits N		
N-qubit doilies ($2 \le N \le 5$), 12 configurations, less than 1 second	All multi-qubit doilies are contextual, and their <i>contextuality degree</i> (minimal number of unsatisfied constraints) is 3 ($N \ge 2$)		
N-qubit 2-spreads ($2 \le N \le 5$), 72 configurations, 1 second	All 2-spreads are contextual, and their contextuality degree is 1 ($N \ge 2$)		
elliptic and hyperbolic quadrics ($2 \le N \le 6$), 5456 configurations, 33 minutes	Conjecture: All elliptic and hyperbolic quadrics are contextual ($N \ge 2$), when the contexts are their lines		
N-qubit perpsets ($2 \le N \le 7$), 21834 configurations, 17 minutes	All perpsets are non-contextual ($N \ge 2$)		
totally isotropic subspaces of dimension $1 \le k < N$ of the symplectic space $W(2N - 1, 2)$	The configuration whose contexts are all the lines is contextual $(k = 1, N \ge 2)$		
$(k = 1, 2 \land N \le 5, 3 \le k \land N = 6, (k, N) = (6, 7)), 14$ configurations, less than 24 hours	Conjecture: The configuration whose contexts are all the planes is non-contextual $(k = 2, N \ge 3)$		
per configuration	The configuration whose contexts are all the subspaces of some dimension $k \ge 3$ is non-contextual ($N > k$)		
computed with a PC equipped with an Intel(R) Core(TM) i7-12700H and 16 GB RAM			

Bibliography

[1] F. Holweck. "Testing Quantum Contextuality of Binary Symplectic Polar Spaces on a Noisy Intermediate Scale Quantum Computer". In: Quantum Information Processing (2021). DOI: 10.1007/s11128-021-03188-9.

[2] A. Peres. "Incompatible results of quantum measurements". In: *Physics Letters A* 151.3 (1990), pp. 107–108. ISSN: 0375-9601. DOI: 10.1016/0375-9601(90)90172-K.

[3] N. D. Mermin. "Hidden variables and the two theorems of John Bell". In: Rev. Mod. Phys. 65 (3 July 1993), pp. 803-815. DOI: 10.1103/RevModPhys. 65.803.

[4] A. Muller et al. New and improved bounds on the contextuality degree of multi-qubit configurations. May 2023. DOI: 10.48550/arXiv.2305.10225.

[5] A. Muller et al. "Multi-qubit doilies: Enumeration for all ranks and classification for ranks four and five". In: Journal of Computational Science 64 (Oct. 2022), p. 101853. DOI: 10.1016/j.jocs.2022.101853.

[6] T. A. Junttila and I. Niemelä. "Towards an Efficient Tableau Method for Boolean Circuit Satisfiability Checking". In: Computational Logic — CL 2000. Springer Berlin Heidelberg, 2000, pp. 553–567. ISBN: 978-3-540-

44957-7. DOI: 10.1007/3-540-44957-4_37.

[7] M. S. Chowdhury, M. Müller, and J. You. A Deep Dive into Conflict Generating Decisions. en. May 2021. DOI: 10.48550/arXiv.2105.04595.

[8] H. de Boutray et al. "Contextuality degree of quadrics in multi-qubit symplectic polar spaces". In: Journal of Physics A: Mathematical and Theoretical 55.47 (Nov. 2022), p. 475301. DOI: 10.1088/1751-8121/aca36f.

Acknowledgments

This project is supported by the PEPR integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030, and by the EIPHI Graduate School (contract ANR-17-EURE-0002). This work also received a partial support from the Slovak VEGA grant agency, Project 2/0004/20.

Contact Muller Axel axel.muller@femto-st.fr Besançon, Belfort, Montbéliard, Sévenans	UNIVERSITE BRANCHE~COMTE ERANCHE~COMTE	
www.femto-st.fr		