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ABSTRACT
In emergency call centers, operators are required to analyze and prioritize emergency situations prior
to any intervention. This allows the team to deploy resources efficiently if needed, and thereby provide
the optimal assistance to the victims. The automation of such an analysis remains challenging, given
the unpredictable nature of the calls. Therefore, in this study, we describe our attempt in improving an
emergency calls processing system’s accuracy in the classification of an emergency’s severity, based
on transcriptions of the caller’s speech. Specifically, we first extend the baseline classifier to include
additional feature extractors of different modalities of data. These features include detected emotions,
time-based features, and the victim’s personal information. Second, we experiment with a multi-task
learning approach, in which we attempt to detect the nature of the emergency on the one hand, and
improve the severity classification score on the other hand. Additional improvements include the use of
a larger dataset and an explainability study of the classifier’s decision-making process. Our best model
was able to predict 833 emergency calls’ severity with a 71.27% accuracy, a 5.33% improvement over
the baseline model. Moreover, we extended our tool with additional modules that can prove to be
useful when handling emergency calls.

1. Introduction
In the case of an injury or illness, citizens usually contact

emergency call centers to seekmedical assistance. In France,
the SDIS (Service Départemental d’Incendie et de Secours)
department of a specific region handles the assistance of
such emergencies around the clock. Following an emergency
call, the operators usually have to determine the priority
that should be assigned to this emergency, based on their
assessment of the situation’s severity and urgency.

Several factors can affect the decision-making process of
the operator: the medical expertise of the operator handling
the call, whether the operator is overloaded with calls and
therefore is not in capacity to accurately assess the needs
of the caller, etc. However, an inaccurate assessment of the
situation’s urgency could result in a late intervention, thereby
increasing the risk of avoidable fatalities. Consequently, it is
crucial to equip emergency center operators with effective
methods that can assist them in the evaluation of an emer-
gency’s priority.

In one approach (Abi Kanaan, Couchot, Guyeux, Laiy-
mani, Atechian and Darazi (2023)), a pipeline (Fig 1) is
developed for processing and classifying emergency calls.
The speech regions in the call are first extracted by a voice
activity detection algorithm. Then, speaker diarization is
applied on these signals in order to extract the caller’s voice
separately. The purpose of this process is to emulate a
scenario where the operator is not able to assist the caller
due to an overload of calls for instance. In such a case,
the emergency center could set up a waiting machine that
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would request the caller to indicate the reason for their call,
and to describe their emergency. The caller’s audio signals
are later passed into a speech-to-text system. Based on the
transcribed text, the call is finally classified as either a "High
Severity" or a "Low Severity" call. A "High Severity" label
indicates that the potential outcome of the emergency might
involve a dangerous medical condition or the passing of the
victim. A "Low Severity" label on the other hand indicates
that the emergency could amount to a minor or no medi-
cal condition. The classifier is a French version of BERT
(Bidirectional Encoder Representations from Transformers)
(Tenney, Das and Pavlick (2019)), CamemBERT (Martin,
Muller, Suárez, Dupont, Romary, de La Clergerie, Seddah
and Sagot (2019)), and was able to estimate the severity of
90 emergency calls with a 71.2% accuracy and a standard
deviation of 3.02%.

Given that each improvement to this score can contribute
to a saved life, we aim to improve upon this workwith several
contributions. First, we evaluate the accuracy improvement
whilst training the text classifier on a larger dataset, which
allows us to further evaluate the system’s predictions on a
larger sample. Second, we improve the accuracy of the sys-
tem by augmenting the text classifier with additional inputs:
the emotions exhibited by the caller, the call’s time-based
features, and the emergency victim’s personal information
(i.e., age, gender, and location). Moreover, we investigate the
effect of incorporating multi-task learning into the model on
the accuracy. We were able to further increase the accuracy
in the prediction of the severity level when the additional
tasks were correlated enough.

Our contributions in this work can therefore be summa-
rized in the following way:
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Figure 1: Emergency calls processing pipeline (Abi Kanaan et al. (2023)): improvements include the addition of an SER module
and feature extractors in the severity classifier.

• We train a baseline system (Abi Kanaan et al. (2023))
and evaluate it on a larger dataset (an increase of
460.95% on the number of calls), thereby increasing
its reliability.

• We increase the accuracy of the system by augmenting
the speech classifier with additional features on the
one hand, and by incorporating a multi-task learning
approach on the other hand. Our best model achieves a
mean accuracy of 71.27%, a 5.33% improvement over
the baseline model (Abi Kanaan et al. (2023)) trained
on the dataset of this study.

• We automate the speaker identification phase of the
system, which improves its usability in a real-time
setting.

• We include a study on the explainability of the deep
learning models used in this work, in order to gain
a better insight into the decision-making process of
these algorithms.

The code related to this study will be available on the
following URL https://tinyurl.com/4pk4uf67.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes state of the art works related to emergency
calls classification, speech emotion recognition, and multi-
task learning. Section 3 covers the proposed improvements
in detail. The experimental process as well as the results
of this work, the explainability study, and a performance
analysis of the system are reported in Section 4. In Section
5, we include a discussion of the obtained results and the
current limitations of this study. Finally, Section 6 concludes
this article and discusses the future directions for this work.

2. Related Work
This section first describes state of the art works in emer-

gency calls classification. Second, an overview of speech

emotion recognition applications in medical and emergency
contexts is given, as well as a description of studies on the
impact of multi-task learning.
2.1. Emergency Calls Classification

A first group of works have focused on the classification
of calls into a medical diagnosis (Blomberg, Folke, Ers-
bøll, Christensen, Torp-Pedersen, Sayre, Counts and Lippert
(2019)). The authors use a machine learning framework
developed by the Danish company Corti.ai (cor (2023)) in
the recognition of cardiac arrests in callers’ speech extracted
from automatically transcribed text. The study shows that
the framework achieves a higher sensitivity rate (84.1%)
compared to the dispatcher (72.5%). Another work (Gil-
Jardiné, Chenais, Pradeau, Tentillier, Revel, Combes, Galin-
ski, Tellier and Lagarde (2021)) uses a GPT-2 (Generative
Pre-Trained Transformer) (Radford, Narasimhan, Salimans,
Sutskever et al. (2018)) model in the classification of emer-
gency call notes taken bymedical experts, into one of several
emergency categories, such as chest pain, violence, etc. The
maximum F1 scores on the categories range from 47.9% to
80%.

Several other works have described the development
of tools that assist operators in the prioritization of calls.
An emergency center support system is designed (Trujillo,
Orellana and Acosta (2019)), with the combination of sev-
eral modules. The calls in Spanish are first transcribed
through an Automatic Speech Recognition (ASR) system,
and are passed through a Named Entity Recognition (NER)
module for the extraction of relevant entities. An additional
classifier module detects the service type and priority of a
specific call’s transcription, using algorithms such as TF-
IDF (Term Frequency-Inverse Document Frequency) and
Support Vector Machines (SVMs). The emergency calls
classifier is discussed in detail in another study Orellana,
Trujillo and Acosta (2020). The texts goes through several
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pre-processing steps, such as conversion to a lowercase for-
mat, stop-words removal, and lemmatization. Furthermore,
the texts are subjected to "word pruning" in order to reduce
the dimensionality of the features. The best model results in
a recall score of 86%, a precision score of 75%, and an F1-score of 80%. Another tool, which constitutes the basis for
this work (Abi Kanaan et al. (2023)), was developed to assist
emergency call operators in France. Emergency calls in the
French language are first passed through audio processing
blocks, such as voice activity detection and speaker diariza-
tion. Another block automatically transcribes the calls into
text. The latter is then used to train a BERT model (Tenney
et al. (2019)) on 904 emergency calls, for the prediction of
the injury level of the victim concerned by the call. The
latter achieves a 71.2% accuracy on the classification of the
severity.
2.2. Emotion recognition applications

In emotion recognition applications, emotions are typi-
cally modeled in one of two ways: either through a discrete
representation, or a dimensional representation (Akçay and
Oğuz (2020)). A discrete emotion is based on one of six basic
categories of emotions such as anger, happiness, fear, etc.
The dimensional model on the other hand argues that since
emotions constantly change, an alternative representation
could be through continuous dimensions that encompass
the pleasantness, i.e., the valence, of an emotion, and its
intensity, or the arousal.

Furthermore, with the use of machine learning and deep
learning algorithms, the emotions can be inferred based on
either the acoustic signals of a speech, the textual contents
of a speech, facial features (in the case of video recordings),
or a fusion of these features. One work (Omar and Abd
El-Hafeez (2023)) experiments with quantum computing
and classic machine learning methods to perform sentiment
classification on Arabic documents. Another study (Ayache
and Alti (2020)) suggests a system for facial expression
recognition. It performs feature selection on faces using
Active Shape Model (ASM). These features are used to train
several classifiers, such as a Quadratic classifier (DA), a
Multi Layer Perceptron (MLP), etc. It was found that the
Quadratic classifier provides the most accurate classification
results. In this study, we focus on acoustic-based emotion
recognition applications, as this is the one modality that is
available to us in its unchanged format (no facial features
are available, and the transcriptions are not 100% error-free).
We expect that the voices of the callers can exhibit enough
emotional information.

In speech emotion recognition applications, the most
commonly used acoustic features are prosodic (e.g. pitch,
loudness, duration) and spectral features (e.g. MFCC; Mel
Frequency Cepstral Coefficients) (Akçay and Oğuz (2020)).
In one speech emotion recognition study (Kumar, Haq, Jain,
Jason, Moparthi, Mittal and Alzamil (2023)), the authors
extract MFCC features from speech signals and use a multi-
layer perceptron (MLP) to classify the features into a cate-
gory of emotion. In contrast, another work (Zhao, Mao and

Chen (2019)) uses an alternative representation for speech,
the log-mel spectrogram, which represents the frequency
changes in the signal over time. These spectrograms are
used to train a CNN-LSTM (Convolutional Neural Network
with an LSTM) on the task of speech emotion recogni-
tion. This architecture achieves the following scores in a
speaker-independent setting: a 95.89% accuracy for EmoDB
database Burkhardt, Paeschke, Rolfes, Sendlmeier, Weiss
et al. (2005) and 52.14% on IEMOCAP (Busso, Bulut,
Lee, Kazemzadeh, Mower, Kim, Chang, Lee and Narayanan
(2008)).

Many works have studied the impact of emotions in a
medical or emergency context. In one study (Deschamps-
Berger, Lamel and Devillers (2021)), a network based on
Convolutional Neural Networks and Bidirectional LSTMs
(CNN-BiLSTM) is developed for speech emotion recog-
nition and trained on the acoustic signals found in emer-
gency calls. The model predicts one of four categorical
emotions: anger, sadness, happiness, and neutrality. The
authors demonstrated the difficulty of accurately recogniz-
ing real-life emotions through neural networks, compared
to the performance when using the improvised section of
IEMOCAP database (Busso et al. (2008)). They obtain a
45.6% unweighted accuracy on the four classes using the
real-life dataset, compared to 63% obtained on IEMOCAP.
The previous work is extended (Deschamps-Berger, Lamel
and Devillers (2022)) with several improvements, such as
the use of transformers (Minaee, Kalchbrenner, Cambria,
Nikzad, Chenaghlu and Gao (2021)), and the fusion of tex-
tual and acoustic features for the classification of emotions.
This improved the previously obtained 45.6% unweighted
accuracy to 77.1%. The authors also mention that the use of
textual features improved the recognition in complex calls,
as text complemented the acoustic features when the callers
attempted to exaggerate or control their emotions.

As opposed to the previously described studies that have
relied on discrete emotions, one work (Perez-Toro, Vasquez-
Correa, Bocklet, Noth and Orozco-Arroyave (2021)) utilizes
dimensional emotions in a clinical context. More specifi-
cally, the emotional features are used in the detection of
depression in Parkinson’s patients, and the detection of
Alzheimer’s disease. The classifier is based on a fusion of
linguistic and acoustic features. This results in F1 scores
of up to 82% for the depression detection, and up to 80%
for Alzheimer’s detection. In this study, we equally rely on
a dimensional representation of emotions, as we seek to
collect this information on a continuous level (for several
intervals of the calls).
2.3. Multi-task Learning

Multi-task learning (MTL) is an approach for training
machine learning models, in which the same model can
be trained on multiple tasks simultaneously, while several
loss functions are optimized at once. The purpose of such a
training approach is to allow the model to leverage the fea-
tures that are relevant in multiple tasks. This way, the input
data can be represented more efficiently, which can improve
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Table 1
Summary of existing works on emergency calls classification.

Study Goal Dataset Methods Results Limitations
Orellana
et al.
(2020)

Classification
of emergency
calls priority

1000 emergency call
transcripts in Spanish
provided by a security
service

Use of text
pre-processing
techniques. A
TF-IDF-based
representation of the
texts. Use of SVMs
for the classifications
of the texts

Precision of
75%, F1-score
of 80%, Recall
of 86%

Limited dataset (only
1000 calls). Text
requires several

pre-processing steps.

Gil-Jardiné
et al.
(2021)

Classification
of emergency
calls’ reason

Manually annotated
notes of French
888,469 emergency
calls

Use of GPT-2 for the
classification of the
texts

F1 scores
ranging from
47.9% to 80%

The work is based on
manually annotated
notes of the calls. No
severity classification.

Abi Kanaan
et al.
(2023)

Classification
of emergency
calls severity

Automatically
transcribed 904
emergency calls in
French

Use of CamemBERT
for the classification
of the texts

71.2%
accuracy

Limited dataset (only
904 calls).

the performance when the tasks have some correlation. The
method of multi-task learning has been used in a variety
of applications, such as text classification, medical image
analysis, and speech emotion recognition.

In a work aiming at automating the evaluation of peer
assessments (Jia, Cui, Xiao, Liu, Rashid and Gehringer
(2021)), a multi-task learning BERT model was employed
for detecting features in assessments such as the tone, sug-
gestions, etc. It was shown that this joint training approach,
as opposed to dedicating a separate model for each task,
improved performance in terms of accuracy, memory usage,
and response time. Multi-task learning was also success-
fully applied in another study (Goncharov, Pisov, Shevtsov,
Shirokikh, Kurmukov, Blokhin, Chernina, Solovev, Gom-
bolevskiy, Morozov et al. (2021)) to improve the detection
of Covid-19 and its severity, based on CT images of patients.
Another application of MTL involves a model for speech
emotion recognition in emergency call centers (Deschamps-
Berger et al. (2021)). The involved tasks in this approach are
the prediction of the emotion and the gender of the caller.
As opposed to the previously mentioned works, the joint
learning of an auxiliary task (the gender recognition), did
not seem to single-handedly improve the performance in the
recognition of emotions.

In Table 1, we summarize some of the most relevant
works related to our goal. The table shows some of the lim-
itations of the mentioned studies, such as the evaluation of
classifiers on manually annotated notes of emergency calls
(which are not available in our case), or the evaluation on a
limited dataset. In the current study, we rely on automatically
annotated transcriptions of calls, and evaluate our models
on a bigger number of samples. Moreover, we do not pre-
process our transcriptions, so as to avoid an additional slow-
down of our pipeline.

3. Methods
In this section, we include an overview of the datasets

used in this work. We then describe the contributions in this
study, specifically in the extension of the text classifier with
additional feature extractors (see Fig. 2).
3.1. Datasets
3.1.1. Emergency calls dataset

The SDIS 25, an emergency department in the French
Doubs region, provided the emergency calls used in this
work. The calls had taken place during the range of the years
2016 to 2021. Some of the recordings were filtered out for
being irrelevant to our task, as they included conversations
between operators, medical professionals, or policemen dis-
cussing the details of an emergency intervention. In this
work, we will rather focus on the analysis of calls that
have been initiated by a civilian who is directly involved
in the situation. In the recorded conversations, the caller
is describing their situation, while the operator attempts to
assist them and get a clearer understanding of the emergency.

As shown in Abi Kanaan et al. (2023), using only the
caller’s parts in these recordings contained enough informa-
tion to amount to a similar performance in the classification
of the severity compared to using the complete recordings.
For this reason, we limit our experiments to the caller’s
speech that was extracted from the conversations using a
speaker diarization tool (Bredin, Yin, Coria, Gelly, Kor-
shunov, Lavechin, Fustes, Titeux, Bouaziz and Gill (2020)).
The calls are labeled with the reason for the call (e.g., au-
tomobile accident, loss of consciousness...) and the victim’s
condition following the intervention of the team. This condi-
tion can either be what is called "Lightly injured", meaning
the emergency resulted in minor or nomedical conditions, or
"Highly injured", meaning the resulting medical condition
was dangerous, and "Deceased", which indicates that the
victim(s) passed. In this work, our main task consists of
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Figure 2: Severity classification network architecture in two settings: using personal information as input VS as output.
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predicting the condition of the victim, which we consider
to be equivalent to the "severity" of the emergency. So
a prediction of a "Highly injured" state indicates that the
emergency at-hand is urgent and requires the attention of
the intervention team. Given that light injuries are the most
common types of conditions, we group the "Highly injured"
and "Deceased" categories into one, and randomly remove
a portion of the most common class to balance out the
dataset. In some cases, several victims with different levels
of injuries might be involved in the same emergency (a fire
for example). For these situations, we only include the call
once, labeled by the most severe injury. An auxiliary task in
the context of multi-task learning consists of classifying the
call into a "reason" of emergency.

We expand the number of calls previously used (AbiKanaan
et al. (2023)) from 904 to 4167 recordings, made up of
49.96% "high severity" cases (2081 calls) and 50.03% "low
severity" cases (2085 calls). The final recordings are then
automatically transcribed into text using automatic speech
recognition (Radford, Kim, Xu, Brockman, McLeavey and
Sutskever (2023)). The average recording’s length is 138.40
seconds, whilst the longest recording is 496.34 seconds long,
and the shortest 6.69 seconds long. The average transcrip-
tion’s length is 2555 ±46 words, whereas the minimum and
maximum length is 110 and 8279 words respectively.

According to a confidentiality agreement that was signed
with the SDIS 25, neither the dataset nor any of the models
can be disclosed since doing so could expose the callers’
personal information.
3.1.2. RECOLA database

To develop our speech emotion recognition model, we
train a deep neural network using RECOLA (REmote COL-
laborative and Affective) database (Ringeval, Sonderegger,
Sauer and Lalanne (2013)). This dataset contains 46 different
recordings in Frencg, where each recording is accompanied
by its audio, video, electrocardiogram (ECG), and electro-
dermal activity (EDA). The recordings were collected fol-
lowing the collaboration of several participants in a task
where they had to discuss how to survive in a disaster
scenario. These conversations were annotated with arousal
and valence values each 40 ms by 6 annotators. Since we
only have access to the speech of callers in the context of
this work, we only use the audio file of each recording.
3.2. Model Outputs

In the context of the multi-task learning approach, we
select the following tasks as auxiliary outputs in regards to
the severity output:

• Reason of the call: We theorize that the reason of the
call is correlated with the severity of the emergency.
A heart attack emergency for instance is usually more
urgent and dangerous than a fall.We group the reasons
of the call into 12 categories. Table 2 presents an
overview of the different emergency incidents in the
dataset, as well as the sample size of each class. The
dataset can be considered imbalanced in regards to the

number of samples for each emergency reason. How-
ever, since the classification of the reason remains a
complementary task in this paper, we do not currently
take actions in order to handle this imbalance, and
leave this for a future work.

• Age of the victim: The age of the victim is not always
mentioned in a call, as sometimes the urgency of
the emergency makes it more difficult for the caller
to accurately describe the situation. Moreover, some
emergencies might involved more than one victim,
such as a car accident emergency. Based on this,
we don’t aim to extract the age of the victim in the
discussion, but rather classify the speech into one of 5
age groups (Table 3) (of Health (2023)).

• Gender of the victim: The gender detection task is
reduced to a simple binary classification ("Male" or
"Female").

• City: We theorize that the city where the emergency
originates from might impact the outcome of the
situation. For instance, some cities’ roads might be
more prone to road accidents than others. The dataset
is highly imbalanced in regards to the city of the emer-
gency, as most calls originate from one dominating
city (Besançon, France). For this reason, we also re-
duce the city detection task into a binary classification,
where the 0 label represents the dominating city, and
1 represents any other city.

Table 2
Emergency reasons sample size distribution in dataset.

Emergency Reason Sample Size

Violence 77
Wounds/Trauma 776
Faintness 494
Fall 429
Public Road Accidents 479
Suicide Attempt 129
Respiratory Distress 314
Heart Failure 472
Delivery problems 24
Individual who is not answering calls 132
Fire 23
Others 818

Table 3
Victims’ ages sample size distribution in dataset.

Age Range Sample Size

0-1 17
2-12 238
13-17 205
18-64 2294
64+ and unknown ages 1413
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Moreover, we compare the results obtained when includ-
ing the age, gender, and city as auxiliary task outputs, as
opposed to including these values as inputs to the network
(see Fig. 2).
3.3. Speaker Identification

Based on the baseline emergency calls processing pipeline
(Abi Kanaan et al. (2023)), the calls go through a speaker
diarization block, in order to extract the caller’s speech and
discard any other intervening side, such as the operator. One
limitation in this phase is the speaker identification process,
which was completed manually in the previously described
work. Once the speakers are separated, a re-identification of
the speech signals linked to callers is required.

Given the nature of the conversations, the operator’s
speech is of an interrogating nature, where the same ques-
tions are typically repeated in most of the calls. Based on
this, we take advantage of the manually labeled dataset to
train a French BERT (Tenney et al. (2019)), CamemBERT
(Martin et al. (2019)), to automatically distinguish between
an operator’s and a caller’s speech. The best model was
able to label 3263 calls with a 96.87% accuracy. Since the
accuracy is not 100%, an imperfection is added to our dataset
as 3.13% of the transcriptions are mis-labeled. We consider
this a necessary trade-off as it enabled us to expand the
size of our collection of transcriptions (a 460.95% increase
in number of samples) to slightly less than five times the
equivalent of that of the previous dataset.
3.4. Classification Model

In this section, we describe the various contributions that
were made to the baseline classifier (as illustrated Fig. 2)
to improve the accuracy on the severity classification. The
outputs of four feature extractors, denoted as vi, each one
treating a different modality of data (text , emotions, time,
and victim’s personal information), were concatenated into
one layer v, such as v = (v1, v2, v3, v4). This layer in turn is
followed by the output layers, which will predict the severity
of the call, alongside several potential outputs (the reason of
emergency, age, gender, and city of the victim).
3.4.1. Text Classification

We fine-tune the base version of the CamemBERT
model with one classification layer on our dataset (AbiKanaan
et al. (2023)). We either pad or truncate the callers’ speech
transcriptions tomatch themaximum sequence length of 384
words, which was found to lead to a higher accuracy com-
pared to the maximum of 512 supported by CamemBERT
(more details in Section 4.1). This shows that, even though
the average sequence is much longer than 384 words (see
Section 3.1.1), the most relevant information for Camem-
BERT are found at the beginning of the caller’s speech. The
sequences are tokenized using the uncased CamemBERT
tokenizer. Finally, attention masks are set to differentiate
between real and padded tokens.

3.4.2. Speech Emotion Recognition
We train a deep neural network on the RECOLAdatabase,

and use the trained model to infer the emotions in the
emergency calls, such as shown Fig. 1. Our primary goal
is to extract the most relevant emotional features in the
caller’s voice, which would provide a more accurate idea
of the situation’s urgency and priority. For example, in a
low-urgency situation, such as hitting a boar on the road,
the caller would exhibit calmer emotions than one who’s
experiencing symptoms of a heart-attack. We only focus
on the acoustic features to build the emotions classifier, as
opposed to some works that have also used the linguistic
features (Section 2.2). Although this has been proven to
improve the network’s performance, we leave this for a
future extension of this work.

The network (illustrated in Fig. 3) is based on a state-of-
the-art speech emotion recognition architecture (Zhao et al.
(2019)). We first apply some pre-processing to the RECOLA
audio files. We fragment them into 4-second long segments
(and pad the fragments that are shorter than 4 seconds),
with an overlap of 2 seconds between successive fragments.
Each segment is re-sampled from 44100 Hz to 8000 Hz
(similar to the emergency calls’ speech rate), then converted
to a Mel spectrogram (Smyth (2019)). The Mel spectrogram
is an efficient method for audio feature extraction which
mimics the way humans perceive sounds. This is achieved by
adopting the Mel-scale which allows the distance between
scales of pitches to be perceived in the same way by the
listener. The process of extracting the Mel spectrogram for
each audio segment is as follows:

• The segment is separated into windows of 2048 sam-
ples with a hop length of 512.

• Fast Fourier Transform (FFT) is applied on each win-
dow, which allows us to pass from the time domain to
the frequency domain.

• The frequency spectrum is converted to theMel-scale.
It is separated into 128 frequency bands.

• Each window is decomposed using the frequencies in
the Mel-scale.

As for the network’s architecture, it consists of a collec-
tion of what its creators (Zhao et al. (2019)) call a "Local
Feature Learning Block" (LFLB). The LFLB is used to
extract local features for speech emotion recognition. It
consists of one 2D convolutional layer, followed by a batch
normalization layer (Ioffe and Szegedy (2015)), the ELU ac-
tivation function (Rasamoelina, Adjailia and Sinčák (2020)),
and a 2D max-pooling layer to reduce the dimensionality of
the features.We use four LFLBs with 64 convolution kernels
in the first two layers, and 128 convolution kernels in the last
two layers. Similarily to one emotion recognition study in an
emergency center (Deschamps-Berger et al. (2021)), we add
a bidirectionnal LSTM layer with 32 units in order to allow
the network to learn the temporal aspect of the signals.

The network is trained in a multi-task learning manner
for the simultaneous prediction of the arousal and valence.
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Figure 3: Speech emotion recognition network architecture.

Since dimensional speech emotion recognition is a regres-
sion task, we use a correlation-based loss function, the
concordance correlation coefficient (CCC) (Lawrence and
Lin (1989)).

We use the trained model to extract the callers’ emotions
based on the first 20 seconds of each caller speech (Fig.
1). We believe that the core emotional features reside in
the beginning of the call, i.e., the first 20 seconds of the
recordings, as the callers are usually less emotional towards
the end of the call once they receive the operators’ help. Calls
that are shorter than 20 seconds are padded to match this
duration. The calls undergo the same pre-processing steps
as the RECOLA dataset. Once speech emotion recognition
is applied on the Mel spectrograms, we obtain two vectors
(the valence vector and the arousal vector) of 10 values each,
representing the emotional value at the end of each 4-second
long fragment. These vectors are later used as additional
features to the severity classifier (Fig. 2).
3.4.3. Time-based Features

We extract each call’s time-based features, mainly the
month and the hour of the day (in a 24-hour format), during
which the call occurred. We theorize that such features are
highly correlated with the reason of the emergency and its
outcome. For instance, a call that occurs at a late hour in the
month of February, which is one of the coldest months in
France, could likely be linked to a car accident emergency,
whereas an emergency that occurs at noon during summer
has a higher probability of being linked to a cardiac arrest,
as such conditions commonly occur during hot weathers.

In order to represent the cyclic nature of these features,
we opt for a cyclic-based representation (Chakraborty and
Elzarka (2019)) as opposed to a classic one-hot encoding
modeling. Such a representation reduces the input dimen-
sionality on the one hand, as encoding the hours of the
day for instance results in a 24 dimensionality vector. On
the other hand, this approach also incorporates the cyclical
continuity aspect of the time-based values. To model the
time-based values in a cyclic representation, each value,
which we denote as t, is reduced to a feature vector of two
values [x, y], using trigonometric functions. If we consider
max_value equal to 12 when representing months, and equal

to 24 when representing hours, the x and y of the features are
computed in the following way:

x = sin
(

2 ∗ � ∗ t
max_value

)

(1)

y = cos
(

2 ∗ � ∗ t
max_value

)

(2)

3.5. Multi-task Learning
Multi-task learning can be implemented in one of two

ways: either by hard-parameter sharing or through soft-
parameter sharing (Caruana (1997)). In the hard-parameter
sharing approach, which is the more commonly used ap-
proach, the hidden layers are shared among all tasks, while
a few task-specific layers are kept. When using the soft-
parameter sharing approach, a separate model is dedicated
to each task. However, in order to minimize the distance be-
tween the parameters of the models, the latter are subjected
to regularization during training. In this work, we opt for the
hard-parameter sharing method, as this allows us to reduce
resources consumption.

In this study, all tasks share the same inputs, but have
distinct task-specific labels. We use the following loss func-
tion to optimize the model when including all the values
described in Section 3.2 as auxiliary tasks:

Loss = Lossseverity+Lossreason+Lossage+Lossgender+Losscity
(3)

with Loss being the Negative log-likelihood function (as
described in 4.1), whereas the following loss function is used
when only including the reason of emergency as an auxiliary
task:

Loss = Lossseverity + Lossreason (4)

4. Experiments and Evaluation
4.1. Experiments and Hyperparameter Selection

In terms of computational complexity, we completed the
computations in this study on an NVIDIA Tesla V100 GPU
with 32 GB of memory. We used the PyTorch framework
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Table 4
Classification scores for the severity classification for the different combinations of features and tasks with a 95% confidence
interval. Abbreviations: PI, stands for the victim’s Personal Information; ⋄, indicates the score of the baseline (Orellana et al.
(2020)) using text pre-processing methods from the same study; ⋆, indicates the baseline (Abi Kanaan et al. (2023)) score on
the current dataset

Inputs Auxiliary outputs Accuracy Recall Precision F1-score

Text Emotions PI Time PI Reason
+ - - - - - 67.18 ±1.49%⋄ 67.30 ±1.43%⋄ 67.25 ±1.46%⋄ 67.15 ±1.49%⋄
+ - - - - - 67.47 ±1.49%⋆ 67.50 ±1.49%⋆ 67.60 ±1.49%⋆ 67.42 ±1.50%⋆
+ + - - - - 67.67 ±1.31% 67.55 ±1.39% 68.1 ±1.26% 67.36 ±1.52%
+ + - + - - 70.19 ±1.36% 70.19 ±1.34% 70.48 ±1.36% 70.07 ±1.37%
+ + - + + - 69.81 ±1.44% 69.77 ±1.43% 69.82 ±1.44% 69.77 ±1.43%
+ + - + + + 70.55 ±1.83% 70.51 ±1.80% 70.72 ±1.79% 70.45 ±1.83%
+ - - - + + 67.30 ±1.96% 67.27 ±1.98% 67.38 ±1.94% 67.22 ±1.99%
+ + + + - - 69.83 ±1.27% 69.76 ±1.24% 70.33 ±1.46% 69.59 ±1.27%
+ + - + - + 71.14 ±1.44% 71.08 ±1.42% 71.39 ±1.44% 71.01 ±1.46%
+ + + + - + 71.27 ±1.63% 71.23 ±1.64% 71.40 ±1.64% 71.19 ±1.63%

(Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen,
Lin, Gimelshein, Antiga et al. (2019)) to implement themod-
els, and split the dataset into 80% training (3333 samples)
and 20% testing (833 samples). We trained all models using
a 10-fold cross validation technique. The estimated training
duration of a single model was 1 hour and 22 minutes for all
10 folds (or about 16 minutes per fold).

For the optimization of CamemBERT, we select our hy-
perparameters (Table 5) based on the range of recommended
values in one study (Devlin, Chang, Lee and Toutanova
(2018)). As for the maximum text sequence length param-
eter, we found that, surprisingly, setting its value to the max-
imum supported number of 512, did not have a significant
impact of the network’s accuracy, compared to using a lower
value of 384. For this reason, we select the lower value of
384, as it enables us to complete the training faster, without
impacting the performance.

Each one of the remaining networks, i.e., emotions, age,
time, gender, and city networks, are made up of an input
layer of size 512, followed by the ReLU activation function
(Rasamoelina et al. (2020)), and another hidden linear layer
of size 512. Using a linear learning rate scheduler with
warmup further improved the model’s performance. This
allows the learning rate to first linearly increase from 0 to
the initial learning rate of the optimizer during the warmup
period, to then linearly decrease from its initial value to 0.

We found that training for 12 epochs using a batch size of
8 led to the highest accuracies. We used the Adam optimizer
(Kingma and Ba (2014)) to optimize the network, with a
learning rate value of 3E-5, and an epsilon of 1E-7. We
use the Negative log-likelihood (NLLL) as our loss function
Contributors (2023).
4.2. Results
4.2.1. Evaluation metrics

For the severity classification task, we evaluate the mod-
els’ performance using the metrics of Accuracy (Eq. 5),
Precision (Eq. 6), Recall (Eq. 7), and F1-score (Eq. 8). Thesemetrics are calculated based on the number of true positives

Table 5
List of hyperparameters used to train the severity clas-
sifier.

Hyperparameter Value

Sequence length 384
Last CamemBERT layer learning rate 5E-5
Concatenated network learning rate 3E-5
Epsilon 1E-7
Neural networks Layers size 512
Batch size 8
Num. of epochs 12

(TP), true negatives (TN), false positives (FP), and false
negatives (FN).

True positives are instances of a class that were correctly
predicted as belonging to this class, whereas true negatives
are when the instances are correctly predicted as belonging
to the other class. False positives are when the classifier in-
correctly predicts that an instance belong to a class, whereas
false negatives are when the instance is incorrectly predicted
to belong to the other class.

The accuracy metric therefore (Eq. 5) indicates the pro-
portion of all instances that are classified correctly, and is
a good indicator of the model’s overall performance. The
precision (Eq. 6) is an adequate metric to see how often our
model is predicting false positives. In our case, the lower the
precision rate, the more frequently the model is predicting
the "high severity" class when it shouldn’t. The recall is a
more relevant metric to our work, as it is associated with
the prediction of false negatives. In our study, the lower the
recall rate, the more likely the model is not predicting the
"high severity" classes when it should have. The F1-score(Eq. 8) is a combination of the recall and precision scores,
and similarly to the accuracy, shows an overall idea of the
model’s performance. It is often used when the dataset is

M. Abi Kanaan et al.: Preprint submitted to Elsevier Page 9 of 15



Emergency Calls Severity Prediction

imbalanced, which makes it a good metric to evaluate the
performance on the reason classification task.

Accuracy = TP + TN
TP + FP + TN + FN

(5)

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

F1 − score =
2 ∗ Precision ∗ Recall
P recision + Recall

(8)

4.2.2. Evaluation results

Table 6
Mean confusion matrix of the severity classification
of the best performing model with victims’ personal
information as input.

Support Recall

High Severity TP = 292 FP = 120 412 71.04%
Low Severity FN = 119 TN = 302 421 71.56%

Table 7
Mean confusion matrix of the severity classification of
the best performing model without victims’ personal
information as input.

Support Recall

High Severity TP = 275 FP = 137 412 72.75%
Low Severity FN = 103 TN = 318 421 69.89%

We report in Table 4 the mean classification scores with
a 95% confidence interval for the severity classification task.
We obtain it by performing 10-fold cross-validation runs.
We include the evaluation metrics described in Section 4.2.1
for several combinations of inputs and auxiliary tasks. This
allows us to demonstrate the impact of each one of these
inputs and tasks on the scores.

Moreover, we compare our models’ performance on the
severity classification task to that of two baseline classifiers:

• The CamemBERT classifier used in a previous work
(?). We retrain this classifier on our enlarged dataset
of emergency calls transcriptions.

• A work (Orellana et al. (2020)) that is concerned with
the classification of high-priority calls. This study is
the most similar to ours as the high-severity calls in
our application can also be considered "high-priority"
calls. We reproduced the text pre-processing code and
trained the SVM classifier with Radial Basis Function

(RBF) kernel on our dataset. We kept the default
values of the gamma and C parameters suggested by
sklearn library (skl (2023)). We found that the default
values resulted in better scores in our case compared
to the values recommended by the baseline (Orellana
et al. (2020)))

We first focus on the accuracy metric as it gives us an
overall idea of a model’s performance. The first baseline
(Orellana et al. (2020)) results in the lowest scores (67.18%
accuracy) on the severity classification task. The baseline
CamemBERT model (Abi Kanaan et al. (2023)) on the
other hand results in a higher accuracy of 67.47%. This
confirms the BERT-based models’ (Devlin et al. (2018),
Tenney et al. (2019)) robustness on text classification tasks,
which can lead to decent results with minimal to no data pre-
processing..

We can see that concatenating CamemBERT’s output
with the emotions network’s output slightly improved the
accuracy (to 67.67%). This is an indication that the emo-
tions of the caller do not always reflect the severity of an
emergency due to many reasons. Some situations that can be
perceived as non-urgent can result in dangerous outcomes, if
not handled properly. Moreover, there are many cases where
the caller is distantly or not related to the victim (e.g., in the
case where an intoxicated individual is found on the streets).
In such cases, the caller is not expected to exhibit many
emotions.

On the other hand, the addition of the time-based features
network improved the accuracy more significantly. This
proves the correlation between the severity of an emergency
and its time of day and year. Using the previously mentioned
network to train on the auxiliary tasks of age, gender, and
city detection, the accuracy decreased compared to only
training on the main task. This means that training the
network on determining the personal information of the
victim, i.e., the age, gender, and location, is a difficult task for
the network. This may be due to the imbalance in the dataset
regarding these labels (see Table 3), which would make
it more difficult for the network to learn the correlations
properly. However, it is with the inclusion of the reason of
emergency classification task that we were able to increase
the accuracy more significantly.

The highest score was obtained by using the age, gender,
and city values as inputs as opposed to using them in the
context of multi-task learning. This accuracy (71.27%) was
slightly higher than the accuracy obtained without using this
information as input (71.14%). This shows that the high level
of correlation between the classification of the reason and its
severitywas enough to estimate the severitywith a very close
accuracy compared to when having access to the victim’s
age, gender, and city. It also proves the effectiveness of the
multi-task learning approach in this context. These results
can be interpreted in the following way:

• In some emergency situations where the caller is
apparently agitated, operators would often prioritize
collecting details on the emergency itself, rather than
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wasting time on collecting the victim’s personal in-
formation, i.e., age and gender. However, our exper-
iments prove that the availability of this information
slightly increases the chances of accurately estimating
the priority of the emergency. As such, it is crucial
that operators attempt to collect this information at the
beginning of the call.

• In other cases, the age, gender, and city information
cannot be explicitly inputted. Such a scenario can
take place when the emergency center is overloaded,
and the developed tool is used to automatically assign
priorities based on some of the caller’s speech. In such
a case, the system would attempt to infer this infor-
mation if needed, and determine the severity and the
reason simultaneously, before dispatching this report
to the operator

We can conclude that our approach effectively increased
the accuracy of the baseline CamemBERT classifier by
5.15% when the personal information was unavailable (to
71.15%), and by 5.33%when such information was available
(to 71.27%).

As for the remaining metrics, the results indicate that the
model with the highest accuracy (71.27%) has also the best
recall, precision, and F1-score. It has the best precision score(71.40%), meaning it predicts false severe cases the least
among all models. However, since the precision is slightly
higher than the recall rate (71.23%), this means that the
model tends to underestimate emergencies and focuses more
on avoiding false negatives. This is further confirmed in
Tables 6 and 7, which show the number of false negatives
obtained on each class. Interestingly, the recall rate for the
"High Severity" class is higher (72.75% > 71.04%) without
the victim’s information.
Table 8
Max precision, recall, and F1-score obtained on each reason of
emergency.

Reason Precision Recall F1-
score

Support

Violence 75% 20% 32% 15
Wounds/Trauma 67% 77% 72% 155
Discomfort 53% 39% 45% 99
Fall 60% 62% 61% 86
Public road accident 80% 91% 85% 96
Suicide Attempt 73% 62% 67% 26
Respiratory distress 62% 65% 64% 63
Heart failure 65% 54% 59% 94
Delivery problems 100% 40% 57% 5
Individual not answering 60% 69% 64% 26
Fire 100% 60% 75% 5
Other 53% 58% 55% 164

Table 8 shows the maximum F1-score obtained one eachone of the reasons of emergencies. The scores show that
the minority classes (e.g. Fire, Individual not answering),
do not necessarily have the lowest scores. Some reasons

with a high number of samples, such as "Heart Failure" and
"Discomfort" are rather difficult to detect. Such reasons may
be associated with a wide range of symptoms, an might not
be immediately diagnosed. This is not the case for othermore
obvious emergencies, like "Public road accident" or "Fire".

We illustrate the mean confusion matrix of the reason of
emergency classification task in Fig. 4 when including the
personal information as input. Some difficulties were found
in distinguishing the following categories of emergencies:

• "Violence" and "Wounds/Trauma".
• "Public road accident" and "Wounds/Trauma".
• "Discomfort" and "Fall"/"Public road accident"/"Respiratory

distress"/"Heart Failure".
• "Respiratory distress", "Discomfort" and "Heart Fail-

ure".

Table 9
Scores obtained on the auxiliary classification tasks.

Task Metric Score

Age Macro F1 49%
City Accuracy 85%
Gender Accuracy 90%

As for the remaining auxiliary tasks of age, city, and
gender detection, we summarize the classification scores
of the best model in Table 9. It is clear that the network
faces difficulties when determining the age group, as in some
cases, the caller does not explicitly mention an age for the
victim. In addition, some age groups are less prominent
than others, such as the age group of 0-1 (see Table 3) and
therefore constitute minority classes. The tasks of city and
gender detection remain relatively easy binary classification
tasks. The gender can be determined from the pronouns that
the caller is using, and the caller will mention their location
so that they can receive assistance.
4.3. Predictions Explainability

In order to gain a better understanding of the impact
of each one of the given inputs, we use SHAP (SHapley
Additive exPlanations) (Lundberg and Lee (2017)), a library
that offers both local and global explainability for machine
learning models. SHAP’s results are based on Shapley val-
ues, a game theory concept.

In this study, we consider the global explainability as-
pect, as we seek to understand the model’s decision making
overall, rather than on specific samples. We create a model
explainer using 100 randomly selected samples from the
training set. We then plot the SHAP values for 25 random
samples of each type of prediction (see Table 10) from the
test set using the explainer.

The SHAP values demonstrate the contribution of the
"Month" and "Gender" features, the highest among all fea-
tures for all types of outputs. The "Age" feature is the
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Figure 4: Reason of emergency classification mean confusion matrix.

(a) Audio pre-processing task time analysis (b) Severity classification task time analysis

Figure 5: Time complexity analysis of the system on the audio pre-processing and severity classification tasks.

third most contributing feature to both "Highly Injured" and
"Lightly Injured" outputs. Interestingly, we can note the
"Hour" feature is a bigger contributor to the model’s faulty
predictions than the age and city of the victim.
4.4. Performance Analysis

We conduct a performance analysis on 124 randomly
selected calls to evaluate the time required, in seconds, to
analyze an emergency call from start to end using our ap-
proach. We group the tasks involved into two broad groups:

• Audio pre-processing: this involves the voice activity
detection and speaker diarization tasks conducted on
the calls.

• Severity classification: the performance of these tasks
is evaluated on the caller’s speech obtained from the
previous phases. They include the speech transcrip-
tion, the caller identification, the emotions extraction,
features encoding, and the final severity prediction
task.

The analysis shows that on average, the audio pre-
processing task requires 7.63 ±0.42 seconds, whereas the
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Table 10
The five most impactful input features for each output,
in descending order based on the mean of the absolute
values of SHAP.

Output Features

Lightly Injured Month
Gender
Age
City
Hour

Highly Injured Month
Gender
Age
Hour
City

Mistaking Highly Injured for Lightly Injured Month
Gender
Hour
Age
City

Mistaking Lightly Injured for Highly Injured Month
Gender
Hour
City
Age

severity classification requires 48.69 ±3.64 seconds. If we
don’t consider the audio pre-processing phase (in the case
where no operator is involved and the caller is giving a first
description of their emergency), we can consider that it takes
48.69 seconds to determine the severity of an average caller’s
speech that lasts 137.14 ±11.68 seconds. These durations
vary depending on the call’s duration, as illustrated in Fig.
5.

These results are highly promising for a future real-time
implementation of this system, as no model inference or
hardware optimizations were made yet in the current work.

5. Discussion and Limitations
5.1. Discussion

Based on our experiments, we can conclude that our
approach allows for the classification of an emergency call’s
severity with a 71.14% accuracy when functioning au-
tonomously (no operator intervention). This score is further
improved (71.27%) when an operator is able to intervene
and indicate the victim’s personal information as additional
inputs. If we reflect these results to a real-life scenario,
the operator using this tool would be able to correctly
predict the level of injury of 71/100 emergency victims, and
therefore undertake the necessary procedures to avoid these
severe injuries. Moreover, the predicted severity could allow
for the enhancement of the call center’s queuing system.
During the periods where operators are overloaded and the
callers’ waiting time is increased, the caller would briefly
describe their situation to the system, thereby enabling the

inference of a level of urgency, which can be used to re-
order the waiting queue from most to least urgent. There
clearly is room for improvement of the score to correctly
prioritize a bigger number of callers. Nevertheless, since
the developed system’s intended use is to assist (and not
replace) emergency center operators in their evaluation of
each situation, we hope that the severity and reason of
emergency predictions can be used as reference in confusing
situations.
5.2. Limitations

One aspect of this work that can be considered as a
limitation is that it does not currently function in a real-
time setting. The current system is a proof-of-concept with
no hardware or software optimizations. As it is shown in
Section 4.4, an average 137-seconds long emergency call
would require an additional 56.32 seconds (7.63 + 48.69
seconds), for the system to be able to infer the severity.
This suggests that the operator is not currently capable of
assessing the situation in real-time with the developed tool,
and would have to wait an additional minute for a prediction.
If we take into account the fact that no optimizations were
made to the system in terms of computational complexity,
the inference time of 1 minute seems to be an acceptable
duration. Nonetheless, some processes can be further im-
proved in a future work, such as for instance the speech
emotion recognition and the speech transcription, which can
be executed in parallel in real-time as the call is going. It is
also worth mentioning that our current approach to speech
emotion recognition can be further improved by extracting
emotional information from the textual features alongside
the acoustic features. In some cases where the callers are
not exhibiting their real emotions (such as when attempting
to hide their emotions, or exaggerating them), or when the
callers are not related to the victim, analyzing the text for
alternative emotional cues can be helpful. One approach to
this (Deschamps-Berger, Lamel and Devillers (2023)) would
be using pre-trained transformers, one on each type of data,
and then fusing the extracted vectors to detect the emotions
related to a call.

6. Conclusion
In this study, we implemented several improvements and

extensions to an emergency calls analysis tool. Specifically,
we investigated the effect of combining the CamemBERT-
based calls transcriptions classifier with multiple feature
extractors of different modalities of data.

The results show that time-based features and the emer-
gency’s victim’s personal information improve the accuracy
of the emergency severity classification the most, while the
inclusion of the emotions exhibited by the caller slightly
increases the accuracy score.

Furthermore, we explored the use of a multi-task learn-
ing approach in the training of the network. Our experiments
showed that such an approach can effectively further im-
prove the accuracy, as we included tasks that were highly
correlated with the severity classification task. These tasks
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included, on one hand, the classification of the call into a
reason of emergency (e.g., cardiac arrest, accident, etc.). On
the other hand, we modified the network’s architecture to
detect the personal information as an additional auxiliary
task, as opposed to using these data as input.

With the implementation of the described methods, our
classifier predicted the severity of 833 emergency calls with
a 71.14% accuracy, a 5.15% increase over the baseline clas-
sifier, when the personal information was unavailable. This
score increased to 71.27%, when such information was avail-
able, a 5.33% improvement over the baseline, Such a tool
can be considered useful when used in an autonomous way,
without human intervention, to get a first evaluation of the
emergencies.

As future work, we aim to handle some of the limita-
tions in this study. First, it is worth delving into the im-
plementation of a questions generation algorithm, as emer-
gency call center operators would highly benefit from such
suggestions in tough situations. This would be relatively
easy to incorporate with the use of the more recent ro-
bust large language models (LLMs), such as LLaMA (Meta
(2023)). In addition, we can employ some state-of-the-art
methods (Mamdouh Farghaly and Abd El-Hafeez (2023),
Mamdouh Farghaly and Abd El-Hafeez (2022)) for feature
selection to extract more meaningful and less redundant
features from the texts. Moreover, our performance analysis
showed that the system requires further optimization, so as
to improve its performance in a real-time setting. Finally,
we aim to improve our speech emotion recognition infer-
ence model by fusing textual features with acoustic features
(Deschamps-Berger et al. (2022), Deschamps-Berger et al.
(2023)).
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