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1. Introduction and motivation

The Nonlinear Schrodinger equation (NLSE) plays a fundamental role
in describing a series of physical phenomena, from the dynamics of micro-
mechanical systems [1] to explaining nonlinear phenomena involving plasma
physics [2]. Recent research examples apply the NLSE in several fields such
as biology [3], optics [4], photonics [5], and metamaterials [6], highlighting
the importance of seeking solutions to the solitonic problem of the NLSE.

Unlike other areas of study, damping plays a fundamental role in describ-
ing mechanical systems, adding complexity to the generation and control of
nonlinear waves. Given this scenario, the theoretical and experimental repro-
duction of the NLSE in mechanical contexts is usually accomplished through
chains of damped nonlinear oscillators subjected to external, parametric, or
both excitations [7] and the reported applications are diverse, from modal
analysis [8] to detecting masses in microcantilevers [9].

Due to the presence of damping, the search for closed-form solutions be-
comes a complex and often infeasible task for systems described by the NLSE.
Under these circumstances, researchers have applied numerical strategies to
search for stable solutions, and such methodologies are well-documented in
the literature [10, 11, 12]. However, the computational efforts involved in
such works are often high. An example of this issue is the use of the New-
ton method to delimit parameters that guarantee the existence of damped
solitons [13].

The use of Artificial Neural Networks (ANN) regression models as meta-
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models to solve complex problems associated with high computational cost
has followed the rapid computing power growth. To illustrate this statement,
we can mention the use of this strategy in the analysis of conservation laws
from differential equations [17] and evolutions of nonlinear problems [15].

The massive interconnectivity between neurons and the ability to be
trained using backpropagation are characteristics that allow the utilization of
ANN to overcome challenges, such as the search for NLSE solutions [14, 16].
The development of metamodels associated with solitonic equations proved
to be a promising strategy. Despite the advances in the use of artificial in-
telligence in describing solitonic phenomena [18, 19], until now, metamodels
capable of describing damped solitons subjected to external excitation have
not yet been reported in the literature.

To our knowledge, the exploration of localized vibrations in coupled res-
onators is an additional motivation behind this work. With the analysis of
Intrinsic Localized Modes (ILM) presenting as a potential field for several
mechanical engineering applications, including those detailed in studies such
as [20, 21, 22, 23, 24], it is important to further improve our understanding
of these modes, particularly in damped structures.

In this scenario, the present work aims to apply Neural Networks tech-
niques for the creation of a metamodel of stationary solitons that describe the
amplitude of vibration of damped oscillator chains subjected to an external
force. Unlike resonators subjected to parametric excitation, chains subjected
exclusively by external excitation do not have known analytical solutions for
ILMs when damping is considered, ratifying the advantage that a metamodel

could add to applications that use such systems.
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The obtained metamodel proved to be effective in describing the behav-
ior of damped stationary solitons when an external excitation is considered
within a parameter region. The computational cost of the metamodel, com-
pared with the Newton’s method, demonstrated to be considerably inferior,
confirming the advantages of this approach without significant loss of accu-
racy of the predicted solutions.

The rest of the paper is arranged as follows: Section 2 presents the state-
of-the-art of stationary solitons in oscillator chains, where a description about
the context of the research motivation is made. An approach for searching
stationary solutions of the NLSE is presented in Section 3. The develop-
ment of the metamodel and region of accuracy, in Section 4 and Section 5,
respectively. Finally, the conclusion and possible future directions are given

in Section 6.

2. State-of-the-art of stationary solitons in oscillator chains with

cubic nonlinearity

The mechanical configuration depicted in Fig 1 is a generalized version
of the system under investigation in this study. It comprises a chain of non-
linear oscillators subjected to different types of damping. The structure also
considers two types of excitation: external and parametric. The mathemat-

ical description of this system was provided by [7] and is expressed through
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the following equation:

MX, +CX, + KX, +ZX? + AX2X,
—Kg (X1 —2X, + X, 1)
+0 (X = Xo1)” + (X — Xo1)’]
+@ [(Xy — Xp1)” + (X — Xo1)’]
FA (X = K1) (X = X
A (Ko = Xoa)? (K = X)) |
= H cos (wet) — G cos (wpt) X,

th oscillator from its equilibrium position at the

The displacement of the n
time ¢ is given by the variable X,,, where n ranges from 0 to (N + 1) with
known boundary conditions (such as Xo = Xy, = 0). Each oscillator is
excited by both a parametric excitation with frequency w, and an external
excitation with frequency w,. The parametric and external excitation am-
plitudes are represented by G and H, respectively. The system’s parameters
include effective mass M, effective spring constant K, nonlinear stiffness =,
coupling Duffing parameter ¥, nonlinear quintic coupling parameter ®, lin-
ear damping C', coupling spring constant K4, Duffing-Van Der Pol damping
A, and nonlinear dissipative coupling A.

Since the solution’s derivation of Equation (1) is beyond the scope of
this work, its development will not be shown in this paper. Following the
procedure adopted in [7], it is possible to express the behavior of the system
shown in Fig 1 through the method of multiple scales, where the cancellation

of secular terms leads to the emergence of an expression that describes the



O J o U bW

OO OO UTTUIUTUTUTUTUTUTUTOTE B DB DB DD DSDNWWWWWWWWWWNNNMNNNMNNNNNNR R PR PR RRP R R
O WNRPOWVWOJdANT D WNRPRPOW®O-TAUBRWNROWOWO®-JdNUD™WNRFROWOW-JOUDWNR OW®W--I0 U D WN R O W

amplitude of the oscillators by a solitonic equation:

o 0% B
ia_i - _a_aj?Jr(l_”)w— 2+ i) + g — h. (2)

The Equation (2) is a generic form of the one-dimensional mechanical NLSE
with cubic nonlinearity where 7 is related to linear damping, n is related to
nonlinear damping, ¢ is related to the amplitude of parametric excitation, h
is related to the amplitude of external force, 1 is related to the amplitude of
the oscillators, z is the normalized spatial variable, 1" is the normalized time
variable, and v is the conjugate of 1.

Other studies have adopted similar methodologies and have documented
the connection between chains of nonlinear oscillators and solitons in a vari-
ety of systems such as coupled pendulums [25], circular structures [26] and
linear architecture coupled oscillators [27]. Despite the extensive investiga-
tions in this field, an analytical solution for Equation (2) remains unknown.
Nevertheless, stationary solutions for certain specific cases are available in
the literature (see Table 1).

The cases D, E, F, and G are of fundamental interest for macro-mechanical
systems since the presence of damping should be taken into consideration in
more general models, particularly for the linear damping. Considering that
external excitation can be found in various applications, whether in the form
of base acceleration or driving forces [28], case E will be the focus of this
work. The particularization of Equation (2) for this case leads us to the
expression:

o

ior = —W+(1—¢7)¢—2\¢\2¢—h, (3)
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Table 1: Stationary solutions for different configurations of Equation (2) found in the

literature.

Case Damping Excitation  Solution

Analytical
A ~v=0,7=0 ¢g=0,h=0

[24]

Analytical
B ~=0,n=0 g=0,h>0

[13]

Analytical
C ~v=0,n=0 g>0,h=0

[1]

Analytical
D ~v>0,n=0 ¢g>0,h=0

[1]

Numerical
E ~v>0,n=0 g=0,h>0

[13]

Numerical
F ~>0,n=0 ¢g>0,h>0

[7]

Approximate
G ~v>0,7n>0 ¢g>0,h=0 analytical

[1]

7
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which will be investigated in this work.

Other configurations regarding the nonlinear factor are found in different
applications, such as in [29], where the authors derived a NLSE with quintic
nonlinearity in the description of solitary waves in the helicoidal Peyrard-

Bishop-Dauxois model of deoxyribonucleic acid (DNA).

Figure 1: Equivalent system representing chains of nonlinear coupled oscillators subject

to external and parametric excitation.

3. Search for stationary solutions for case E

3.1. Numerical solutions by the Newton’s method

Equation (3) has three stationary solutions (g—? =0) [13, 30]: dark soli-
tons ¥_, bright solitons ¢, and flat ones. Therefore, for a given pair of
h and 7, the investigation of stationary solitons must necessarily use the
numerical continuation strategy. Disregarding the flat solutions, stationary

solitons described by the equation

82
O iy — 16— 20+ h =0 (1)
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have two analytical forms for the non-damped case (y = 0) [13]:

2sinh? o
Y(2) = vo (1 1T coshacosh(Ax)) ’

where

_ \@Cosh2 «@ w _ 1
(1+2 cosh? a)3/2 ’ 0 2(1+2 cosh? a) ’ (6)

A = 2¢g sinh a.
The strategy employed by [13] has proven to be effective, where, by the
continuous analog of the Newton method (also known as the variable iter-
ation step Newton method), the authors succeeded in delimiting an area of
existence and stability of numerical solutions for damped cases.

According to [13], for case E, only dark solitons (¢)_) can exhibit temporal
stability. Consequently, from a physical point of view, chains of nonlinear
oscillators could not have localized vibration modes described by .. Due
to this fact, the solitons analyzed in this paper are based exclusively in v_,
without loss of generality in the methodology.

The initial stage of the numerical approach involves the discretization of

Equation (4) where the following operator is defined:
F(T) =0, (7)

for W = (Yo, 1, ..., 0N+1), U = ¥ (2), 7, = —% +nAzr, Az = NLH and

F =(fo, f1,---,fn+1). The variable L maps the domain in which the N + 2

points of x are allocated. Each term in F' is defined through the operator:

_ ’(/}n—l—l - 2¢n + 2/)n—l

o a2l iy b, (8)

fn
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forn =1... N and at the boundaries by

=3P+ 4P — iy

fo = _ Yn-1 — 4N + 3PN

IAX PN INX (9)

The process of numerically search solutions involves iterating the expression:

4 (OF\ !
P+ k) _ (a_qf> F (U5, for k=1,2,... (10)
p=epk

until, for a given iteration k, an error criterion is adopted based on the

numerical tolerance. In the present study, such criterion is defined as:

o) = F (o tol . 11
09{2%{“) {IF (¥™)) |} < tolerance (11)

The step p is responsible for decreasing the error at each iteration.

The initial point of the numerical search (¥(?)) comes from the non-
damped solutions, since analytical forms are known. For a given h, the
damped numerical solutions are obtained for small increments in 7, so that
a numerical continuation is followed. Similarly, taking as a starting point for
the iteration a particular numerical solution obtained from a h x ~ pair, a

solution with a nearby h can be obtained.

3.2. Existence/stability diagram

By utilizing the methodology described in Section 3.1, it is possible to
generate a diagram which delineates the regions where stationary solitonic
solutions of Equation (3) exist. The boundaries of the existence and stability
of solitons were elucidated in [13], where analytical and numerical limits were
mapped. In parallel to the limits of existence, the Hopf bifurcation, which

maps the area of temporal instability, was also identified.

10
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Obtaining the Hopf bifurcation is of fundamental interest for chaotic sys-
tems [31], as this curve segregates regions of temporal instability despite
the numerical convergence of Equation (4). There are studies in the field
of nonlinear dynamics that use experimental data to obtain this curve [32],
indicating a possible direction for validating the numerically achieved one.

As an approximation, the Hopf bifurcation curve is determined using a
polynomial function (obtained through the least squares method) following
the results outlined in [13]. The outcomes are summarized in Fig. 2, including
the mathematical expressions used for the creation of the diagram.

According to [13], the approximation for the black curve (Fig. 2) is highly
effective in delimiting the existence boundary of solutions. Other solitonic
configurations (Table 1) exhibit distinct diagrams of existence and stability,
as well as different shapes of stable solutions [33].

It is evident that the introduction of damping in the solitonic equation
significantly reduces the range of h x v pairs that enable the existence of
solitons. As previously mentioned, this issue is of particular importance
for mechanical systems, once damping cannot be usually neglected, and in

numerous engineering applications, it is, in fact, a design variable.

4. Build of the metamodel

The construction of the metamodel is divided into two distinct and se-
quential stages. The first stage involves the creation of the Dataset that will

be used in the second stage, the training of the neural network.

11
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Figure 2: Existence and temporal stability diagram of solutions for Equation (4). Based on
0.5

[13]. Black curve: h—%} = 0. Blue curve: h— (% (% (—wz + %)3)0.5 + % (72 + %)) —0.
Orange curve: h— (73 -2+ %)0"5 = 0. Purple curve (Hopf bifurcation) : h— (1.8728v3 +
1.6822v% + 0.0997v + 0.0777) = 0. Regions of parameter yzh indicating the presence of
stable solutions are depicted by the green area, while the red area illustrates the regions

where unstable solutions occur.

4.1. Construction of the Dataset

From a computational standpoint, the generation of the Da-
taset is a costly process that requires an algorithm that balances process-
ing time and approximation refinement. Despite the attempt to compare
the performance of different Dataset sizes in various problems , the number
of solutions required for efficient neural network training remains an open
question in computer science [35, 36].

Section 3.1 introduced the numerical search strategy for solutions of Equa-
tion (4). The convergence of the method for p* = 1, given a sufficiently close
initial ¥ to the desired solution, has been proven [37]. Despite the guaranteed
convergence, the practical feasibility of the method may be compromised in

certain regions of the graph, specifically for high values of v or low values

12
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of h, the practical application of the Newton method considering p* = 1 is
inefficient. Hence, in order to increase the convergence speed of the method,
a strategic step must be considered [38]. In this paper, this step will be
determined by the relationship:

b 005 0" (12)
p" = max { 0.05, .
AR

As mentioned earlier, a numerical continuation for nearby solutions must
be done. A solution will be considered near to another if and only if the ~
values of each solution are distant by A~ or the h values of each solution
are distant by Ah (not both at the same time). This consideration means
that the iteration for the solution V(v + A~, h) will start from W(~,h), or,
analogously, the solution (v, h + Ah) will also start from W(~v, h).

Based on non-damped solutions (Equation (5)), nearby solutions are con-
structed by exploring the possible parameter regions in a path (see Fig. 3a).
In case of eventual divergences in the numerical search, the steps Ay and Ah
are reduced in order to refine the numerical continuation. In the iterative
implementation of nearby solutions, four numeric search stopping criteria are
controlled (see Fig. 3b ).

The criteria I, II, and III are chained, meaning that Criterion III only
occurs after the verification of Criterion II, which, analogously, only occurs
after the verification of Criterion I. If Criterion III or Criterion I'V are reached,
the solutions obtained on that numerical continuation path are stored, and
a new path is constructed from a new non-damped solution. The simulation
parameters are summarized in Table 2.

The choice of discretizing the simulation domain into (N + 2) points

13
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Table 2: Simulation parameters used in the creation of the Dataset

Parameter Value

Axy 51073

Ah 510710
Criterion I 102

Criterion IT 2103

Criterion III (h) 510

Criterion IIT (v) 51074
Tolerance 10719

Simulation domain of [-L/2 , L/2] [—50, +-50]

Number of points in the discretization of x 6 102
Number of paths 186

Number of obtained solutions (Ng) 27674

14
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results in 2(V + 2) values related to ¢ ((IV + 2) real components and (N +
2) imaginary components). Given these conditions, refined discretizations
could considerably increase the computational time. The discretization also
has an influence on non-damped solutions. Although these were obtained
analytically, the discretization leads to numerical errors that propagate along
the numerical continuation. Thus, before the search for damped solutions, it
is recommended to use the Newton method in the non-damped solution in
order to calibrate it according to the numerical tolerance.

Figure 3b summarizes the Dataset used in training the metamodel. As
expected, except for regions of low h or high damping, the point solutions
covers the entirety of the feasible region. The analytical superior boundary
(Fig. 2, curve in black) is less covered by solutions if compared to the inferior
numerical boundary (Fig.2, curves in blue and orange). The resultant number
data points is 27674, which is in line with the order of magnitude of similar

problems [39)].

4.2. Neural network training strategy

The versatility and representational power of Feedforward Neural Net-
works (FNNs), aided by the ability of hidden neurons to extract higher-order
statistics, enable their widespread application in various problem domains
requiring predictive modeling from input data [14].

Using the python modules built by [34], an hyperparameter tuning is
performed using the Bayesian Optimization to iteratively define the best
configuration of the neural network. In this context, structural hyperparam-
eters such as the number of hidden layers, the number of units within each

layer, and the dropout percentage of each layer were taken into account. Ad-

15
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Figure 3: Example of the path followed by the numerical continuation from an undamped
solution (a), and Dataset used in the construction of the neural network (b). The numeric
search stopping criteria are I, related to the solution tolerance (Equation (11)); II, related
to the maximum number of iterations required for convergence; 111, related to the smallest

value of steps Ay and Ah; and IV, related to the achievement of flat solutions.

ditionally, optimizer hyperparameters, such as the optimizer algorithm, the

activation function, and the L2 regularization penalty, were also considered.

16



O J o U bW

OO OO UTTUIUTUTUTUTUTUTUTOTE B DB DB DD DSDNWWWWWWWWWWNNNMNNNMNNNNNNR R PR PR RRP R R
O WNRPOWVWOJdANT D WNRPRPOW®O-TAUBRWNROWOWO®-JdNUD™WNRFROWOW-JOUDWNR OW®W--I0 U D WN R O W

The final neural network configuration is shown in Fig. 4.

The data propagates from input layer © = [v, h] to output layer y =
[Y1, ..., Y1200] by the middle layer S = [Sy, ..., Sae0]. Two weight matrices
are considered: Wy between the input and the intermediate layer and Wy

between the layer and the output. Its definitions are made as follows:

Wi (2x200) = P P Baoo , (13)
Pni Pra ... Praoo
Py Pai oo Pput |
W2 (200x1200) = _Ple .Pyﬂ .Py12002 . (14)
| P20 Pua2oo - Pyigog200 |

The relationship between the elements that form the layers is expressed by
two constitutive equations. The first one corresponds to the relation between

the input and the intermediate layer:

SL' - @ . Wlia (15)

where Wjy; is the vector formed by the elements of column i of Wy. The
hidden layer is fed through an activation function ¢, which consists of a
Rectified Linear Unit (ReLU), and computes S. The second constitutive

equation is between the intermediate layer and the output:

Y; = S . W2i —+ b, (16)

where W ; is the vector formed by the elements of column i of W.

17



O J o U bW

OO OO UTTUIUTUTUTUTUTUTUTOTE B DB DB DD DSDNWWWWWWWWWWNNNMNNNMNNNNNNR R PR PR RRP R R
O WNRPOWVWOJdANT D WNRPRPOW®O-TAUBRWNROWOWO®-JdNUD™WNRFROWOW-JOUDWNR OW®W--I0 U D WN R O W

The parameters Wy, Wy and b are updated with automatic differentia-
tion and back propagation method, until the chosen loss is satisfactory [16].
In the present work, the loss function used to train the network is the Mean

Square Error (MSE) with L2 regularization:

1200
1

P
MSE = —— = 0P EAY W 1

where A is the regularization rate equal to 0.001 and P is the total number of
weights in the model. The first 600 values of y are the real prediction values,
while the last 600 values are imaginary.

Before the model training, the data is randomly separated into train and
test subsets, with 80/20 percent ratio, followed by a standardization of the
input data. This standardization is obtained by identifying the mean of ~

and h, respectively

N, N,
My = NLS 21:51 vi and  pp = NLS Zi:sl hi
and applying the following transformation on the values:

PR /et L 7 hg—pn
Y= and  hy =

Oh

where

N, — N2
i (i—hy)
Ns

N _
i (hi—pin)®

and o = Ns

U'y:

The maximum number of epochs is 500 with a early stopping training cri-
teria that monitors the loss decrease. This criterion plays the role of avoiding
unnccessary computational costs and overfitting, where, after identifying the
epoch at which the decrease in the value of the loss no longer occurs, the

training is interrupted for the next 50 epochs.
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Figure 4: Architecture of the neural network obtained by the hyperparameter analysis.

5. Predictive ability and computational gain of the metamodel

The numerical convergence of possible solutions of Equation (4) requires
increasingly finer refinements as the simulation approaches the solitonic ex-
istence boundary. As highlighted in Section 4.1, this consideration becomes
particularly evident when high values of ~ are chosen: the choice of pa-
rameters from Table 2 allowed the identification of damped solitons up to
~v =~ 0.65. Another region of difficult convergence is found at low values of
the variable h (Fig. 3b). This numerical characteristic points to a possi-
ble difficulty in stabilizing localized vibrating modes in chains of oscillators
whose balance between nonlinearity and excitation is not achieved in such
a way as to overcome damping [25]. As can be observed on Fig. b5a, the
prediction/extrapolation made by the metamodel carries this feature.

After creating the metamodel, an investigation regarding the accuracy
area is recommended. Despite training the Neural Network through Equation

(17) for the entire x domain, the largest values of |¢| are centered around 0
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(Fig. 5b). From the perspective of the ILM in oscillator chains, errors related
to points of higher amplitudes are more relevant than errors linked to points
approaching the boundaries. Under this perspective, an error criterion that
weighs location can be proposed by considering Equation (17) in a domain
near the origin. In this article, the error analysis domain is limited to 0.25 <
r < 0.25 (Fig. 5b).

Figure 6a delimits a region where, after analyzing errors concentrated at
the origin, only predictions with errors less than 1% of the maximum error
are accepted. As can be seen again, a similar conclusion obtained by the
Newton method can be obtained by observing the metamodel’s performance
area: regions with high values of v or low values of h impair the metamodel’s
predictive ability. As can be verified from Fig. 6b, using the metamodel in
remote regions of the boundary leads to progressively closer approximations
to the solutions obtained by Newton’s method.

Figure 7 presents a graph illustrating the relationship between the com-
putational time required to obtain solutions for Equation (4), varying the
parameter gamma (using the same parameters as Table 2 ). It was observed
that the processing time quickly reaches an order of magnitude hours. On
average, the processing time of the metamodel for the simulated hx~y pairs
was 53 ms, with a maximum time of 71 ms and a minimum of 50 ms. The
simulations were performed on a Dell Precision T1700 Tower with an Intel
Xeon processor, model E3-1220 v3, featuring 4 cores and a base frequency
of 3.10 GHz, 8 GB of RAM, an NVIDIA Quadro K600 graphics card, and
Ubuntu 22.04 operating system.
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Figure 5: Normalized prediction errors of the metamodel by the maximum MSE obtained

(a) and graphical comparison between the [¢| calculated using the metamodel and the

Newton method.

6. Conclusion and future directions

In summary, this paper presents a metamodel based on artificial neural
networks for stationary solitons in nonlinear oscillator chains subjected to

external excitation. The metamodel is effective in describing the solitonic
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Figure 6: Area of best performance of the metamodel based on controlling MSE centered

at the origin (a) and comparison of solitons obtained by the Newton method and the

metamodel as the

parameters approach the boundary.

behavior of the NLSE within a region of parameters numerically verified by

Newton’s method.

This study is driven by the localized vibrations in coupled resonators,

particularly in damped structures, where, considering only external excita-

tion, analytical solutions are not reported. Although the main motivation
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Figure 7: Relationship between processing times and solitonic solutions obtained by the

Newton method.

of this work has its origin in vibration dynamics, it is expected that the re-
sults presented here will contribute to the development of new applications
in several fields, such as optics or metamaterials, where the NLSE plays a
fundamental role in describing physical phenomena.

The Dataset used for training the network can be found in [40] so that
other strategies for obtaining a metamodel can be implemented by other
researchers, either through the use of metamodels as a function of the region
of the parameters or of new architecture proposals.

Future directions include the extension of the methodology to other types
of nonlinear damped systems where closed solutions are unknown and com-

putationally expensive.

Declaration of competing interest

The authors declare that they have no known competing financial inter-

ests or personal relationships that could have appeared to influence the work

23



O J o U bW

OO OO UTTUIUTUTUTUTUTUTUTOTE B DB DB DD DSDNWWWWWWWWWWNNNMNNNMNNNNNNR R PR PR RRP R R
O WNRPOWVWOJdANT D WNRPRPOW®O-TAUBRWNROWOWO®-JdNUD™WNRFROWOW-JOUDWNR OW®W--I0 U D WN R O W

reported in this paper.
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