
Composite Structures 325 (2023) 117612

A
0

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier.com/locate/compstruct

Characterization of wave propagation in complex composite structures (CCS)
using a robust inverse analysis method
Xuefeng Li a, Mohamed Ichchou a,∗, Pascal Fossat a, Abdelmalek Zine b, Noureddine Bouhaddi c

a École Centrale de Lyon, Vibroacoustics & Complex Media Research Group, LTDS - CNRS UMR 5513, Écully 69134, France
b École Centrale de Lyon, Institut Camille Jordan - CNRS UMR 5208, Écully, France
c Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, Department of Applied Mechanics, CNRS/UFC/ENSMM/UTBM, Besançon, France

A R T I C L E I N F O

Keywords:
Honeycomb sandwich structures
Locally resonant composite structures
Rib-stiffened composite structures
Wavenumber extraction
Wave propagation characterization
Inverse identification

A B S T R A C T

This paper presents the application of wave propagation characterization for complex composite structures
through the Algebraic K-space Identification technique in the Cartesian coordinate system (AKSI-C). The
proposed method is a novel development since the developed methodology uses adequate partial differential
algebraic operations to provide a robust and low-cost framework for identifying wave propagation parameters
of the structures with multidimensional signals for the first time. Additionally, the proposed method has
been experimentally applied to identify the complex wave propagation phenomenon of different complex
composite structures: (i) honeycomb sandwich composite structure: variability of orthotropic behavior and
damping properties with frequency and direction is identified by wavenumber space, 3D dispersion curves, and
damping loss factor surface. Then, the contribution of individual layer properties on the changes in dynamic
behavior is studied by estimating transition frequency; (ii) locally resonant meta-structure: the effect of the
local resonator-induced band gap on the wave attenuation is investigated; (iii) periodic rib-stiffened composite
plates: the inner resonance phenomena and their remarkable elastic wave manipulation ability are explored by
designing 3D-printed resonators and identifying the mixed-resonance-induced band gap. The proposed method
has been compared with other inverse methods to assess its reliability under complex conditions.
1. Introduction

Complex composite structures are widely used in aerospace en-
gineering because of their special mechanical properties. A typical
example of a complex composite structure is the honeycomb sandwich
structure, which has a high strength-to-weight ratio. Such structures not
only meet industrial requirements for weight reduction but also have
damping properties and transmission capabilities [1,2]. In recent years,
meta-structures have gained increasing interest due to their ability
to generate band gaps where elastic waves cannot propagate along
waveguides [3,4]. Another structure with the same properties is the
periodically ribbed reinforced composite structures, which can also
achieve a certain degree of balance between its surface rigidity and
weight [5–7]. The performance of these structures can be improved by
careful design and optimization. However, the design and optimization
of these structures in a vibroacoustic environment remain challenging
as the realization of this process is closely linked to the accurate pre-
diction of the dynamic behavior of the structures and the identification
of the mechanical parameters.

To describe the dynamic behavior of composite structures, although
a large number of numerical methods [8–11] are available in the
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literature, the geometrical complexity of complex composite structures
yields a challenge for numerical modeling in terms of accuracy and
computational cost. In addition, the analytical or semi-analytical [12–
18] methods have poor performance at high frequencies due to the
high modal density. Another limitation is that these traditional methods
require that the mechanical parameters of the components of a complex
composite structure are accurately known. However, the discrepancy
between the mechanical parameters obtained from the static exper-
iments (manufacturing process) and the real mechanical parameters
inevitably results in the inaccuracy of these methods.

As alternatives, the inverse methods for experiment-based wave
propagation parameter identification have attracted more and more
attention in the vibroacoustic community in recent years [19–26]. The
inverse methods require only the structural displacement field to be
known. The whole process can be easily conducted in experimental
tests by combining with scanning Doppler laser vibrometers, thereby
significantly increasing their value for industrial applications. By ana-
lyzing the extracted wave propagation parameters, such as wavenum-
ber space (k-space), dispersion relations, damping loss factors, and
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band gaps, the dynamic behavior of structures and the physical prop-
erties of wave propagation can be fully described. Furthermore, these
identified parameters can also be used for structural design and opti-
mization. To actively modulate the capability of a structure in terms
of structural vibration reduction, one strategy is to install 3D-printed
local resonators on the surface of the structure, thereby stimulating
the generation of band gaps. The position of the band gap or the
frequency band of the wave attenuation can be regulated by tuning
the number, mass, and distribution density of the local resonators.
Claeys [27,28] has demonstrated the wave attenuation behavior in-
duced by tunable resonators, and the Inhomogeneous Wave Correlation
(IWC) method was applied to study the ability of locally resonant meta-
structure on vibration control in [6,29]. In addition, the ribs-stiffened
plate is a special kind of composite structure. Coupled stiffener and
plate behavior is capable of inducing inner resonance phenomena. By
adjusting the coupling relationship between the stiffeners and the plate,
the high tunability of the band gap can be achieved for vibration
energy manipulation. The multi-mode wave propagation characteriza-
tion and coupled dynamic behavior of such structures were studied
using IWC in [5,30]. In [31], IWC was also applied to estimate the
dynamic structural properties of a honeycomb sandwich structure using
the extracted k-space, which is beneficial for the optimization of the
layered composite structure. The widespread use of IWC is due to its
high robustness against perturbations. However, IWC suffers from the
low-frequency limitation and the high computational cost [24,25]. The
Fast Fourier Transform (FFT) is a widely used inverse method to extract
parameters of signal with a low computational cost. The 3D-FFT was
used to extract the wavenumbers of three different composite plates
in [32]. However, the main limitation of the FFT-based method is that
it suffers from low frequencies and can only extract the real part of
wavenumbers. In [33], authors used a classic linear inverse method, the
Matrix Pencil (MP) method, to extract the dispersion curves of isotropic
and anisotropic plates. This method requires periodic samples as input
parameters. Another well-known low-cost linear inverse method is the
Prony method, which has been applied to identify dispersion curves in
a 5-layer red spruce plywood [34] and a constrained-layer damping
sandwich plate [35]. Based on the principle of the Pony method,
the High-Resolution Wavevector Analysis (HRWA) was proposed and
applied to characterize the local elastic behavior of three composite
structures and estimate the bending stiffness of a carbon-epoxy plate
in [24]. Recently, the INverse COnvolution MEthod (INCOME) has been
proposed in [25], which allows extracting a complete and accurate
k-space in the noiseless environment. However, these methods suffer
from the limitations of Prony’s method: periodic sampling constraints
and noise sensitivity.

To overcome the main limitations of IWC and Prony-based meth-
ods, an Algebraic Wavenumber Identification (AWI) technique was
proposed in [36] to extract the wave propagation parameters of a
one-dimensional periodic structure under stochastic conditions. This
method is developed in a robust and low-cost algebraic parameter iden-
tification scheme [37]. AWI first establishes an ordinary differential
equation (ODE) using the Laplace transform, and then a regression
equation is established using the inverse Laplace transform, which
contains multiple integrals of the signal. Finally, the wavenumber
is extracted by estimating the unknown parameters of this ordinary
differential equation. For two-dimensional signals, the identification of
the partial differential equation (PDF) requires to be solved. Although
the AWI can be extended to 2D signals in the polar coordinate system
by the transformation of the coordinate systems, which is equivalent to
the fact that PDE is transformed to ODE, the extension of AWI to 2D
signals is worth investigating in the Cartesian coordinate system. This
is because: (i) in the mechanical field, AWI needs to be fundamentally
extended to identify wave propagation parameters of 2D and even
multidimensional signals; (ii) the mathematical modeling in many areas
2

can be represented as a PDE, and the reliable identification of the
parameters of the PDE remains a central problem. Therefore, it is nec-
essary to provide a reliable theoretical basis for parameter estimation
of multivariate partial differential equations in the algebraic parameter
identification scheme.

In this paper, the first purpose is to propose Algebraic K-Space
Identification in the Cartesian coordinate system (AKSI-C), which is a
robust and low-cost inverse method for wave propagation characteriza-
tion of complex structures with 2D signals and even multidimensional
signals. The main advantages of the proposed method are the robust-
ness against signal noise, estimation of the resonators-related band
gaps, freedom from the constraint of 2D periodic grid mesh, and low
computational cost, which are experimentally validated by compar-
ing with other inverse methods. The second objective of this paper
is dedicated to the experimental characterization of wave propaga-
tion in four complex composite structures, including a honeycomb
sandwich composite structure, a locally resonant meta-structure, and
two periodic rib-stiffened composite plates. The main contributions
of these applications are summarized as: (i) dynamic properties and
wave propagation characteristics of the honeycomb sandwich structure,
including variability of orthotropic dynamic behavior and damping
properties, wave dispersion and energy propagation characteristics,
the contribution of individual layer properties on changes in dynamic
behavior, and transition frequency estimation are investigated by the
extracted k-space, damping loss factor surface, and 3D dispersion curve;
(ii) the effect of the tunability of the local resonator-related band gap
on the wave attenuation is investigated by identifying the experimental
dispersion curve of the locally resonant meta-structure; (iii) the inner
resonance phenomena of the orthogonally ribbed plate and mixed-
resonance-induced band gap of the uni-directionally ribbed plate are
investigated, respectively.

The rest of this paper is organized as follows: Section 2 introduces
the AKSI-C formulation and homogenized equation of the periodic rib-
stiffened composite plate. Section 3 presents the experimental set-up
and the tested structures. The experimental results and discussions are
provided in Section 4. Finally, some conclusions are summarized in
Section 5.

2. Methodology

This section focuses on introducing the theory of the proposed
inverse method (Section 2.1), and the analytical method for calculating
the flexural dispersion relation of the periodic rib-stiffened composite
plate (Section 2.2).

2.1. Algebraic K-space identification in the Cartesian coordinate system
(AKSI-C)

AKSI-C aims to extract the complex wavenumbers of 2D structures
in each direction only using structural displacement. In the experimen-
tal environment, the harmonic displacement of a plate along a certain
angle 𝜃 can be modeled by 𝑛𝑤 plane waves and the additional signal
noise as follows:

𝑈 (𝑥, 𝑦) =
𝑛𝑤
∑

𝑚=1
𝐴𝑚ej𝑘𝑚(𝑥cos(𝜃)+𝑦sin(𝜃)) + 𝑏(𝑥, 𝑦) =

𝑛𝑤
∑

𝑚=1
𝐴𝑚ej𝑘𝑥,𝑚𝑥ej𝑘𝑦,𝑚𝑦 + 𝑏(𝑥, 𝑦)

(1)

here 𝑛𝑤 is the number of waves. 𝑘𝑥,𝑚 and 𝑘𝑦,𝑚 are the components of
the wavenumber 𝑘𝑚 of the 2D signal in the 𝑥 direction and 𝑦 direction.
𝐴𝑚 is the complex amplitude. 𝑏(𝑥, 𝑦) is the additional noise part. To
facilitate the derivation of the formula, the additional noise part is
ignored at this moment. Therefore, the displacement at measuring point
(𝑥𝑛, 𝑦𝑛) along a certain angle 𝜃 can be expressed as follows:

(𝑥𝑛, 𝑦𝑛) =
𝑛𝑤
∑

𝐴𝑚eℎ𝑚(𝑥𝑛cos(𝜃)+𝑦𝑛sin(𝜃)) =
𝑛𝑤
∑

𝐴𝑚e𝑝𝑚𝑥𝑛e𝑞𝑚𝑦𝑛 (2)

𝑚=1 𝑚=1
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where ℎ𝑚, 𝑝𝑚 and 𝑞𝑚 are j𝑘𝑚, j𝑘𝑥,𝑚, and j𝑘𝑦,𝑚, respectively. When
applying the multivariate Laplace transform to Eq. (2), one can obtain
the following equation in the wavenumber domain:

𝑆(𝑠𝑥, 𝑠𝑦) =
𝐴1

𝑠𝑥 − 𝑝1
1

𝑠𝑦 − 𝑞1
+

𝐴2
𝑠𝑥 − 𝑝2

1
𝑠𝑦 − 𝑞2

+⋯ +
𝐴𝑛𝑤

𝑠𝑥 − 𝑝𝑛𝑤

1
𝑠𝑦 − 𝑞𝑛𝑤

(3)

Now, three characteristic polynomials related to 𝑘𝑥,𝑚, 𝑘𝑦,𝑚 and 𝑘𝑚
in the wavenumber domain can be defined, respectively:

𝛹 (𝑠𝑥) =
𝑛𝑤
∏

𝑚=1
(𝑠𝑥 − 𝑝𝑚) =

𝑛𝑤
∑

𝑖=0
𝛾𝑥(𝑛𝑤 − 𝑖)𝑠𝑖𝑥 (4)

𝛹 (𝑠𝑦) =
𝑛𝑤
∏

𝑚=1
(𝑠𝑦 − 𝑞𝑚) =

𝑛𝑤
∑

𝑖=0
𝛾𝑦(𝑛𝑤 − 𝑖)𝑠𝑖𝑦 (5)

𝛹 (𝑠) =
𝑛𝑤
∏

𝑚=1
(𝑠 − ℎ𝑚) =

𝑛𝑤
∑

𝑖=0
𝛾(𝑛𝑤 − 𝑖)𝑠𝑖 (6)

where 𝛾𝑥(𝑛𝑤 − 𝑖){𝑖∈[0,𝑛𝑤]}, 𝛾𝑦(𝑛𝑤 − 𝑖){𝑖∈[0,𝑛𝑤]} and 𝛾(𝑛𝑤 − 𝑖){𝑖∈[0,𝑛𝑤]} are
unknown coefficients of three characteristic polynomials, respectively.

The first step of AKSI-C is to establish a partial differential equation.
To this end, a new polynomial can first be obtained by multiplying
Eqs. (3) and (4):

𝑆(𝑠𝑥, 𝑠𝑦)𝛹 (𝑠𝑥) = (
𝐴1

𝑠𝑥 − 𝑝1
1

𝑠𝑦 − 𝑞1
+

𝐴2
𝑠𝑥 − 𝑝2

1
𝑠𝑦 − 𝑞2

+⋯

+
𝐴𝑛𝑤

𝑠𝑥 − 𝑝𝑛𝑤

1
𝑠𝑦 − 𝑞𝑛𝑤

) ×
𝑛𝑤
∏

𝑚=1
(𝑠𝑥 − 𝑝𝑚)

=
𝑛𝑤
∑

𝑚=1

𝐴𝑚
∏𝑛𝑤

𝑖=1,𝑖≠𝑚(𝑠𝑥 − 𝑝𝑖)

𝑠𝑦 − 𝑞𝑚
(7)

In the following context, we focus on the derivation of the formula
about variable 𝑠𝑥 for simplicity due to the fact that the same identifica-
tion process is suitable for variable 𝑠𝑦. Clearly, Eq. (7) is a polynomial
with the highest order of 𝑛𝑤 − 1. Thus, a partial differential equation
an be derived by taking partial derivatives 𝑛𝑤 times with respect to 𝑠𝑥

for Eq. (7):

𝜕𝑛𝑤
[

𝑆(𝑠𝑥, 𝑠𝑦)𝛹 (𝑠𝑥)
]

𝜕𝑠𝑛𝑤𝑥
=

𝜕𝑛𝑤
[

𝑆(𝑠𝑥, 𝑠𝑦)
∑𝑛𝑤

𝑖=0 𝛾𝑥(𝑛𝑤 − 𝑖)𝑠𝑖𝑥
]

𝜕𝑠𝑛𝑤𝑥
= 0 (8)

To calculate Eq. (8), the following equations are introduced:

𝜕𝑛𝑤
[

𝑆(𝑠𝑥, 𝑠𝑦)𝛹 (𝑠𝑥)
]

𝜕𝑠𝑛𝑤𝑥
=

𝑛𝑤
∑

𝑗=0

(

𝑛𝑤
𝑗

) 𝜕𝑛𝑤−𝑗 (𝑆(𝑠𝑥, 𝑠𝑦))

𝜕𝑠𝑛𝑤−𝑗
𝑥

𝜕𝑗 (𝛹 (𝑠𝑥))

𝜕𝑠𝑗𝑥
(9)

𝜕𝑛𝑤 (𝑠𝑗𝑥)
𝜕𝑠𝑛𝑤𝑥

=
𝑗!

(𝑗 − 𝑛𝑤)!
𝑠𝑗−𝑛𝑤𝑥 (10)

After applying Eqs. (9) and (10) to the partial differential equation
q. (8), we can easily obtain the following equation:

𝑛𝑤

𝑖=0

𝑛𝑤
∑

𝑗=𝑖

(

𝑛𝑤
𝑗

)(

𝑛𝑤 − 𝑖
𝑛𝑤 − 𝑗

)

(𝑛𝑤 − 𝑗)!𝑠𝑗−𝑖𝑥

𝜕𝑗𝑆(𝑠𝑥, 𝑠𝑦)

𝜕𝑠𝑗𝑥
𝛾𝑥(𝑖) = 0 (11)

The second step of AKSI-C is establishing an exact regression equa-
ion in the spatial domain. To achieve that, the division by 𝑠𝑛𝑤+1

𝑥 is first
applied to Eq. (11) as follows:
𝑛𝑤
∑

𝑖=0

𝑛𝑤
∑

𝑗=𝑖

(

𝑛𝑤
𝑗

)(

𝑛𝑤 − 𝑖
𝑛𝑤 − 𝑗

)

(𝑛𝑤 − 𝑗)! 1
𝑠𝑛𝑤+1+𝑖−𝑗
𝑥

𝜕𝑗𝑆(𝑠𝑥, 𝑠𝑦)

𝜕𝑠𝑗𝑥
𝛾𝑥(𝑖) = 0 (12)

Then, we apply the inverse Laplace transform to Eq. (12) to obtain
he corresponding expression in the spatial domain. The multivariate
nverse Laplace transform is introduced as follows:

−1
(

1
𝒔𝑰

𝜕𝑱𝑆(𝒔)
𝜕𝒔𝑱

)

= 1
(𝑰 − 𝟏)! ∫

𝑿

𝟎
𝑣𝑰−1,𝑱 (𝝉)𝑈 (𝝉) d𝝉 (13)

with
𝑰 𝑱
3

𝑣𝑰 ,𝑱 (𝝉) = (𝑿 − 𝝉) (−𝝉) (14)
where 𝑰 = (𝐼1,… , 𝐼ℎ) and 𝑱 = (𝐽1,… , 𝐽ℎ) are two multi-indices.
𝝉 = (𝜏1,… , 𝜏ℎ) and 𝟏 = (1,… , 1). 𝑿 = (𝑥1,… , 𝑥ℎ) and 𝒔𝑰 = 𝑠𝐼11 ...𝑠𝐼ℎℎ
are related to the multiple variables of the multivariate function 𝑈 and
its Laplace transform 𝑆. For the integral in Eq. (13), it is defined as:

∫

𝑿

𝟎
𝑈 (𝝉)d𝜏 = ∫

𝒙𝟏

𝟎
...∫

𝒙𝒉

𝟎
𝑈 (𝜏1,… , 𝜏ℎ) d𝜏1...d𝜏ℎ (15)

It is easy to see that in Eq. (12), ℎ = 2, 𝒔𝑰 = 𝑠𝑛𝑤+1+𝑗−𝑖
𝑥 and 𝑱 = 𝑗. In

addition, 𝑿 is (𝑥𝑛, 𝑦𝑛), which is the coordinate of each measurement
point of the 2D structures. Based on this, substituting Eq. (13) into
Eq. (12) leads to the following equation:
𝑛𝑤
∑

𝑖=0

𝑛𝑤
∑

𝑗=𝑖

(

𝑛𝑤
𝑗

)(

𝑛𝑤 − 𝑖
𝑛𝑤 − 𝑗

)

(𝑛𝑤 − 𝑗)! 1
(𝑛𝑤 + 𝑖 − 𝑗)!

× ∫

𝑥𝑛

0 ∫

𝑦𝑛

0
(𝑥𝑛 − 𝜏1)𝑛𝑤+𝑖−𝑗 (−𝜏1)𝑗𝑈 (𝜏1, 𝜏2) d𝜏1d𝜏2 𝛾𝑥(𝑖) = 0 (16)

For the simplicity, Eq. (16) can be written as:
𝑛𝑤

𝑖=0
𝜙(𝑖, 𝑥𝑛, 𝑦𝑛)𝛾𝑥(𝑖) = 0 (17)

ith

(𝑖, 𝑥𝑛, 𝑦𝑛) =
𝑛𝑤
∑

𝑗=𝑖

(

𝑛𝑤
𝑗

)(

𝑛𝑤 − 𝑖
𝑛𝑤 − 𝑗

)

(𝑛𝑤 − 𝑗)! 1
(𝑛𝑤 + 𝑗 − 𝑖)!

× ∫

𝑥𝑛

0 ∫

𝑦𝑛

0
(𝑥𝑛 − 𝜏1)𝑛𝑤+𝑖−𝑗 (−𝜏1)𝑗𝑈 (𝜏1, 𝜏2) d𝜏1d𝜏2 (18)

where the integrals can also be calculated by means of numerical
integration, such as the trapezoidal integration method.

The third step of AKSI-C is to estimate 𝛾𝑥(𝑖) of Eq. (17) using the
least-squares method. Since Eq. (17) holds for each measurement point,
one can take its matrix format as follows:

𝐇𝐱𝐗𝐱 = 𝐌 (19)

with

𝐇𝐱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜙(𝑛𝑤, 𝑥1, 𝑦1) 𝜙(𝑛𝑤 − 1, 𝑥1, 𝑦1) ⋯ 𝜙(0, 𝑥1, 𝑦1)
𝜙(𝑛𝑤, 𝑥2, 𝑦2) 𝜙(𝑛𝑤 − 1, 𝑥2, 𝑦2) ⋯ 𝜙(0, 𝑥2, 𝑦2)

⋮ ⋮ ⋱ ⋮
𝜙(𝑛𝑤, 𝑥𝑁 , 𝑦𝑁 ) 𝜙(𝑛𝑤 − 1, 𝑥𝑁 , 𝑦𝑁 ) ⋯ 𝜙(0, 𝑥𝑁 , 𝑦𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐗𝐱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾𝑥(𝑛𝑤)
𝛾𝑥(𝑛𝑤 − 1)

⋮
𝛾𝑥(0)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐌 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

(20)

where 𝐗𝐱 is the eigenvector corresponding to the smallest eigenvalue
of 𝐇∗

𝐱𝐇𝐱.
The final step of AKSI-C is to estimate wavenumber 𝑘𝑚 from the esti-

mated 𝛾𝑥(𝑖), which are the coefficients of Eq. (4). One of the strategies is
first to calculate coefficients 𝛾(𝑖) of Eq. (6) by the estimated 𝛾𝑥(𝑖). Then
the wavenumber 𝑘𝑚 can be directly obtained by calculating the roots
of Eq. (6). To this end, it is necessary to conduct adequate algebraic
manipulations on Eq. (4) to establish a relationship between 𝛾𝑥(𝑖) and
𝛾(𝑖). It is obvious that Eq. (4) is a monic univariate polynomial, which
can be extended as follows:

𝛹 (𝑠𝑥) =
𝑛𝑤
∏

𝑚=1
(𝑠𝑥 − 𝑝𝑚) =

𝑛𝑤
∑

𝑖=0
𝛾𝑥(𝑛𝑤 − 𝑖)𝑠𝑖𝑥

= 𝛾𝑥(𝑛𝑤) + 𝛾𝑥(𝑛𝑤 − 1)𝑠𝑥 +⋯ + 𝛾𝑥(1)𝑠
𝑛𝑤−1
𝑥 + 𝛾𝑥(0)𝑠

𝑛𝑤
𝑥 (21)

In the field of algebra, Vieta’s formulas and the Galois theory
provide an essential conclusion: coefficients of a monic univariate
polynomial of degree 𝑛 with 𝑛 roots are the symmetric polynomial
functions of the roots. On this basis, the coefficients of Eq. (21) can
be represented as:

𝛾𝑥(𝑛𝑤 − 𝑖) = (−1)𝑛𝑤−𝑖
∑

𝑝𝑗1𝑝𝑗2 ⋯ 𝑝𝑗𝑛𝑤−𝑖

1≤𝑗1<𝑗2<⋯<𝑗𝑛𝑤−𝑖≤𝑛𝑤
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𝑘

= (−1)𝑛𝑤−𝑖
∑

1≤𝑗1<𝑗2<⋯<𝑗𝑛𝑤−𝑖≤𝑛𝑤

j𝑘𝑥,𝑗1 j𝑘𝑥,𝑗2 ⋯ j𝑘𝑥,𝑗𝑛𝑤−𝑖
(22)

where 𝛾𝑥(𝑛𝑤 − 𝑖) is expressed in the format of symmetric polynomial. It
is well known that wavenumber 𝑘𝑚 and its components 𝑘𝑥,𝑚 have the
following relationship:

𝑘𝑥,𝑚 = 𝑘𝑚cos(𝜃), 𝑛 = 1,… , 𝑁 (23)

Therefore, one can obtain the following equation after substituting
q. (23) into Eq. (22):

𝛾𝑥(𝑛𝑤 − 𝑖)
(cos(𝜃))𝑛𝑤−𝑖 = (−1)𝑛𝑤−𝑖

∑

1≤𝑗1<𝑗2<⋯<𝑗𝑛𝑤−𝑖≤𝑛𝑤

j𝑘𝑥,𝑗1
cos(𝜃)

j𝑘𝑥,𝑗2
cos(𝜃) ⋯

j𝑘𝑥,𝑗𝑛𝑤−𝑖

cos(𝜃)

= (−1)𝑛𝑤−𝑖
∑

1≤𝑗1<𝑗2<⋯<𝑗𝑛𝑤−𝑖≤𝑛𝑤

j𝑘𝑗1 j𝑘𝑗2 ⋯ j𝑘𝑗𝑛𝑤−𝑖
(24)

It is worth noting that Eq. (24) is the expression of coefficients of
q. (6). Therefore, the 𝛾(𝑖) can be obtained by the following relation-
hip:

(𝑛𝑤 − 𝑖) =
𝛾𝑥(𝑛𝑤 − 𝑖)
(cos(𝜃))𝑛𝑤−𝑖

(25)

Once 𝛾(𝑛𝑤 − 𝑖){𝑖∈[0,𝑛𝑤]} are obtained, the 𝑘𝑚 can be extracted by
𝑘𝑚 = jℎ𝑚 where ℎ𝑚 are the roots of Eq. (6). Based on the extracted
complex wavenumbers 𝑘𝑚, the damping loss factor can be estimated
by the following equation [38,39]:

𝜂 =
|

|

|

|

|

Im(𝑘4𝑚)
Re(𝑘4𝑚)

|

|

|

|

|

(26)

Three particular emphases are put on the formulation of AKSI-C:
i) the integral of signal in spatial domain act as a filter, reducing the
nfluence of signal noise; (ii) AKSI-C treats the signal as a continuous
unction, free from periodic sampling; (iii) the AKSI-C only requires
olving several linear equations, having a low computational cost.

Two main innovations of the AKSI-C in relation to the AWI are
orth providing:

• From the methodology point of view, AKSI-C improves AWI es-
sentially to extract wavenumbers of composite plates by using
the multivariate Laplace transforms and inverse Laplace trans-
forms to process partial differential equation Eq. (11) with two
unknown parameters 𝑘𝑥 and 𝑘𝑦. However, the essence of AWI is
the estimation of unknown coefficients of the ordinary differential
equation having only one unknown parameter 𝑘. AKSI-C can be
easily extended to the complex wavenumbers identification of
multidimensional signals due to the application of multivariate
inverse Laplace transform, in which Eq. (18) requires the calcu-
lation of multidimensional integration. This makes it possible to
apply AKSI-C to more complex structures, such as 3D cubic or
curved structures. AKSI-C provides a fast and robust framework
for parameter estimation of partial differential equations, opening
up the possibility of extending the method to more complex
problems, such as material identification of analytical models.

• From the practical application point of view, compared to a 1D
structure, the wave field of a low-damping plate is complicated by
the fact that it is subject to the superposition of multiple propagat-
ing and reflected waves. The model order estimation (estimation
of the number of waves) becomes important. To this end, two
widely used methods, Maximum Description Length (MDL) [40]
and ESTimation of ERror (ESTER) [41], can be applied to estimate
the number of waves. The reader is referred to [23,42], where
these two well-established methods were also successfully applied
to estimate the number of waves of plates, respectively.

To successfully apply AKSI-C to extract wave propagation parame-
ers for real materials in an experimental environment, three measure-
ent strategies adapted to AKSI-C are summarized from experiment

ests: (1) the use of the samples in the shorter line mesh satisfying
4

hannon’s theorems is suggested as input parameters because the model
rder estimation method performs well for a reduced model order;
2) the smaller sampling interval is suggested to be used when signal
oise is high, this is because that the numerical precision of numerical
ntegration calculated in Eq. (18) increase with increasing nodes in the
ntegration interval, enhancing the robustness of AKSI-C to signal noise;
3) the measurement samples located at the location far away from
orce source and boundary condition are recommended to be chosen
s input parameters to reduce the influence of evanescent wave on the
xtracted wavenumber.

.2. Homogenized equation of the periodic rib-stiffened composite plate

The periodic rib-stiffened composite plate studied in the present
ork includes a uni-directionally ribbed plate and an orthogonally

ibbed plate. In this section, the latter is taken as an example to illus-
rate a homogenized analytical model to describe the dynamic behavior
f such structures. Fig. 1(a) shows the model of the orthogonally ribbed
late, which consists of an internal plate clamped by stiffeners (beam
rids) in the 𝑥 and y directions. The periodically spaced beam grid is
ssumed to be stiffer than the inner plate, controlling the dynamics of
he structures. The geometric parameters are shown in the unit cell
n Fig. 1(b), where 𝑙𝑗 , 𝑏𝑗 , and ℎ𝑗 (𝑗 = 𝑥, 𝑦) are the length, width, and
hickness of the beam grid in two directions. The 𝑑 is the thickness
f the internal plate. Based on this model, a 4th-order homogenized
quation to calculate the analytical bending dispersion relation of the
ibbed plate is proposed in [5]:

4
𝑚

(

𝐸𝑥𝐼𝑥
𝑙𝑥

cos4(𝜃) +
𝐸𝑦𝐼𝑦
𝑙𝑦

sin4(𝜃) +
(

𝐺𝑥𝑥
𝑙𝑦

+
𝐺𝑦𝑦
𝑙𝑥

)

cos2(𝜃)sin2(𝜃)
)

− 𝜔2
(

𝛬𝑥
𝑙𝑦

+
𝛬𝑦

𝑙𝑥
+ 𝛬′

𝑝
⟨

𝜑𝑟𝑖𝑏𝑏𝑒𝑑
𝜔

⟩

)

= 0 (27)

with

𝐼𝑗 =
𝑏𝑗ℎ3𝑗
12

, 𝛬𝑗 = 𝜌𝑗𝑏𝑗ℎ𝑗 ,

𝑗 =
𝑏𝑗
2

(ℎ𝑗
2

)3 (
16
3

− 3.36
ℎ𝑗
𝑏𝑗

(

1 −
ℎ4𝑗
12𝑏4𝑗

))

, 𝛬′
𝑝 = 𝜌𝑝𝑑

(28)

where 𝜌𝑗 , 𝐸𝑗 , 𝐺𝑗 , 𝐼𝑗 , 𝛬𝑗 , and 𝑗 (𝑗 = 𝑥, 𝑦) are the volume mass, Young
modulus, torsional modulus, bending inertia, linear mass and the tor-
sional inertia for beam grids in two directions, 𝜌𝑝 and 𝛬′

𝑝 are the volume
mass and the surface mass of the internal plate.

⟨

𝜑𝑟𝑖𝑏𝑏𝑒𝑑
𝜔

⟩

reflects the
inner resonance phenomena of the ribbed plate, leading to the occur-
rence of the band gap in the dispersion curve. This factor is determined
by the type of ribbed plate, and in this paper, the corresponding results
to the unidirectional ribbed plate and the orthogonal ribbed plate are:
⟨

𝜑𝑟𝑖𝑏𝑏𝑒𝑑𝑢𝑛𝑖
𝜔

⟩

= 2
𝛿𝑙𝑥

1
coth(𝛿𝑙𝑥) + cot(𝛿𝑙𝑥)

(29)

⟨

𝜑𝑟𝑖𝑏𝑏𝑒𝑑𝑜𝑟𝑡ℎ
𝜔

⟩

= 4
𝛿𝑎

(

𝐽0(𝛿𝑎)
𝐽1(𝛿𝑎)

+
𝐼0(𝛿𝑎)
𝐼1(𝛿𝑎)

)−1
, 𝑎 ≈ 0.53𝑙𝑥 (30)

where 𝛿 = 4
√

(𝛬′
𝑝𝜔2)∕(𝐸′

𝑝𝐼 ′𝑝) with plate modulus 𝐸′
𝑝 = 𝐸𝑝∕(1 − 𝑣2𝑝),

bending inertia 𝐼 ′𝑝 = 𝑑3∕12, and bending modulus 𝐸𝑝 of the internal
plate. 𝐽0 and 𝐽1 are the Bessel function of the first kind, while 𝐼0 and
𝐼1 are the modified ones.

3. Experimental tests

In this section, three types of complex composite structures are ex-
perimentally tested, including a honeycomb sandwich composite struc-
ture, a locally resonant meta-structure, and two periodic rib-stiffened
composite plates. The experimental setup is shown in Section 3.1, and

tested structures and measurements are introduced in Section 3.2.



Composite Structures 325 (2023) 117612X. Li et al.
Fig. 1. (a) Orthogonally ribbed plate model with 5 × 5 unit cells. (b) Unit cell consisting of beam grids and an internal plate, and the notations related to the dimensions.
Fig. 2. Global view of the experimental setup for measuring transversal displacement field of tested complex composite structures.
3.1. Experimental setup

The full-field vibration measurement of the tested structures is con-
ducted by scanning laser Doppler vibrometer (SLDV). The experimental
setup is shown in Fig. 2. The structures are suspended in a fixed frame
by Polylactic Acid filaments and excited by a point mechanical force
using an electrodynamic shaker (Brüel & kJær, 4810). The structures
and shaker are connected by a force sensor (Brüel & Kjaer type 8001)
linked to the vibrometer controller. The out-of-plane displacement
fields of structures are measured by a Polytec Scanning Vibrometer
(PSV-400). Finally, the displacement fields are acquired by a Fourier
analyzer connected with a sampler. The relationship of each part of
the experimental setup is illustrated in Fig. 2.

3.2. Tested structures and data acquisition

In this paper, the AKSI-C is validated experimentally by comparing
it with INCOME and IWC. Two different sampling ways are applied
to satisfy the measurement characteristics of each inverse method: (i)
measuring samples are measured along lines (AKSI-C and IWC); (ii)
measuring samples are measured in a 2D regular grid (INCOME and
IWC). The IWC can be compared with other inverse methods in each
test because it is suitable for both sampling ways. The following subsec-
tions present tested structures and measurements in detail, respectively.

3.2.1. Honeycomb sandwich composite structure
The honeycomb sandwich composite structure studied in this work

is shown in Fig. 3(a). This 1 m × 1 m structure is made of a 13 mm-
thick light honeycomb core and two 0.5 mm-thick stiff skins oriented
5

at 0◦ (see Fig. 3(c)). The material of the core is the Nida NOMEX, while
the skin is made of carbon fiber epoxy (Hexcel reference 43199) with
a 50% resin fiber ratio. The equivalent mechanical properties of this
composite plate have been tested in [43] (See Table 1):

The line and 2D grid mesh are presented in Fig. 3(a) and Fig. 3(b),
where the red points are excitation locations. For line mesh, the mea-
surements were first carried out along thirteen radial directions be-
tween 0◦ and 90◦ with an angle step of 7.5◦ when the excitation position
was at the center of the plate (point A in Fig. 3(a)). The positive 𝑥-
axis and 𝑦-axis are seen as 0◦ and 90◦, while the negative 𝑥-axis and
𝑦-axis are assumed as 180◦ and 270◦. Then the same measuring process
was conducted between 270◦ and 360◦ when the shaker was put in the
corner of the plate (point B in Fig. 3(a)). In each radial direction, 59
equally spaced measurement points with a sampling interval of 0.37 cm
are measured. For 2D mesh, the measurements were performed on a
49 × 49 grid with the 1.9 cm sampling interval along the 𝑥 and 𝑦
directions.

3.2.2. Locally resonant meta-structure
The locally resonant meta-structure is formed by adding small-

scaled resonators on the surface of the host plate, as shown in Fig. 4(a).
The host plate is a 0.95 m × 0.6 m steel plate with the thickness of
2 mm (𝐸 = 210 GPa, 𝜈 = 0.33, 𝜌 = 7850 kg/m3) and 65 uniform
distributed resonators were mounted on the steel plate. The schematic
representation of the resonator is shown in Fig. 4(d). The resonator
is made of polycarbonate polymer by 3D printing technology, and its
weight without a tuning mass is 2 g. From this figure, it can be seen
that the resonator resembles a cantilever beam in its shape: a beam
supported by a stiffener is connected to a base. In addition, a 1 g
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Table 1
Equivalent mechanical properties of the honeycomb sandwich composite plate.
𝐺𝑥𝑧 (MPa) 𝐺𝑦𝑧 (MPa) 𝐸𝑥 (GPa) Shear rigidity 𝑆 (MPa) Bending stiffness 𝐷 (N⋅m) Mass per unit area 𝜌 (kg/m2)

30 40 141 0.532 6420 1930
Fig. 3. Honeycomb sandwich composite plate: (a) line measurements along 26 radial directions; (b) 2D regularly spaced measurements mesh grid; (c) a section of the sandwich
plate along the thickness.
Fig. 4. Locally resonant meta-structure: (a) the steel plate with uniformly distributed small-scale resonators; (b) 2D regularly spaced measurements mesh grid; (c) the picture of
a resonator with 3 g of the magnet; (d) schematic of the 3D printed resonator.
magnet is glued to the opposite side of the resonator. The weight of the
resonator is tunable by increasing or decreasing the number of magnets,
resulting in the adjustment of resonator frequency, which provides the
possibility to control the wave attenuation in the frequency range of
interest through the design of the resonators. The conception of this
resonator and its capability to generate the band gap is illustrated
in [44]. In this study, the weight of a resonator is adjusted to be 5 g
by adding three magnets, as shown in Fig. 4(c). The corresponding
resonator frequency is tuned to be 1284 Hz. The detailed information
on 2D measurement mesh and excitation location are presented in
Fig. 4(b).
6

3.2.3. Periodic rib-stiffened composite plates
Two types of ribbed plates in different configurations have been

experimentally tested. Their characteristics are described as follows:

• Uni-directionally ribbed plate. This structure is made of an alu-
minum plate ribbed with 8 aluminum stiffeners spaced 90 mm
apart. The internal plate has a dimension of 750 × 600 × 1 mm,
and the stiffener has a size of 600 × 10 × 5 mm (see Fig. 5(a)).
This ribbed plate in resonator configuration is also studied (see
Fig. 5(b)).

• Orthogonally ribbed plate. This structure comprises a perspex
(PMMA) plate ribbed with 12 aluminum stiffeners spaced 100 mm
apart. The plate has a dimension of 560 × 560 × 1 mm, and the



Composite Structures 325 (2023) 117612X. Li et al.
Fig. 5. Periodic rib-stiffened composite plates: (a) uni-directionally ribbed plate; (b) uni-directionally ribbed plate with resonators; (c) orthogonally ribbed plate.
Table 2
Geometrical and mechanical parameters of the orthogonally ribbed plate.
Material Dimensions (mm) Young Modulus (GPa) Density (kg/m3) Weight (kg)

Stiffeners/ beam grids (Aluminum) ℎ𝑥 = ℎ𝑦 = 𝑏𝑦 = 𝑏𝑥 = 10 69 2700 1.78

Plate (PMMP) 𝑙𝑥 = 𝑙𝑦 = 100, 𝑑 = 1 3 1200 0.363
Fig. 6. Tree diagram of the case study.
stiffener has a size of 560 × 10 × 10 mm, generating 25 internal
plates (100 × 100 mm) (see Fig. 5(c)).

In Fig. 5(b), 60 resonators are periodically distributed on the surface
of the uni-directionally ribbed plate. The weight of a resonator is tuned
to be 3 g. 100 equally spaced measuring points with a sampling interval
of 0.4 cm along the line mesh (white dotted line shown in Fig. 5(b))
are measured in this test. For the orthogonally ribbed plate, 90 equally
spaced samples with a sampling interval of 0.43 cm are considered.
Its numerical model is shown in Fig. 1. The geometric and mechanical
parameters are listed in Table 2. In order to eliminate the effect of
evanescent waves on wavenumber extraction, the samples closed to the
excitation and boundary condition are required to be removed. For this
reason, the measurement samples with the exclusion of 50 points (lying
closest to the ends of the plate, 25 points for each end) are used as input
for the tested ribbed plates.

4. Results and discussions

In this section, the experimental results are presented and discussed.
To clearly illustrate the purpose of each experimental study, we provide
a tree diagram in the Fig. 6.
7

4.1. Honeycomb sandwich composite structure: Experimental results and
validation

The dispersion curves in two principal directions extracted by AKSI-
C are shown in Fig. 7(a), which has a good agreement with the
analytical dispersion curves from 3.125 Hz to 9987.5 Hz. The analytical
solution is calculated by an orthotropic model proposed in [31] for
composite structures. Depending on the symmetry of the structure, the
wavenumbers in the other directions can be obtained symmetrically
from the estimated wavenumbers. Notably, AKSI-C is developed on
the plane wave model. Thus, it can provide a reliable k-space of
the tested honeycomb sandwich composite plate using the line-based
displacements as input due to the fact that the wave field of the tested
honeycomb sandwich plate presents a close-plane wave field/direct
field in each direction due to the high damping properties. On this
basis, 3D dispersion curves, as shown in Fig. 7(b), indicate that the
dispersion curves of the honeycomb sandwich structure are character-
ized by 𝜃-dependent and frequency-dependent properties. This property
can be clearly seen from the profile of the 3D dispersion curves. Fig. 8
presents the k-space of this honeycomb sandwich structure at different
frequencies, which illustrates the complex dynamic bending behavior of
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Fig. 7. Identification of wave dispersion characteristics for the honeycomb sandwich composite structure via AKSI-C: (a) the dispersion curves in two principal directions; (b) 3D
dispersion curves as a function of direction and frequency.
Fig. 8. Identification of k-space characteristics for the honeycomb sandwich composite structure via AKSI-C: (a) k-space at 784.375 Hz; (b) k-space at 3284.375 Hz; (c) k-space
at 4690.625 Hz.
this structure. Specifically, the profiles of k-space vary from circular to
elliptic in shape, which exhibits that the dynamic behavior of sandwich
structure changes from isotropy in low frequency to orthotropy in
high frequency within the frequency range tested in this work. The
orthotropic property is more pronounced in higher frequencies with
the more elliptic k-space profile. This k-space characteristic can be
explained by the fact that in the low-frequency range, the motion of
the sandwich is governed by the bending stiffness of skins, and the
structure behaves as a classic isotropic plate, whereas, with frequency
increase, the dynamic behavior of the sandwich is controlled by the
out-of-plate shear effects and the shear stiffness of the honeycomb core
becomes more and more dominant, leading to the transition of dynamic
behavior from isotropy to orthotropy.

It is well known that in the sandwich structure, the transition fre-
quency can describe the changes in structural dynamic behavior from
the wave motion governed by the skin’s bending stiffness to the one
dominated by the core’s shear stiffness. Most of the past work mainly
focuses on the analytical analysis of transition frequency based on
frequency-independence mechanical parameters from material tables
obtained using static experiments. However, this is still a problem
for accurate modeling and dynamic analysis due to the complexity
of the mechanical properties of the honeycomb sandwich structure.
For this reason, the transition frequency is estimated directly from the
experimental dispersion curves extracted by AKSI-C, allowing us to
obtain a transition frequency close to reality. The dispersion curves
between 0◦ and 90◦ are plotted in Fig. 9. From this figure, three
observations can be obtained: (i) from observing the intersection of
dispersion curves in two principal directions, the transition frequency
8

is estimated as 784.4 Hz, which is close to the analytical frequency
transition (760.21 Hz) based on the corrected mechanical properties of
this structure [43]. This can further validate that the estimated value
in the presented work is reliable; (ii) in the frequency range lower
than transition frequency, the wavenumbers do not differ dramatically
in each direction, indicating that the honeycomb sandwich composite
structure has an approximately isotropic dynamic behavior at low fre-
quencies. Despite this, the wavenumbers at 0◦ (blue curve) are slightly
smaller than those in other directions in the zoomed sub-picture. This
is probably because the plate is governed by the bending stiffness of
carbon fiber epoxy skins oriented at 0◦, where wave propagation is the
fastest; (iii) in the frequency range higher than the transition frequency
within the frequency range tested in this work, the plate motion is
more and more controlled by the shear stiffness of the honeycomb core.
It is clear to see that the wavenumbers at 90◦ become the smallest,
and the velocity becomes the biggest. This experiment result illustrates
that the honeycomb core is stiffest at the direction of 90◦, which has a
good agreement with the fact that the equivalent shear stiffness 𝐺𝑦𝑧 is
higher than 𝐺𝑥𝑧 provided by the Table 1. In addition, the wavenumbers
near the 90◦ direction are significantly bigger than those near the 0◦
direction. This difference increases with frequency, demonstrating that
the orthotropy of the honeycomb sandwich composite structure is more
pronounced with frequency.

The dispersion surfaces of the real part of the wavenumber 𝜅 and
the imaginary part of the wavenumber 𝜏 are presented in Fig. 10. The
damping loss factor 𝜂 is calculated by Eq. (26). The 3D damping loss
factor, as shown in Fig. 11(b), illustrates that the tested honeycomb
sandwich structure has a high damping effect and the damping loss fac-
tor can be a function of the wave propagating direction and frequency.
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Fig. 9. Transition frequency estimation and the contribution of individual layer properties on the dynamic behavior of the honeycomb sandwich composite structure through
experimental dispersion curves extracted by AKSI-C between 0◦ and 90◦.
Fig. 10. Discrete dispersion surfaces extracted by AKSI-C on the honeycomb sandwich composite structure: (a) real part 𝜅; (b) imaginary part 𝜏.
In addition, the displacement field at 5000 Hz, as shown in Fig. 11(a),
presents a single emission from the excitation point outwards with few
reflected waves due to the high damping properties.

The accuracy of the wave propagation characterization presented
above depends on the fact that AKSI-C is a reliable inverse method
in experimental conditions. The first advantage of the AKSI-C is that
it is not limited to periodic sampling. To validate it, 40 non-periodic
samples are randomly selected from the 59 periodic samples measured
along the direction of 0◦ at 9846.875 Hz, as shown in Fig. 12(a). Then
the selected non-periodic samples are used as input parameters of AKSI-
C and IWC. The resulting dispersion curves are compared in Fig. 12(b),
where AKSI-C has a good estimation over the whole frequency range,
free from the periodic sampling limitation. In comparison, IWC can esti-
mate the dispersion curve accurately in the middle and high-frequency
range in this case, while it suffers from low frequencies due to the few
wavelengths contained in the displacement.

In an experimental environment, samples are inevitably subject to
various perturbations. As shown in Fig. 11(a), the perturbation is visible
in the displacement field. Under this condition, the k-space comparison
between the three inverse methods is presented in Fig. 13. From
this figure, one can obtain three conclusions: (i) AKSI-C is robust to
perturbations, providing smooth and accurate k-space. This advantage
is due to the introduction of integration of signals; (ii) IWC suffers from
low frequency, while with frequency increase, it shows good robustness
against perturbations; (iii) INCOME is sensitive to perturbations due to
9

the nature of limitation of the Prony method, affecting the assessment
of the wave propagation characterization.

4.2. Locally resonant meta-structures: Experimental results and validation

In this study, the steel plate with and without resonators are tested.
In the bare configuration, the coherence function calculated from all
samples from the 2D grid is shown in Fig. 14(a). The coherence
function value close to near zero indicates that the samples are heavily
influenced by signal noise. Therefore, it can be seen that at frequencies
higher than around 500 Hz, the plate was tested in the high-level signal
noise condition. The resulting dispersion curves along the 𝑥 direction
obtained by IWC, INCOME, and AKSI-C are shown in Fig. 14(b), where
the robustness of IWC and AKSI-C to signal noise can be validated
again, providing a reliable estimation, while INCOME is not capable
of extracting the accurate dispersion curve in this condition.

In the resonator configuration, the band gap existing in the dis-
persion curve along the 𝑥 direction can be identified by the IWC and
AKSI-C, as shown in Fig. 15(a). One can observe that the resonator
frequency is tuned at 1284 Hz, generating a band gap with an approx-
imate width of 187 Hz under the resonator configuration described
in Section 3.2.2. Fig. 15(b) shows the Frequency Response Functions
(FRFs) comparison in two configurations. In this figure, a significant
drop in amplitude can be observed within the frequency range corre-
sponding to the band gap, illustrating the ability of the meta-structure
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Fig. 11. Characterization of the damping properties of the honeycomb sandwich composite structure: (a) displacement field at 5000 Hz; (b) 3D damping loss factor extracted by
AKSI-C as a function of direction and frequency.

Fig. 12. Dispersion curve comparison for the honeycomb sandwich composite structure under non-periodic sampling condition, extracted by AKSI-C and IWC: (a) operational
deflection shape along 0◦ direction at 9846.875 Hz; (b) dispersion curves.

Fig. 13. K-space comparison for the honeycomb sandwich composite structure, extracted by AKSI-C, IWC and INCOME: (a) k-space at 784.375 Hz; (b) k-space at 3284.375 Hz;
(c) k-space at 4690.625 Hz.
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Fig. 14. Dispersion curve at the 𝑥 direction comparison for the steel plate under high-level signal noise condition, extracted by AKSI-C, IWC, and INCOME: (a) coherence function;
(b) dispersion curves along the 𝑥 direction.
Fig. 15. The band gap identification for the locally resonant meta-structure: (a) dispersion curves at the 𝑥 direction obtained by AKSI-C and IWC along the 𝑥 direction; (b) FRF
comparison for bare configuration and resonator configuration.
to control the wave attenuation in the structure. In addition, the
effect of the local resonances-induced band gap on structural vibration
reduction can also be obtained by the displacement field comparison
in two configurations. For example, the resulting displacement fields
comparison at 1300 Hz (a frequency within the band gap) are shown in
Fig. 16. As shown in this figure, a lot of reflected waves are produced at
the edges of the plate without resonators due to the low damping effect
(see Fig. 16(a)). In contrast, the displacements decrease clearly with
increasing distance from the excitation in the locally resonant meta-
structure because of the energy dissipation within the band gap (see
Fig. 16(b)).

4.3. Periodic rib-stiffened composite plates: Experimental results and vali-
dation

Firstly, the orthogonally ribbed plate is studied in this section. The
finite element model of this plate is built using COMSOL. The numerical
model is shown in Fig. 1, and the mechanical and geometric parameters
are shown in Table 2. The boundary condition is chosen as the free-free
boundary condition, and the boundary force is put along the top side of
the structure. The solid element is used for modeling, and the degree
of freedom is 637839. Finally, 30 periodic samples with a sampling
interval of 1 cm are measured along the same line as the experimental
test. The numerical and experimental dispersion curves identified by
11

AKSI-C are presented in Fig. 17(b), where a good agreement between
the extracted dispersion curves and the analytical dispersion curve can
be observed. The analytical results are calculated through Eq. (27).
Moreover, the singularity of the wavenumber occurs at around 275 Hz,
producing a band gap with a width of about 89 Hz. This phenomenon
results from the inner resonance of the internal plate. Specifically, the
bending stiffness and thickness of the beam grids are much greater than
that of the internal plate, causing the inhomogeneous dynamic behavior
of these two parts and inducing the occurrence of the inner local
resonance phenomenon. The displacement field at 281 Hz is shown in
Fig. 17(a), indicating the reduction of structural vibration within the
band gap. These results show the potential of the periodic rib-stiffened
composite plate in designing the wave attenuation in the frequency
band of interest.

Secondly, the uni-directionally ribbed plate is investigated. The
dispersion curves extracted by AKSI-C and IWC for the uni-directionally
ribbed plate without resonators are presented in Fig. 18(a). This figure
shows that these two inverse methods enable to identify the band gap
of ribbed plate and the band gap happens around 809 Hz. The inner
mechanism is same as the orthogonally ribbed plate. The interesting
work of this case is to add the resonators designed in Section 3.2.3
on the surface of the uni-directionally ribbed plate to adjust the band
gap location. As expected, the resulting dispersion curves, as shown
in Fig. 18(b), show a shift of resonance frequency towards the higher
frequency, changing from 809 Hz to 1149.219 Hz. This phenomenon
results from the mixed mechanism between the inner resonance of the

internal plate and the local resonator-induced resonance.
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Fig. 16. Normalized displacement fields comparison of two configurations at 1300 Hz: (a) bare configuration; (b) resonator configuration.

Fig. 17. Effect of inner resonance phenomenon of the orthogonally ribbed plate on wave propagation: (a) displacement field at 281 Hz for the numerical model; (b) the band gap
identification with AKSI-C numerically and experimentally.

Fig. 18. Effect of the mixed-resonance-induced phenomenon of the uni-directionally ribbed plate on wave propagation: (a) dispersion curves extracted by AKSI-C and IWC for the
uni-directionally ribbed plate without resonators; (b) dispersion curves extracted by AKSI-C and IWC for the uni-directionally ribbed plate with resonators.
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The study of two periodic rib-stiffened composite plates demon-
strates their remarkable wave propagation manipulation abilities, pro-
viding the possibility of reducing the structural vibration and control-
ling wave propagation by designing the resonator distributions and
changing the relationship between the stiffeners and the internal plate.

5. Conclusions

This paper proposed the Algebraic K-Space Identification method in
the Cartesian coordinate system (AKSI-C). The first step of this method
is to build a new partial differential equation with two variables 𝑘𝑥 and
𝑘𝑦 in the wavenumber domain using multivariate Laplace transform.
Then the partial differential equation is transformed into a regression
formula with the integral of 2D signals in the spatial domain. Fi-
nally, the complex wavenumbers can be identified by the least squares
method. The extracted complex wavenumbers are able to provide a
lot of helpful information to describe structural dynamic behavior and
characterize the wave propagation in the complex composite structures.
Due to the advantages of AKSI-C being robust to signal noise and having
low computational cost, it has been applied to provide a reliable and
in-situ analysis for wave propagation characteristics in three complex
composite structures only using the displacement field obtained from
the non-destructive testing in the present work.

The honeycomb sandwich composite structure is first tested from
3.125 Hz to 9987.5 Hz. AKSI-C has a good performance on the k-space
identification of the tested honeycomb sandwich composite plate using
the line-based displacements as input. This is because that the wave
field of the tested honeycomb sandwich plate presents a close-plane
wave field/direct field in each direction due to the high damping prop-
erties, which is adapted to the signal model required for AKSI-C. The
direction- and frequency-dependent properties of orthotropic dynamic
behavior and damping loss factor are identified. The contribution of
the individual layer to the overall dynamic behavior is explored using
the estimated transition frequency, which is in good agreement with
theoretical analysis. Then, active tuning of the flexural wave band
gap is investigated in a locally resonant meta-structure. Finally, two
periodic rib-stiffened composite plates are studied, including a uni-
directionally ribbed plate and an orthogonally ribbed plate. This study
explores the mechanism of the inner resonance phenomenon in such
structures and opens the possibility of optimizing the performance of
rib-stiffened composite plates on wave attenuation in specific frequency
ranges.

From a practical application standpoint, the proposed method can
be applied to characterize the structural wave propagation of multi-
dimensional signals under complex conditions. Moreover, it holds the
potential to solve inverse problems in the vibroacoustic field, including
structural damage detection, mechanical parameter identification, and
structural optimization. These promising capabilities are worth further
investigation and exploration in future studies. so far, like other inverse
methods such as INCOME, and IWC, AKSI-C uses plane wave signals as
the input signals. From the development of the method point of view,
a promising perspective is to introduce the non-plane wave model into
the theory of AKSI-C. This adaptation aims to address structures with
more complex wave fields, and it constitutes a key objective for the
forthcoming development of AKSI-C.

The current version of AKSI-C is developed based on the plane wave
model, which limits the applicability of AKSI-C to extract complex
wavenumbers in all directions for structures with non-plane wave
fields, such as the low-damping steel plates and ribbed plates. To the
authors’ understanding, this is still a challenge for most plane wave-
based inverse methods, such as Prony and IWC. In the future, the
optimization of AKSI-C built on the non-plane wave model is worth
exploring for the more general structures. On the other hand, a promis-
ing direction is to investigate the application of AKSI-C for solving more
vibroacoustic inverse problems, such as structural health monitoring or
13

ultrasonic inspections of anisotropic materials via identifying steering
angle, the multi-wave mode separation and coupling to study more
complex structural dynamic behavior, and structural identification of
complex composite structures. Moreover, in this work, the maximum
frequency we tested was 10 kHz. The performance of AKSI-C at ul-
trasonic frequencies, beyond the scope of this work, deserves further
investigation in the future.
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