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Abstract

In this paper, a model reduction method is proposed for the dynamic reanalysis of structures with ge-

ometric variability and parametric uncertainties. Geometric variability is introduced by distorting the

finite element meshes for some substructures via arbitrary shape functions. Parametric uncertainties

are also considered to describe local variations of the stiffnesses of the substructures. The proposed

approach involves expressing the substructure transformation matrices using interpolated matrices of

Craig-Bampton component modes together with matrices of enrichment vectors. These enrichment vec-

tors are parameter-independent and, as such, they only need to be computed once. This, as a result, leads

to reduced substructure models which can be quickly updated to reanalyze structures with geometric and

parametric changes. The accuracy and numerical efficiency of the proposed approach are highlighted

through numerical experiments.
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1. Introduction

The numerical prediction of the dynamic behavior of structures with geometric variability and para-

metric uncertainties is a problem of interest in mechanical engineering. This may concern, for instance,

assemblies with several components which are connected via rubber blocks and springs as shown in

Fig. 1, where the height of the rubber blocks is likely to vary in space (geometric variability) and where

the stiffnesses of the springs could be random parameters (uncertainties). In practical situations, these

structures are usually composed of substructures with different geometric changes, e.g., considering dif-

ferent kinds and levels of variability which can be introduced by considering distorted finite element (FE)

meshes and shape functions – different between the substructures – as proposed in [1]. Also, paramet-

ric uncertainties can be introduced by considering random parameters that could represent some local

variations of the stiffnesses of the substructures.

One of the major problems in structural dynamics concerns the computation of the eigenvalues and

eigenvectors for some stiffness and mass matrices K and M, and the computation of the related response

functions. Accurate determination of these dynamic properties via finite elements usually involves con-

sidering many degrees of freedom (DOFs) which, despite the use of powerful processors, can make any

dynamic analysis computationally cumbersome. Reducing the computational cost and, also, limiting the

memory storage issues is becoming crucial, especially, in the design, optimization process and reliabil-

ity analysis of structures. Model reduction methods represent good strategies to address these issues.

Among these are:

(i) Subspace projection methods including modal truncation and Krylov-based techniques [2–4] where

low-order modes and, eventually, high-order static correction terms are used.

(ii) Static condensation methods [5] or dynamic condensation methods where condensed mass and

stiffness matrices, built from transformation matrices which can be frequency-dependent [6, 7].

Among these approaches is the Improved Reduced System (IRS) method [8] where an iterative

procedure is proposed to compute the eigensolutions of structures. Many variants of this method

consider an iterated improved reduced procedure and a substructuring scheme for undamped and

non-classically damped structures [9–11]. These methods extend the condensation technique and

provide an efficient solution for large-scale eigenvalue problems to compute eigensensitivities,

structural responses and response sensitivities [12, 13]. On the other hand, reduction techniques

for structures with frequency-dependent damping, such as structures treated with constrained vis-

coelastic layers, have been compared in [14] and extended to the aeroviscoelastic panel flutter
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analysis in [15]. Also, the transient dynamic response of structural systems has been addressed

in [16, 17] using time-domain condensation strategies that take into account linear and nonlinear

viscoelastic systems, or multiple damping models.

(iii) Component Mode Synthesis (CMS) or substructuring methods where the reduced substructure

matrices are built in an independent way and assembled to express the reduced model of a whole

structure [18]. In this case, the reduced matrices of the substructures involve considering trans-

formation matrices which are expressed from component modes. Among the substructuring tech-

niques is the Craig-Bampton (CB) method [19] where the component modes of the substructures

represent static/constraint modes and fixed interface modes. Substructuring techniques also in-

clude free interface methods [20, 21] and dual assembly approaches [22–25].

For substructures with varying FE meshes, varying properties or parametric uncertainties, substruc-

turing techniques like the CB method raise, however, the issue of updating the transformation matrices

as well as the reduced mass, damping and stiffness matrices many times, which may turn highly cum-

bersome. This especially concerns Monte Carlo simulations where many samples are usually required,

e.g., to assess the sensitivity of the structure responses to several random parameters and several sub-

structure meshes (geometric variability). In this case, several numerical tasks would need to be repeated

many times for each modified substructure. This concerns: (i) the computation of the component (static

and fixed interface) modes, (ii) the computation of the reduced mass, damping and stiffness matrices via

matrix multiplications with the transformation matrix (Galerkin projection) and, also, (iii) the assembly

of the reduced matrices of the new substructures.

CMS methods have been investigated in various ways in the literature to enhance the classical CB

formulation [23, 26, 27]. Over the past two decades, fixed-interface CMS methods have been successfully

improved by considering the high-order effects of the residual modes [26, 28–30]. The same principle

can be adopted to improve free-interface CMS methods. However, the development of robust methods

capable of modeling structures subject to mesh variations, structural changes or parametric uncertainties,

without the need of updating the transformation matrices of the substructures many times, is not well

reported. Some approaches based on Ritz-basis enrichment and combined approximations can be found

in the literature, e.g., for the reanalysis of structures subject to structural changes [31–34], for the robust

design of linear and nonlinear structures [35, 36] and for optimization problems [37]. The reanalysis

of structures, for dynamic problems, turns highly complex and computationally cumbersome even for

structures with moderate numbers of DOFs. Recent works have investigated the robustness of improved

reduced models in presence of uncertainties [36, 38–42]. The objective of these methods is to fix the
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computational burden associated with the increase of the number of random input parameters – i.e., the

stochastic variability of a system – and the increase of the size of the numerical mechanical models which

are used to describe the deterministic responses.

The main goal of the present study is to propose an improved substructuring technique which is

accurate for the dynamic analysis of structures with mesh variations and parametric uncertainties such as

localized stiffnesses. Considering both these geometric and parametric changes into a whole approach

implying reduced models of substructures, easy to update to address these changes, does not seem to have

been investigated so far. Specifically, a mixed modeling approach involving substructure transformation

matrices built from interpolated component modes and enrichment vectors is proposed. The interpolated

component modes are expressed via the strategy proposed in [1] and are used to describe the geometric

changes of the substructures due to mesh variations. The enrichment vectors are issued from the static

responses of the substructures due to parametric variations, and are here expressed in terms of parameter-

independent vectors. The main advantages of the proposed substructure transformation matrices are: (i)

they do not depend on the substructure parameters and (ii) they can be easily obtained by interpolation

between a few interpolation points that concern some particular distorted meshes.

The rest of the paper is organized as follows. In Sec. 2, the FE modeling of structures involving

several substructures with geometric variability and parametric uncertainties is addressed. The mixed

modeling approach is detailed in Sec. 3. Especially, the substructure transformation matrices combin-

ing interpolated matrices of component modes and matrices of enrichment vectors are formulated in

Sec. 3.4. Numerical experiments are carried out in Sec. 4. Two test cases are considered: (i) a 2D storey

structure involving three parts with distorted FE meshes connected via rubber blocks and 2−node spring

elements with random stiffnesses; (ii) two Mindlin plates with localized random thickness and connected

by springs with random stiffnesses, where the positions of the attachment points of the springs are subject

to variability.

Figure 1: Arbitrary structure with two parts connected via rubber blocks (in green) and springs, which is subject to geometric

variability and parametric uncertainties (springs). (left) FE mesh of the baseline structure; (right) distorted FE mesh.
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2. Problem description

This paper concerns the dynamic analysis of linear elastic structures subject to geometric variability

and parametric uncertainties, and undergoing harmonic disturbance with frequency ω/2π. This could

be, for instance, a 2D system in the (x, y) plane with two parts connected by means of rubber blocks

and springs with random stiffnesses as shown in Fig. 1. Geometric variability is introduced here to

describe, for instance, height imperfections at the interface between the two parts, hence impacting the

dimensions of the rubber blocks as shown in Fig. 1. For practical purposes, a structure can be partitioned

into several substructures whose variability can be governed in different ways. In some cases indeed,

some substructures may undergo strong variability, the others being less (even not) impacted. Following

the strategy proposed in [1], a substructure s (s = 1, . . . , ns) with geometric variability can be modeled

by moving the positions of its nodes – i.e., (xsj0, y
s
j0) for some baseline FE mesh – using deterministic

continuous “shape” functions fsx(x, y) and fsy (x, y) which are supposed to vanish at the interface with

the other substructures to meet mesh compatibility conditions. In other words, geometric variability is

taken into account by distorting the FE meshes of the baseline substructures. In this sense, the positions

of the nodes of a substructure s are moved as follows:

xsj = xsj0 + εsxf
s
x(xsj0, y

s
j0) , ysj = ysj0 + εsyf

s
y (xsj0, y

s
j0), (1)

where εsx and εsy are two real variables defined on [−δs , δs] for some dispersion parameter δs. In the

present framework, the shape functions fsx(x, y) and fsy (x, y) are supposed to be sufficiently smooth

to prevent high element aspect ratios. Considering for instance Fig. 1, the structure can be partitioned

into two substructures 1 and 2, with different mesh distortions, which are connected at the middle of the

rubber blocks (central line where the positions of the nodes are kept constant) as shown in Fig. 2.

Figure 2: Structure partitioning via two substructures 1 and 2 with distorted FE meshes and parametric uncertainties (springs

with random stiffnesses). Red dots highlight boundary DOFs.

Also assume that the substructures are subject to parametric uncertainties, e.g., considering vectors of

random parameters ps representing some local variations of the stiffnesses of the substructures. Hence,
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the dynamic equilibrium equation of a substructure s may be written in the frequency domain as:

[
−ω2Ms(ps) + iωCs(ps) + Ks(ps)

]
us = Fs, (2)

where us and Fs denote the displacement and force vectors (respectively), and Ms(ps), Cs(ps) and

Ks(ps) denote the mass, damping and stiffness matrices (respectively) which result from distorting the

FE mesh of the substructure, see Eq. (1). Note that, for stiffness-dependent damping, the matrix Cs

is likely to be parameter-dependent. Also, the mass matrix Ms can be parameter-dependent too, e.g.,

considering stiffness variations which perturb the inertia of the substructure. The dynamic equation of a

structure composed of several substructures follows as:

[
−ω2M(p) + iωC(p) + K(p)

]
u = F, (3)

where M(p), C(p) and K(p) are the mass, damping and stiffness matrices (respectively) which result

from assembling the local matrices Ms(ps), Cs(ps) and Ks(ps) of the substructures; also, p denotes

the whole vector of random parameters, defined by p = [(p1)T (p2)T . . . (pns
)T ]T . The computation of

the response functions of the structure – e.g., the displacement vector u measured at some points/nodes of

a substructure – involves solving Eq. (3) many times for several discrete pulsations frequencies ωi, e.g.,

ωi = ωmin + i(ωmax − ωmin)/nω for i = 0, 1, . . . , nω. To speed up this numerical task, reduced mass,

damping and stiffness matrices are usually invoked. In dynamic substructuring, this means expressing

the displacement vector us of the substructures – say, vectors of size N s× 1 – on the subspaces spanned

by the column vectors of some transformation matrices T̃s, of size N s ×M s where M s � N s. In this

framework, the displacement vectors of the substructures are approximated as us ≈ T̃sũs with ũs the

reduced vectors (Galerkin projection of us onto the column space of T̃s) which are obtained by solving

the following global reduced matrix equation:[
−ω2M̃(p) + iωC̃(p) + K̃(p)

]
ũ = F̃, (4)

with

ũs = Lsũ, (5)

where Ls are Boolean localization matrices for the substructures. In Eq. (4), M̃(p), C̃(p), K̃(p) and F̃

are the reduced mass matrix, damping matrix, stiffness matrix and force vector of the structure which are

built by assembling the local reduced matrices and vectors of the substructures. These are expressed by:

M̃s(ps) = (T̃s)TMs(ps)T̃s , C̃s(ps) = (T̃s)TCs(ps)T̃s , K̃s(ps) = (T̃s)TKs(ps)T̃s (6)
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and

F̃s = (T̃s)TFs. (7)

In the present case, however, a classical reduced modeling based on the transformation matrices T̃s of

the substructures is prone to tough numerical issues. First notice that the same transformation matrices

T̃s cannot be used to model substructures with varying FE meshes, which is the case when geometric

variability is considered. This is explained because, since the mass, damping and stiffness matrices vary,

the displacement vectors of the substructures need to be described in different subspaces. This means

updating the transformation matrices of the substructures when variable FE meshes (mesh distortion) are

considered, and therefore, computing the reduced mass, damping and stiffness matrices many times, see

Eq. (6). As a second issue, parametric uncertainties involve, in addition, considering varying matrices

Ms(ps), Cs(ps) and Ks(ps) of the substructures which also require the displacement vectors to be

expressed in different subspaces. The development of a model reduction approach able to take into

account both the geometric variability and parametric uncertainties of the substructures and perform low

cost computation of the related reduced matrices in Eq. (6) is the main motivation behind the present

paper. The key idea of the proposed strategy concerns the development of transformation matrices which

can be quickly updated to address substructure changes, and which, as such, can be used efficiently for

the reanalysis of structures. The methodology is detailed in the next section. The case of substructures

with geometrical variability is considered first, see Sec. 3.2. The strategy to model substructures with

parametric uncertainties is presented in Sec. 3.3. The mixed modeling approach for substructures with

both geometric variability and parametric uncertainties is proposed in Sec. 3.4.

3. Adaptive model reduction

3.1. CB method

The proposed approach is based on the CB method whose main steps are recalled here for the sake

of clarity. Thus, let us consider a structure which is composed of several substructures s (s = 1, . . . , ns)

with mass, damping and stiffness matrices denoted by Ms, Cs and Ks, respectively. Also, let us partition

the substructure meshes into boundary DOFs (B) encompassing the substructure interfaces/boundaries

and the excitation points, and internal/other DOFs (I) which are supposed to be free from excitation.

Hence, the dynamic equation of a substructure s can be written as follows:

[
−ω2Ms + iωCs + Ks

] us
B

us
I

 =

Fs
B

0

 , (8)
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where:

Ms =

Ms
BB Ms

BI

Ms
IB Ms

II

 , Cs =

Cs
BB Cs

BI

Cs
IB Cs

II

 , Ks =

Ks
BB Ks

BI

Ks
IB Ks

II

 . (9)

Also, denote by N s
I and N s

B the numbers of internal DOFs and boundary DOFs of a substructure s,

respectively. Then, consider a reduced matrix of “fixed interface modes” X̃s = [χs
1 · · ·χs

Ns
CB

] where

χs
k (k = 1, . . . , N s

CB) are the eigenvectors for the first N s
CB (smallest) eigenvalues of the matrix pencil

(Ks
II,M

s
II) with N s

CB � N s
I . Also, express the displacement vector us

I in the subspace spanned by

these N s
CB fixed interface modes and the static modes – representing the column vectors of the matrix

−(Ks
II)

−1Ks
IB – of the substructure. This yields us

I ≈ −(Ks
II)

−1Ks
IBũ

s
B + X̃sα̃s, and therefore:us

B

us
I

 ≈ T̃s
CB

ũs
B

α̃s

 where T̃s
CB =

 INs
B

0

−(Ks
II)

−1Ks
IB X̃s

 . (10)

Here, T̃s
CB denotes the CB transformation matrix, ũs

B denotes an approximate of us
B and α̃s denotes a

vector of generalized coordinates. Following the CB procedure, the dynamic equation of the substructure

reduces to:

[
−ω2M̃s + iωC̃s + K̃s

]ũs
B

α̃s

 = F̃s, (11)

where M̃s, C̃s, and K̃s are the reduced mass, damping and stiffness matrices expressed by:

M̃s = (T̃s
CB)

TMsT̃s
CB , C̃s = (T̃s

CB)
TCsT̃s

CB , K̃s = (T̃s
CB)

TKsT̃s
CB. (12)

Also, F̃s is the reduced force vector expressed by:

F̃s = (T̃s
CB)

TFs =

Fs
B

0

 . (13)

The modeling of a whole structure involving ns substructures results from classical FE assembly proce-

dure. This yields:

[
−ω2M̃ + iωC̃ + K̃

]ũB

α̃

 = F̃, (14)

where

ũs
B

α̃s

 = Ls
ũB

α̃

 for s = 1, . . . , ns where α̃ =


α̃1

...

α̃ns

 , (15)
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with Ls the FE Boolean localization matrices of the substructures. Eq. (14) is a matrix equation of

reduced size compared to Eq. (8) – which might be explained since the matrices of fixed interface modes

X̃s of the substructures are of size N s
I × N s

CB with N s
CB � N s

I – whose solutions are ũB and α̃, and

therefore ũs
B and α̃s, see Eq. (15). The displacement vectors of the substructures follows as us

B ≈ ũs
B and

us
I ≈ −(Ks

II)
−1Ks

IBũ
s
B + X̃sα̃s.

3.2. Modeling by matrix interpolation: geometric variability

Consider now the case of substructures with varying geometric properties which are described via

distorted FE meshes, see Fig. 2 for two substructures. The strategy for distorting the substructure FE

meshes has been discussed earlier, see Eq. (1). It should be recalled that, for a given substructure s, fsx and

fsy are two arbitrary functions of space (x, y) which vanish at the interface with the other substructures.

Note that, if fsx(xsj0, y
s
j0) = 0 and fsy (xsj0, y

s
j0) = 0 for every node j, this means that the mesh of the

substructure is undistorted (no variability). Also, if fsx(xsj0, y
s
j0) 6= 0 and fsy (xsj0, y

s
j0) 6= 0 for some node

positions (xsj0, y
s
j0), and fsx(xsj0, y

s
j0) = 0 and fsy (xsj0, y

s
j0) = 0 elsewhere, then this means that the mesh

distortion is localized to some subparts of the substructure.

Although well proven, the CB method (see Sec. 3.1) suffers from the fact that, in the present case, the

transformation matrices T̃s
CB of the substructures, Eq. (10), rely upon their mesh distortion which means

that they need to be updated as soon as their geometric properties change. This makes any reanalysis

(geometric variability) computationally cumbersome. To address this issue, it is proposed to approxi-

mate the transformation matrices T̃s
CB by matrix interpolation. The procedure consists in computing the

transformation matrices of the substructures for some points ((εsx)p, (ε
s
y)p) (a small number) which refer

to some particular distorted meshes, and estimating these matrices between these points by interpolation

to analyze substructures with arbitrary mesh distortion parameters (εsx, ε
s
y). To interpolate the transfor-

mation matrices, they need to be expressed in compatible coordinate systems as discussed in [43]. For

instance, an interpolation scheme based on eight interpolation points and eight Serendipity interpolation

functions can be used, as proposed in [1]. This number of (eight) interpolation points seems to be a good

compromise between the accuracy of the interpolation scheme and the computational load for express-

ing the transformation matrices at these points. The interpolation strategy in [1] also proposes to use

Chebyshev points εsx, ε
s
y = ±δs/

√
2 (δs being the mesh dispersion parameters introduced in Sec. 2) as

interpolation points to better approximate the transformation matrices. The key steps of the procedure

can be summarized as follows, for each substructure s (s = 1, . . . , ns):
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1. Compute the matrix of static modes −(Ks
II)

−1Ks
IB and the reduced matrix of fixed interface

modes X̃s at Serendipity nodes interpolation points
(
εsx, ε

s
y

)
=
(
(εsx)p, (ε

s
y)p
)

(p = 1, . . . , 8) with

values (εsx)p and (εsy)p belonging to {−δs/
√

2 , 0 , δs/
√

2} except (εsx)p = (εsy)p = 0:

−(Ks
II)

−1
p (Ks

IB)p and X̃s
p. (16)

2. Introduce alternative matrices of fixed interface modes X̂s
p to make them expressed in coordinate

systems which are compatible (see [1, 43]):

X̂s
p = X̃s

p

(
(Ψs)T X̃s

p

)−1
where Ψs =

(
(Ms

II)
1
2
0

)T

X̃s
0, (17)

where notations (Ms
II)0 and X̃s

0 mean that the matrices Ms
II and X̃s are expressed for εsx = 0 and

εsy = 0 (undistorted mesh).

3. Express the transformation matrix at interpolation points
(
(εsx)p, (ε

s
y)p
)
:

(T̂s
CB)p =

 INs
B

0

−(Ks
II)

−1
p (Ks

IB)p X̂s
p

 . (18)

4. Interpolate the transformation matrix between interpolation points via Serendipity interpolation

functions Np(ξ
s, ηs) [1]:

T̂s
CB =

8∑
p=1

Np(ξ
s, ηs)(T̂s

CB)p =
8∑

p=1

Np(ξ
s, ηs)

 INs
B

0

−(Ks
II)

−1
p (Ks

IB)p X̂s
p

 , (19)

where ξs = (
√

2/δs)εsx and ηs = (
√

2/δs)εsy.

5. Approximate the reduced mass, damping and stiffness matrices, for any mesh parameters (ξs, ηs),

as follows:

M̂s = (T̂s
CB)

TMsT̂s
CB , Ĉs = (T̂s

CB)
TCsT̂s

CB , K̂s = (T̂s
CB)

TKsT̂s
CB. (20)

In this case, the reduced dynamic equations of the substructures write:

[
−ω2M̂s + iωĈs + K̂s

]ûs
B

α̂s

 =

Fs
B

0

 . (21)
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3.3. Modeling by subspace enrichment: parametric uncertainties

Reduced models of undistorted substructures with parameter-dependent mass, damping and stiffness

matrices are investigated here. In this case, the dynamic equation of a substructure s writes:

[
−ω2Ms

0(p
s) + iωCs

0(p
s) + Ks

0(p
s)
] us

B

us
I

 =

Fs
B

0

 , (22)

where subscript 0 means that that the FE mesh of the substructure is undistorted. Also, ps = [ps1 p
s
2 . . . p

s
ns
p
]T

is a vector of uncertain parameters psi which are here supposed to represent independent continuous ran-

dom variables for some probability density functions fsi (Ps
i ). Then, let us decompose the stiffness

matrix of the substructure as follows:

Ks
0(p

s) = Ks
0 + ∆Ks

0(p
s), (23)

where Ks
0 and ∆Ks

0(p
s) are, respectively, the mathematical expectation of Ks

0(p
s) and the variation of

the stiffness matrix due to parametric uncertainties:

Ks
0 =

∫∫
· · ·
∫

Ks
0(P

s
1 , . . .P

s
ns
p
) fs1 (Ps

1) . . . fsns
p
(Ps

ns
p
) dPs

1 . . . dP
s
ns
p
, (24)

and

∆Ks
0(p

s) = Ks
0(p

s)−Ks
0. (25)

Again, a reduced modeling of the substructures can be considered. Following the idea proposed in

[33], the displacement vector us
I for the internal DOFs of a substructure s can be expressed in the

subspace spanned by: (i) the static modes of the substructure with mean stiffness matrix Ks
0 (matrix

−(Ks
II)

−1
0 (Ks

IB)0), (ii) the fixed interface modes of the substructure with mean stiffness matrix Ks
0, and

mean mass matrix Ms
0, (matrix X̃s

0) and (iii) enrichment vectors that represent the static responses of the

mean substructure due to parametric variations. The enrichment basis represents the column vectors of

(Ks
II)

−1
0 ∆Fs

I(p
s) where ∆Fs

I(p
s) is a matrix of residual (basis) force vectors resulting from parametric

variations and which are induced here by the fixed interface modes of the mean substructure:

∆Fs
I(p

s) = − [(∆Ks
II)0(p

s)] X̃s
0. (26)

Note that the column space of ∆Fs
I(p

s) can be spanned by the column vectors of −(∆Ks
II)0X̃

s
0 where

(∆Ks
II)0 represents (∆Ks

II)0(p
s) for some particular values of parameters ps, e.g., the extreme ones

[44]. In this way, a residual vector basis which does not depend on ps can be proposed which, therefore,
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only needs to be computed once. Hence, a suitable subspace for describing the parametric variations of

the substructure can be defined as the column space of the following matrix:

T̃s
e =

 0

X̃s
e

 , (27)

where X̃s
e is the matrix of enrichment vectors (N s

CB vectors) defined by:

X̃s
e = −(Ks

II)
−1
0 (∆Ks

II)0X̃
s
0. (28)

The enrichment vectors represent the static responses of the substructures to the residual forces, i.e., the

column vectors of ∆Fs
I = −(∆Ks

II)0X̃
s
0. For numerical conditioning purposes, it is advised to consider

orthogonal enrichment vectors, and eventually a reduced number N s
e of them where N s

e ≤ N s
CB. In this

sense, a “thin” singular value decomposition (SVD) of X̃s
e can be invoked as:

X̃s
e = Us

eΣ
s
e(V

s
e)

T , (29)

where Σs
e denotes the N s

CB × N s
CB diagonal matrix of singular values (sorted in descending order) of

X̃s
e, and Us

e and Vs
e denote the related orthogonal matrices – i.e., (Us

e)
TUs

e = I and (Vs
e)

TVs
e = I

– of left singular vectors and right singular vectors, respectively. Especially, the column space of the

matrix of left singular vectors Us
e is similar to that of X̃s

e, and as such, the column vectors of Us
e can be

advantageously used as a reduced basis. In order to better regularize the projection/reduced basis, only a

reduced set of singular vectors can be retained, i.e., those associated with the N s
e highest singular values

where N s
e ≤ N s

CB. Hence, the following alternative reduced matrix can be proposed:

X̃s
e → Ũs

e = Us
e (:, 1:N s

e ) . (30)

Eq. (30) means replacing X̃s
e with the first N s

e column vectors of Us
e. As a result, the transformation

matrices of the substructures become:

T̃s
0 =

 INs
B

0 0

−(Ks
II)

−1
0 (Ks

IB)0 X̃s
0 Ũs

e

 . (31)

In this case, the displacement vectors (substructures) are approximated as follows:us
B

us
I

 ≈ T̃s
0

ũs
B

β̃
s

0

 , (32)
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where β̃
s

0 are vectors of generalized coordinates. The reduced dynamic equations of the substructures

follow as:

[
−ω2M̃s

0(p
s) + iωC̃s

0(p
s) + K̃s

0(p
s)
]ũs

B

β̃
s

0

 =

Fs
B

0

 , (33)

where M̃s
0(p

s) = (T̃s
0)

TMs
0(p

s)T̃s
0, C̃s

0(p
s) = (T̃s

0)
TCs

0(p
s)T̃s

0 and K̃s
0(p

s) = (T̃s
0)

TKs
0(p

s)T̃s
0.

3.4. Mixed modeling approach

Consider now substructures undergoing both geometric variability (mesh distortion) and parametric

uncertainties, whose dynamic equations write:

[
−ω2Ms(ps) + iωCs(ps) + Ks(ps)

] us
B

us
I

 =

Fs
B

0

 . (34)

By combining the two previous approaches, the following transformation matrix, for each substructure

s, can be proposed, see Eqs. (19) and (27):

T̂s =

8∑
p=1

Np(ξ
s, ηs)T̂s

p, (35)

where

T̂s
p =

 INs
B

0 0

−(Ks
II)

−1
p (Ks

IB)p X̂s
p Ûs

e

 . (36)

Here, Ûs
e is the matrix of left singular vectors associated to the N s

e highest singular values of the follow-

ing matrix of enrichment vectors:

X̂s
e = −(Ks

II)
−1
0 (∆Ks

II)0X̂
s
0, (37)

where X̂s
0 = X̃s

0((Ψ
s)T X̃s

0)
−1, see Eq. (17). The motivation behind considering X̂s

0 in Eq. (37), instead

of X̃s
0, is the use of compatible coordinate systems for reduced matrices of fixed interface modes, see

Sec. 3.2. Also note that, to derive Eqs. (35) and (36), the well-known property that
∑8

p=1Np(ξ
s, ηs) = 1

for Serendipity interpolation functions has been considered. In this case, the reduced dynamic equations

of the substructures are given by:

[
−ω2M̂s(ps) + iωĈs(ps) + K̂s(ps)

]ûs
B

β̂
s

 =

Fs
B

0

 , (38)
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where M̂s(ps) = (T̂s)TMs(ps)T̂s, Ĉs(ps) = (T̂s)TCs(ps)T̂s and K̂s(ps) = (T̂s)TKs(ps)T̂s.

Remark. The proposed approach involves interpolating the transformation matrices T̂s of the substruc-

tures (see Eq. (35)), instead of their reduced mass, damping and stiffness matrices [1]. Such a strategy

is considered here to handle parametric uncertainties via interpolated transformation matrices based on

enrichment vectors which are parameter-independent. This appears to be more relevant compared to

when reduced matrices are interpolated. In this case indeed, this would mean performing interpolation

on parametric spaces of high dimensions (depending on the number of uncertain parameters, in addition

to mesh distortion), and therefore considering many interpolation points and excessive computations of

the reduced matrices of the substructures at these interpolation points.

3.5. Discussion

The key idea behind the proposed approach is to consider transformation matrices T̂s =
∑8

p=1Np(ξ
s, ηs)T̂s

p

to express the reduced models of the substructures with geometric variability and parametric uncertain-

ties, see Eqs. (35) and (36). The main advantage with these transformation matrices is that they can be

quickly computed and updated to address changes into the substructure properties. In this framework

indeed, this means computing, for each substructure, eight parameter-independent matrices T̂s
p (once

and for all), and expressing the transformation matrix T̂s by interpolation which is very cheap from

the computational point of view. In contrast, the classical CB method would require the transformation

matrices of the substructures – implying their matrices of static modes and fixed interface modes – to

be recomputed many times, which is a major problem when large-sized FE models are analyzed. More

specifically, for each mesh and parameter change of a substructure, the classical CB method requires (see

Sec. 3.1): (i) considering a matrix inverse and a matrix product for aN s
I×N s

I matrix Ks
II to compute the

matrix of static modes −(Ks
II)

−1Ks
IB; (ii) solving via the Lanczos method an N s

I × N s
I eigenproblem

for the matrix pencil (Ks
II,M

s
II) to obtain the reduced matrix of fixed interface modes X̃s. Within the

framework of the proposed approach, these tasks only need to be performed eight times, regardless of

the substructure changes analyzed.

The second advantage of the proposed approach is in the computation of the reduced matrices

M̂s(ps), Ĉs(ps) and K̂s(ps) in Eq. (38), which requires matrix products with (T̂s)T and T̂s. In fact,

this numerical task can be strongly sped up for performing parametric analyses, e.g., Monte Carlo simula-

tions for assessing the statistics of the dynamic responses of substructures of given mesh distortions sub-

ject to random parameters psi . Indeed, it should be pointed out that the mass, damping and stiffness matri-
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ces of the substructures are usually expressed as Ms(ps) = Ms +∆Ms(ps), Cs(ps) = Cs +∆Cs(ps)

and Ks(ps) = Ks + ∆Ks(ps) where, in most situations, ∆Ms(ps), ∆Cs(ps) and ∆Ks(ps) are

strongly sparse matrices which, as such, can be quickly multiplied with (T̂s)T and T̂s. Other matrices

Ms, Cs and Ks are parameter-independent, and in this sense, the matrix products associated with these

matrices can be expressed as:

(T̂s)TMsT̂s =
8∑

q=1

8∑
p=1

Nq(ξ
s, ηs)Np(ξ

s, ηs)
[
(T̂s

q)
TMsT̂s

p

]
, (39)

(T̂s)TCsT̂s =
8∑

q=1

8∑
p=1

Nq(ξ
s, ηs)Np(ξ

s, ηs)
[
(T̂s

q)
TCsT̂s

p

]
, (40)

(T̂s)TKsT̂s =
8∑

q=1

8∑
p=1

Nq(ξ
s, ηs)Np(ξ

s, ηs)
[
(T̂s

q)
TKsT̂s

p

]
. (41)

In this case, each of the matrix products (T̂s
q)

TMsT̂s
p, (T̂s

q)
TCsT̂s

p and (T̂s
q)

TKsT̂s
p needs to be com-

puted 64 times, which could be achieved in a single pre-processing step regardless of the parametric

changes. This appears to be an interesting feature of the proposed approach for performing Monte Carlo

simulations where a large number (usually 1000 or more) of such matrix products would be required.

4. Numerical experiments

The relevance of the proposed approach is demonstrated considering two examples of moderate

complexity. Sec. 4.1 focuses on the analysis of a 2D three storey structure with stiffened rubber blocks.

Sec. 4.2 focuses on the analysis of two Mindlin plates connected by springs.

4.1. Three storey structure with stiffened rubber blocks

4.1.1. FE model

Let us consider a 2D storey structure involving three aluminum parts and four rubber blocks (in

green), subjected to plane harmonic forces, as shown in Fig. 3. The material properties and nominal

geometric properties (before mesh distortion) of the aluminum parts are similar and given by: Young’s

modulus of 70 × 109 Pa, density of 2700 kg/m3, Poisson’s ratio of 0.33, length of 1 m (x−direction),

height of 0.1 m (y−direction) and thickness of 0.005 m. Also, the material properties and nominal

geometric properties of the rubber blocks are given by (similar for all the blocks): Young’s modulus of

150 × 106 Pa, density of 950 kg/m3, Poisson’s ratio of 0.48, length of 0.2 m (x−direction), height of

0.05 m (y−direction) and thickness of 0.005 m. The FE mesh of the structure is shown in Fig. 3 and

involves 4-node plane stress quadrilateral elements. For each part/block, damping effects of Rayleigh
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type are considered, i.e., considering a damping matrix of the form C = aM + bK with damping

coefficients which are similar for all the parts. In addition to the rubber blocks, the aluminum parts are

also connected via eight 2-node spring elements (black straight lines in Fig. 3) with 2 DOFs per node

implying random stiffnesses along the x− and y−directions with nominal values kx = 5× 107 N/m and

ky = 5× 105 N/m. The whole structure is excited by two harmonic forces acting in opposite directions

(x−axis) and is fixed at the bottom at x = 0 and x = 1 m as shown in Fig. 3. The harmonic response of

the structure – i.e., the quadratic velocity ω2|v|2 (v being the displacement along the y− direction) at the

top and middle of substructure 3 (Fig. 3) – is analyzed over a frequency band of [0 , 1500] Hz.

Figure 3: Three storey structure subject to geometric variability and involving 2-node spring elements (2 DOFs per node) with

random stiffnesses (eight black straight lines). Rubber blocks are highlighted in green color.

4.1.2. Substructure model

It is proposed to partition the whole structure into three substructures 1, 2 and 3 as shown in Fig. 4.

Geometric variability is introduced by distorting the FE meshes of the substructures via Eq. (1) where

fsx(x, y) and fsy (x, y) are deterministic shape functions which can be chosen in a completely independent

way between the substructures, e.g., to represent different kinds of geometric variability. For instance,

in Figs. 3 and 4, fsx(x, y) and fsy (x, y) represent products of trigonometric functions of different periods,

which are equal to zero at the interfaces between the substructures (central lines of the rubber blocks).

Also, in Eq. (1), εsx and εsy denote mesh distortion parameters – different between the substructures –

which quantify the levels/magnitudes of the geometric variability. Within the framework of the CB

method, the substructures are modeled by means of static modes and fixed interface modes, as explained

in Sec. 3.1. The related boundary nodes/DOFs are highlighted by red dots in Fig. 4. These represent the

coupling DOFs, and also, the constraint DOFs (fixed nodes) and the excitation DOFs (substructures 2

and 3, x−direction only). Here, the numbers of fixed interface modes for modeling the substructures are

N1
CB = 17, N2

CB = 21 and N3
CB = 18. These numbers are supposed to be large enough and correspond
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to the modes whose eigenfrequencies are below four times the maximum frequency of interest, i.e.,

1500 Hz. In this way, the column spaces of the matrices of fixed interface modes of the substructures,

and of the interpolated ones, are expected to be rich enough to accurately capture the dynamic behavior

of the whole structure.

Figure 4: Substructures (three substructures 1, 2 and 3) involved in the modeling of the storey structure. Red dots highlight

boundary DOFs (excitation points are described with one boundary DOF along the x−direction).

4.1.3. geometric variability

Geometric variability is introduced by distorting the FE meshes of the substructures from Eq. (1)

with distortion parameters εsx and εsy defined on [−δ , δ] where, in the present case, δ = 0.015 m. Also,

the shape functions fsx(x, y) and fsy (x, y) represent products of trigonometric functions (as explained

earlier) and are such that |fsx(x, y)| ≤ 1 and |fsy (x, y)| ≤ 1. Such distorted FE meshes are shown in

Fig. 5 together with the related frequency responses of the structure (quadratic velocity) for different

values of εsx and εsy. The response functions issued from the interpolation strategy (Sec. 3.2) are plotted

together with those issued from the full FE model of the structure (reference). Also, the response function

of the baseline structure (without distortion) issued from the full FE model is plotted. It is first noticed

that the response functions between each distorted structure and the baseline structure, and between two

different distorted structures, can strongly differ, i.e., they are sensitive to geometric variability. On

the other hand, for each case, it is shown that the proposed solution (interpolation) closely matches the

reference one over the whole frequency band analyzed. This makes the interpolation strategy relevant

for predicting the dynamic behavior of such structures.

In terms of computational loads, the reduced model (coupled substructures) involved in the interpo-

lation strategy contains 242 DOFs. This includes the boundary DOFs (see Fig. 4, before substructure

assembly) and the fixed interface modes of the substructures. In contrast, the full FE model of the struc-
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Figure 5: Some distorted FE meshes (left) and related frequency responses (right) of the storey structure: (black continuous

line) reference; (red dashed line) interpolation; (blue dashed line) baseline structure (undistorted mesh).

ture contains 8714 DOFs. The related time reduction to solve the dynamic equation of the structure –

i.e., the reduced equation obtained by assembling the substructure models (21), vs Eq. (3) – is roughly

90− 95% to the benefit of the proposed approach.

To further demonstrate the relevance and accuracy of the interpolation strategy, an extreme case

involving substructures with mesh distortion parameters (εsx, ε
s
y) far from the interpolation points is con-

sidered. The chosen parameters are (ε1x, ε
1
y) = (−δ, δ), (ε2x, ε

2
y) = (δ, δ/2

√
2) and (ε3x, ε

3
y) = (−δ,−δ)

where it is recalled that the interpolation points correspond to (εsx)p, (ε
s
y)p ∈ {−δ/

√
2 , 0 , δ/

√
2}. The

related distorted meshes of the substructures and frequency responses are shown in Fig. 6 with a focus on

the frequency band [450 , 850] Hz highlighting a few resonance peaks which are sensitive to geometric

changes. In this case again, the proposed approach shows good agreement with the FE solutions.
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Figure 6: Substructures with mesh distortion parameters (ε1x, ε1y) = (−δ, δ), (ε2x, ε2y) = (δ, δ/2
√
2) and (ε3x, ε

3
y) = (−δ,−δ)

(left) and related frequency responses on [450 , 850] Hz (right): (black continuous line) reference; (red dashed line) interpola-

tion; (blue dashed line) baseline structure (undistorted mesh).

4.1.4. geometric variability and parametric uncertainties

Consider now the case where the structure undergoes both geometric variability (mesh distortion)

and parametric uncertainties. Here, the stiffnesses of the spring elements in Fig. 3 represent 16 random

independent variables which are supposed to follow a uniform distribution on [0 , 108] N/m for kx, and

[0 , 106] N/m for ky. Regarding the dynamic equation in Eq. (2), these random stiffnesses are introduced

by means of two 8× 1 vectors of parameters p1 and p3 for modeling substructures 1 and 3, respectively.

The response function of the structure (full FE model) for a given set of mesh distortion parameters εsx

and εsy and a given set of random parameters p1 and p3 is shown in Fig. 7 (black curve). For the sake of

clarity, the response function of the distorted structure with nominal stiffnesses kx = 5 × 107 N/m and

ky = 5 × 105 N/m is not shown (the reader is referred to Fig. 5, top figure). It is, however, dissimilar

from the curve shown in Fig. 7.

First, the interpolation strategy proposed in Sec. 3.2 is considered, as earlier. The related response

function is shown in Fig. 7 (left figure), and in this case, it shows strong dissimilarities with the reference

curve. The differences between the proposed and reference solutions clearly appear after 700 Hz, but

also at lower frequencies at the resonance peaks of the structure (frequency shifts). This lack of accu-

racy might be explained since the subspaces spanned by the interpolated static modes and fixed interface

modes of the substructures are not rich enough to take into account the stiffness variations of the spring

elements. Besides, it should be pointed out that, contrary to what could be expected, increasing the num-

ber of fixed interface modes for modeling the substructures deteriorates the convergence of the strategy.

The issue is linked to finding, within the framework of the interpolation strategy, a common subspace for

matrices of modes which, for part of them – say, those associated to very large eigenfrequencies —, are

spurious since quite disconnected from the other ones.

On the other hand, the response function issued from the mixed modeling approach proposed in
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Figure 7: Frequency response of the storey structure with both geometric variability and parametric uncertainties (one set of

parameters): (black continuous line) reference; (left, blue dashed line) interpolation; (right, red dashed line) interpolation with

enrichment.

Sec. 3.4, which combines both interpolated matrices of component modes and matrices of enrichment

vectors, can be computed as shown in Fig. 7 (right figure). Here, N1
e = N1

CB = 17 and N3
e = N3

CB = 18

enrichment vectors are considered for modeling substructures 1 and 3, in addition to the interpolated

ones. As for substructure 2, it is modeled using interpolated modes only (no spring element). In this case,

the proposed solution correctly agrees with the reference one, as expected. This, therefore, highlights the

need of using the mixed modeling approach for structures with both geometric variability and parametric

variations.

From the computational point of view, the sizes of the reduced matrices remain small compared to

the reference model, i.e., 277 DOFs for the reduced dynamic equation of the structure, against 242 DOFs

with the sole interpolation strategy. The related time reduction, to solve the dynamic equation of the

structure, is almost similar to the previous case (90− 95%). It should be recalled that, within the frame-

work of the proposed approach, several low-cost “offline” numerical tasks are required. These concern

(i) the computation of the transformation matrices T̂s of the substructures and (ii) the computation of

the reduced matrices of the substructures via matrix products with (T̂s)T and T̂s. These numerical tasks

can be strongly sped up as explained in Sec. 3.5. The related computational times are here negligible

compared to the cost for computing the response function.

4.1.5. Monte Carlo analysis

The proposed approach (Sec. 3.4), while providing low computational times, has proven relevant for

predicting the dynamic behavior of the structure with both geometric variability and parametric uncer-

tainties. As such, it can be advantageously used for a Monte Carlo analysis, e.g., consideringNMC = 1000

samples of random stiffnesses (2× 8 values for kx and ky) which can be obtained via any Latin Hyper-

cube sampling method – e.g., the one provided by the MATLAB’s function lhfdesign. For instance, the
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confidence interval about the mean value of the measured quadratic velocity may be predicted. For a

confidence level of 95%, it is given by:

I =

[
X̄ − 1.96

√
S

NMC
, X̄ + 1.96

√
S

NMC

]
, (42)

where X̄ and S are estimates of the mean and variance of the quadratic velocity which can be iteratively

computed from the strategy proposed in [45]. The mean of the quadratic velocity and the related confi-

dence interval are shown in Fig. 8 on the frequency band [700 , 1500] Hz. It is shown that the structure

response is highly sensitive to uncertainties on [800 , 1100] Hz, which is somewhat in accordance with

the response function in Fig. 7. In this frequency band, the average relative error for predicting the mean

value – say, 2× (1.96
√
S/NMC)/X̄ – is about 30− 40%.

Figure 8: Mean of the measured quadratic velocity (red line) and related confidence interval (yellow area).

4.2. Two coupled plates

4.2.1. FE model

Consider now the case of two square Mindlin plates 1 and 2, clamped on one of their edges, which

are connected together via an array of 9 × 3 springs whose attachment positions on plate 1 are subject

to variations as shown in Fig. 9 where FE mesh distortion is highlighted in blue area. Parametric uncer-

tainties are introduced here considering random stiffnesses for the springs and, also, a square central part

of plate 2 with random thickness h (see red area in Fig. 9). In addition, plate 2 is excited at its center

by a transverse harmonic force, i.e., at the center of the “uncertain” region highlighted in red in Fig. 9.

Both plates share similar nominal characteristics, i.e.: Young’s modulus of 210 × 109 Pa, density of

7800 kg/m3, Poisson’s ratio of 0.33, dimensions of 1× 1 m2 and thickness of 0.002 m. Also, the dimen-

sions of the red central part of plate 2 is 0.25× 0.25 m2. The FE meshes of the plates are shown in Fig. 9

and involve 4-node Mindlin plate elements (40×40 elements for each plate) with 3 DOFs per node [46].

21



To overcome shear locking effects, the “shearing part”of the stiffness matrices of the plate elements is

computed using a reduced number of Gauss points (one point here), which is standard. Again, damping

of Rayleigh type is considered for modeling the plates (same damping coefficients). As for the springs,

they share the same nominal stiffness k = 5 × 104 N/m. In the present case, the averaged value of the

quadratic velocities (transverse direction) for the nodes in plate 1 which do not belong to the distorted

part – i.e., all the nodes except those contained in the blue area – is assessed. The related frequency

response is analyzed over a frequency band of [0 , 100] Hz.

Figure 9: (left) Two coupled plates with geometric variability, springs with random stiffnesses (black straight lines), and

localized random thickness (red patch). (right) Distorted FE mesh of plate 1. Distorted FE mesh only concerns plate 1 (blue

area).

4.2.2. Substructure model

The whole structure can be straightforwardly partitioned into two substructures 1 and 2 as shown in

Fig. 10 which represent, respectively, plate 1 (including part with distorted FE mesh) with the springs,

and plate 2 (including central part with random thickness). The distortion of the FE mesh of plate 1

is obtained by moving the positions of its nodes via Eq. (1) where fsx(x, y) = f1x(x, y) and fsy (x, y) =

f1y (x, y) are null except on the blue part (see Fig. 9). In this case, f1x(x, y) and f1y (x, y) represent products

of trigonometric and polynomial functions which are such that f1x(x, y) = 0 on the main two edges of the

blue part, and f1y (x, y) = 0 on the other two edges. A schematic of such a distorted FE mesh is shown

in Fig. 9. The boundary nodes/DOFs of the substructures are highlighted by red dots in Fig. 10 and

include the coupling DOFs between the springs and plate 2, the constraint DOFs (fixed nodes) and the

excitation DOF (substructure 2). Here, the numbers of fixed interface modes for modeling substructures

1 and 2 are N1
CB = 83 and N2

CB = 68, respectively. These numbers are supposed to be large enough and

correspond to the modes whose eigenfrequencies are below five times the maximum frequency of interest
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(100 Hz). A good strategy to determine these numbers of modes is to perform a sensitivity analysis, i.e.,

by investigating the accuracy of the response function for different numbers of modes.

Figure 10: Substructures representing one plate with distorted FE mesh and springs with random stiffnesses (substructure

1), and one plate with localized random thickness (substructure 2). Red dots highlight boundary DOFs (excitation point is

described with one boundary DOF along the transverse direction).

4.2.3. geometric variability and parametric uncertainties: springs with random stiffnesses

Geometric variability is introduced by distorting the FE mesh of plate 1 via Eq. (1), where f sx(x, y) =

f1x(x, y) and f sy (x, y) = f1y (x, y) are such that |f1x(x, y)| ≤ 1 and |f1y (x, y)| ≤ 2 on the blue part in

Fig. 9, and f1x(x, y) = 0 and f1y (x, y) = 0 elsewhere. Here, the mesh distortion parameters – i.e.,

εsx = ε1x and εsy = ε1y, see Eq. (1) – are defined on [−δ1 , δ1] where δ1 = 0.035 m. On the other hand,

the stiffnesses of the springs are supposed to represent 27 independent random variables following a

uniform distribution on [0 , 105] N/m. The response function (averaged quadratic velocity, plate 1) of the

structure, for a given set of mesh distortion parameters ε1x and ε1y and a given set of random stiffnesses

(27 different parameters) is shown in Fig. 11. The mesh distortion considered here is similar to that

shown in Fig. 9. The solution issued from the full FE model of the structure is shown together with that

provided by the mixed modeling approach proposed in Sec. 3.4. Within the framework of the proposed

approach, N1
e = N1

CB = 83 enrichment vectors are considered for modeling substructure 1, in addition

to the interpolated component modes. The related reduced model of the whole structure involves 262

DOFs (including boundary DOFs, fixed interface modes of the substructures, enrichment vectors for

substructure 1), against 9840 DOFs for the full FE model. To highlight the influence of the random

stiffnesses, the response function of the distorted structure with nominal stiffnesses k = 5× 104 N/m is
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also shown in Fig. 11 (see blue dashed line). Here, the response functions of the structure cover many

resonance peaks involving the global resonance modes of the structure, and also, the local resonance ones

of the plates. Overall this yields a non-smooth frequency spectrum with non-uniform modal density and

resonance peaks of different magnitudes. Again, the proposed approach appears relevant for predicting

the dynamic behavior of the structure, i.e., the related response function closely matches the reference

solution over the whole frequency range analyzed. The main interest of the proposed approach lies in the

reduction of the computational times, i.e., more than 95% (compared to computing the full FE model) in

the present case.

Figure 11: Frequency response of the coupled plates with geometric variability and parametric uncertainties which concern

springs with random stiffnesses (one set of parameters): (black continuous line) reference; (left, blue dashed line) structure

with nominal stiffnesses; (right, red dashed line) interpolation with enrichment.

4.2.4. geometric variability and parametric uncertainties: springs with random stiffnesses and localized

random thickness in plate 2

Let us consider, finally, the same structure as before with an additional random parameter which

concerns the thickness h of the red square part (plate 2) shown in Fig. 9, which is supposed to randomly

vary on 0.002 m± 30% with a uniform probability law. Again, the mixed modeling approach proposed

in Sec. 3.4 is investigated. Here, N1
e = N1

CB = 83 enrichment vectors are considered for modeling

substructure 1 (as before), and N2
e = 30 enrichment vectors are considered for modeling substructure

2. This yields a reduced model with 292 DOFs (including boundary DOFs, fixed interface modes of

the substructures, enrichment vectors for substructures 1 and 2). The added enrichment vectors, for

substructure 2, are computed from Eq. (28) where (∆Ks
II)0 = (∆K2

II)0 represents the variation of the

stiffness matrix of substructure 2 resulting from the variation of the thickness of the central part. Note

that, although not negligible, the variation of the mass matrix of the substructure (thickness variation)

is not taken into account in the expression of the enrichment vectors. In other words, only the static

contribution of the variation of the dynamic stiffness matrix of the structure is considered to express the
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enrichment vectors. The related response function is shown in Fig. 12 together with the reference FE

solution. Again, a given set of random parameters is considered (same stiffnesses as in the last subsection,

and a given value of h). To highlight the influence of the random thickness, the response function of the

structure with nominal thickness h = 0.002 m is also shown in Fig. 12 in blue dashed line. In this case

again, the proposed approach successfully predicts the dynamic response of the structure without any

ambiguity. As for the previous case, the reduction of the computational times appear to be greater than

95%.

Figure 12: Frequency response of the coupled plates with geometric variability and parametric uncertainties which concern

springs with random stiffnesses and localized random thickness (one set of parameters): (black continuous line) reference;

(left, blue dashed line) structure with random stiffnesses and nominal thickness; (right, red dashed line) interpolation with

enrichment.

5. Conclusion

A model reduction method has been proposed for the reanalysis of structures composed of substruc-

tures with geometric variability and parametric uncertainties. Geometric variability is introduced by

distorting the FE meshes of the substructures via shape functions. On the other hand, parametric un-

certainties are introduced to describe local variations of the stiffness matrices of the substructures. The

proposed approach involves considering substructure transformation matrices, easy to update to address

such substructure changes, which are built from interpolated matrices of component modes and matrices

of enrichment vectors. In this framework, the transformation matrices can be estimated by interpolation

between “interpolation points” T̂s
p which represent parameter-independent matrices which only need to

be computed once (i.e., regardless of the substructure changes). This strategy leads the way to comput-

ing the reduced matrices of the substructures efficiently without the need of performing matrix products

between the mass/damping/stiffness matrices and the transformation matrices many times, which is of

main concern for Monte Carlo simulations. Numerical experiments have been carried out considering

two structures of moderate complexity, i.e., a 2D storey structure with stiffened rubber blocks and two
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Mindlin plates connected by springs. In the first case, parametric uncertainties have been introduced via

spring elements of random stiffnesses. As for the second one, they have been introduced via springs

of random stiffnesses, and random thickness localized somewhere on a plate. For these cases, the pro-

posed approach has proven accurate for predicting the harmonic responses of the structures. Also, it has

proven efficient for computing the structure responses much more quickly than a full FE analysis (about

90− 95% time saving, even more). This appears to be crucial, e.g., to perform Monte Carlo simulations

where the sensitivity of the structure responses to random parameters, eventually together with random

mesh distortions (geometric variability), could be of concern.
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