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9A B S T R A C T 10

11

The electroacoustic resonator is an efficient electro-active device for noise attenuation in 12

enclosed cavities or acoustic waveguides. It is made of a loudspeaker (the actuator) and one 13

or more microphones (the sensors). So far, the desired acoustic behaviour, expressed in terms 14

of a linear-time-invariant relationship between sound pressure and vibrational motion (the 15

acoustical impedance), has been more efficiently achieved by a model-inversion strategy which is 16

implemented by driving the electrical current in the loudspeaker coil, based upon the measured 17

pressure. The corrector transfer function is defined in the Laplace domain and digitally executed 18

by the classical infinite-impulse-response technique, though a state-space representation could 19

be employed. In this work, we are interested in enforcing a nonlinear behaviour at low sound 20

excitation levels, where the electroacoustic resonator would normally behave as a linear-time- 21

invariant system. Hence, in order to transform its acoustical response from linear to nonlinear, the 22

model-inversion technique must be reformulated in time domain. The state-space representation 23

of the relationship between the input measured pressure and the output electrical current gives 24

the right perspective and the solution to this problem. We provide the conception of this model- 25

inversion control algorithm capable of transforming a linear-time-invariant acoustical response to 26

potentially any causal acoustical response of the electroacoustic resonator. Such control strategy 27

is tested by targeting a Duffing acoustical response with tunable parameters. Both numerical 28

simulations and experimental tests in quasi-open field validate the approach. The results provided 29

in this contribution open the doors for conceiving non-conventional absorbers which can exploit 30

nonlinear phenomena for noise mitigation even at low excitation amplitudes. 31

32

1. Introduction 33

The wave-control by treating the boundaries of propagative domains is a large area of research encompassing all 34

fields from electromagnetics to solid mechanics and acoustics. In acoustics, a typical boundary treatment problem is the 35

room modal damping, where the objective is to damp the acoustic modes in an enclosed cavity. Morse [1] recognized 36

the normal surface impedance as the quantity characterizing the acoustic behaviour of a locally reacting boundary, in 37

its linear regime. It is defined as the ratio of Laplace transform of the local sound pressure and the normal velocity: 38

𝑍𝑠(𝑠) = 𝑝(𝑠)∕𝑣(𝑠), where 𝑠 is the Laplace variable, set to j𝜔 (where j =
√

−1) in the stationary regime. However, a 39

generic boundary might present non-locally reacting, non-linear or even time-variant acoustical response, and can be 40

characterized by a general operator{𝑝(𝐱, 𝑡),𝐮(𝐱, 𝑡), 𝑡} = 0, relating sound pressure 𝑝 and the surface displacement 𝐮 in 41

the physical coordinates (𝐱, 𝑡). In case of locally-reacting and linear time-invariant (LTI) behaviour of the boundary, the 42

implicit general operator {∙} degenerates to a LTI relationship between local sound pressure 𝑝(𝑡) and normal velocity 43

𝑣(𝑡), whose Laplace or Fourier transform leads to the definition of the normal surface impedance: 𝑝(𝑠)−𝑍𝑠(𝑠)𝑣(𝑠) = 0. 44

Though the linear regime is valuable only below a certain threshold of the involved energy, both in acoustics and solid 45

mechanics the problem of noise and vibration mitigation has been mostly tackled by LTI means. In solid mechanics, 46

the Tuned-Vibration-Absorber (TVA) [2], consists of a resonator attached to the main structure, properly tuned with the 47

resonance of the primary structure (supposed linear). Nevertheless, since mistuned TVA might increase the vibration 48

level of the primary structure, adaptive TVAs [2] have been developed with controllable or adjustable parameters, as 49

well as active TVAs. The active TVAs, thanks to an active force on the mass, can provide broader bandwidth, and 50
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Nonlinear ER control

when the active element fails, they can still function as passive vibration absorbers (fail-safe). 51

The resonance principle of energy capture is also exploited in sound mitigation by the Helmholtz or quarter-wavelength 52

resonators, which are equivalent to TVAs in solid mechanics. Their main drawback is the fact that the equivalent 53

acoustical stiffness term is related to the air compressibility in their acoustic cavity. Hence, to target lower frequencies, 54

larger volumes of air are required, limiting their implementation when confronted with space and weight strict 55

specifications, as in aeronautics for example [3]. Also the Helmholtz and quarter-wavelength resonators have found 56

some evolution by adaptive solutions for coping with tunability requirements [3]. Other classical passive acoustic 57

resonators are membranes, which are also exploited in (electro)-active devices, such as the so-called Electroacoustic 58

Resonators (ER). As in the active TVA, a control force is applied to the mass of the ER which can modify its response 59

to the acoustic excitation. Most commonly used technology for the ER is the loudspeaker, where the dynamics of the 60

speaker membrane is altered by the Lorentz/Laplace control force. From the seminal idea of Olson and May [4], the 61

ER concept has given rise to various strategies, such as electrical-shunting [5], direct-impedance control [6] and self- 62

sensing [7]. In order to overcome the low-flexibility drawback of electrical shunting techniques, minimize the number 63

of sensors, meanwhile avoiding to get involved into the electrical-inductance modelling of the loudspeaker, a pressure- 64

based current-driven architecture proved to achieve the best absorption performances in terms of both bandwidth 65

and tunability [8]. It employs one or more pressure sensors (microphones) nearby the speaker, and a model-inversion 66

technique to target the desired impedance by controlling the electrical current in the speaker coil. Its efficiency has 67

been demonstrated for room-modal equalization [9], sound transmission mitigation in waveguides [10], [11], and even 68

non-reciprocal propagation [12]. 69

In solid mechanics, it has long been tried to overcome the limits of linear TVA by exploiting non-linear (typically 70

Duffing type) resonators [13], [14]. In early 21𝑠𝑡 century, it has been demonstrated that the coupled dynamics of 71

the linear main structure and nonlinear absorber, can feature a special phenomenon: the Targeted Energy Transfer 72

(TET) where vibrational energy is transferred from the linear host structure to the nonlinear absorber in a one-way 73

and irreversible fashion [15], [16]. A widely used device presenting TET is the Nonlinear-Energy-Sink (NES) [17]. 74

The NES is largely studied in solid mechanics, in its different forms, such as pure cubic [16] or non-smooth [18]. 75

In acoustics, the potentialities of nonlinear sound absorption have been explored in [19] for designing Helmholtz 76

resonators in the nonlinear regime, or in [20], where TET was achieved from a linear acoustic cavity to a weakly- 77

coupled thin visco-elastic membrane which behaves as a Duffing resonator. As the linear ones, passive nonlinear 78

absorbers are not easily tunable for targeting different bandwidths. Moreover, they usually need high-energy threshold 79

in order to trigger the nonlinear behaviour. An electro-active nonlinear absorber might overcome these limitations, 80

by transforming the mechano-acoustical dynamics of the loudspeaker from linear to nonlinear, while keeping the 81

same external excitation levels. In order to do that, in [21], an additional microphone was placed inside the ER back- 82

cavity, such that to retrieve a measurement directly proportional to the diaphragm displacement at low frequencies. The 83

nonlinear behaviour was then induced by defining an electrical current (the controller) which comprises a “linear” (𝑖𝐿) 84

and a “nonlinear” (𝑖𝑁𝐿) contribution separately. While 𝑖𝐿 is in charge of inverting the loudspeaker own dynamics and 85

enforcing the linear part of the target dynamics, 𝑖𝑁𝐿 is in charge of enforcing the nonlinear term, proportional to the 86

cubic pressure inside the back-cavity of the EA. To apply this strategy, attention must be put in the recursive definition 87

of the “linear” term 𝑖𝐿 in its digital implementation. In the classical Infinite-Impulse-Response (IIR) recursive scheme 88

[22], the controller at each time step is defined based upon its value at the previous time steps. Hence, in order for 𝑖𝐿 to 89

correctly accomplish the model-inversion and the “linear” dynamics targeting, in the IIR scheme, 𝑖𝐿 should never be 90

mixed up with 𝑖𝑁𝐿 in [21]. The nonlinear behaviour accomplished by this device, manifesting itself in the hardening 91

or softening spring effects, is mildly evident in [21] as a small enlargement of the bandwidth with respect to the purely 92

linear control. The great achievement of [21] though, was to be able of adding a nonlinear term to the LTI dynamics 93

of the EA, at relatively low excitation levels. This was accomplished by increasing the gain multiplying the sensed 94

pressure in the back-cavity, which was however limited by important stability constraints. Moreover, difficulties would 95

arise for this strategy, based upon the separation of the linear (𝑖𝐿) and nonlinear (𝑖𝑁𝐿) contributions, if it should be 96

implemented to target multi-degree-of-freedom (MDOF) nonlinear dynamics. 97

In this paper we write the model-inversion control problem to transform the acoustical response of the electroacoustic 98

resonator (ER) from LTI to potentially any causal locally-reacting response (nonlinear and/or time-variant), in the 99

same pressure-based, current-driven architecture of [8], without additional sensors to estimate the motion of the 100

speaker membrane. For non-LTI target dynamics, the control problem must be written in time domain. The state-space 101

representation gives the right perspective to formulate the algorithm. In the algorithm proposed here, the non-LTI 102

dynamics is integrated by a numerical scheme at each time step, in order to retrieve the target state-vector from the 103
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sensed variable (the sound pressure). The computed target state-vector is hence inserted in the model of the ER system 104

to get the electrical current (the controller) capable of enforcing the desired dynamics. In this contribution, the control 105

algorithm is implemented to achieve a Duffing-like acoustical behaviour, with tunable parameters. The novelty of this 106

contribution consists in presenting a control technique capable of enforcing linear as well as nonlinear dynamics, as it 107

is not conceived from a convolution filter, moreover without requiring additional displacement sensors. The innovation 108

stays indeed in employing a Runge-Kutta-like scheme for integrating in real-time the target dynamics, and synthesizing 109

a model inversion controller in real time. This work opens the doors to investigate the potentialities of various non-LTI 110

absorbers, and to the inverse design of ad-hoc non-LTI operators for the scope of wave control at low excitation levels. 111

In Section 2, the model-inversion strategy is outlined for a general non-LTI target acoustical response. In Section 3, 112

the approach is numerically validated by simulating the acoustical response of the controlled system in open-field, 113

for both linear and nonlinear (Duffing) target dynamics. In Section 4, the strategy is implemented on an experimental 114

prototype, and measurements in a quasi-open field are carried out to validate the achievement of a tunable Duffing-like 115

response of the ER at low excitation levels. Finally, in Section 5, we give the conclusions and future developments. 116

2. Model-inversion control concept 117

In this section we provide the general concept of model-inversion control, from which the strategy to transform 118

the ER dynamics from LTI to generic non-LTI, stems from. For convenience, we formulate the problem directly in 119

the case of our ER, but it could be easily translated to other kinds of control systems. The model-inversion approach 120

starts with the definition of a desired target behaviour [23], which in our case is the acoustical response of the ER as a 121

general (possibly non-LTI) operator relating sound pressure on the speaker diaphragm, and vibrational motion of the 122

ER mass. In state-space it can be written as: �̇�𝐝(𝑡) = 𝑓𝑑(𝐱𝐝(𝑡), 𝑝𝑑(𝑡), 𝑡), where 𝑓𝑑 is the 𝑁-order differential operator of 123

the desired dynamics, 𝐱𝐝(𝑡) is the desired state-vector comprising the displacement and its time derivatives up to the 124

order 𝑁 − 1, and 𝑝𝑑(𝑡) is the desired sound-pressure. To achieve such target behaviour, the model-inversion approach 125

synthesizes the control variable (in our case the electrical current 𝑖(𝑡)) based upon the assumption of the system model. 126

In our case the model is the relationship between sound pressure, control force applied on the ER mass, and vibrational 127

motion of ER mass: 𝑝(𝑡) = 𝑔𝑚(𝐱(𝑡), 𝑖(𝑡)), where 𝑔𝑚 is the system-model differential operator, 𝐱(𝑡) is the actual ER 128

state-vector, and the control force is expressed as function of the electrical current 𝑖(𝑡) as it pilots the electromagnetic 129

force produced in the speaker coil. The two equations are grouped together in Eq. (1). 130

{ �̇�𝐝(𝑡) = 𝑓𝑑(𝐱𝐝(𝑡), 𝑝𝑑(𝑡), 𝑡),
𝑝(𝑡) = 𝑔𝑚(𝐱(𝑡), 𝑖(𝑡)).

(1a)
(1b)

In our case, 𝑔𝑚(∙) is a LTI differential operator, while 𝑓𝑑(∙) can be a non-LTI differential operator. The controller, 131

i.e. the electrical current 𝑖(𝑡), which is capable of transforming the ER dynamics from Eq. (1b) to Eq. (1a), is the 132

solution of the system of Eq.s (1), for 𝐱(𝑡) = 𝐱𝑑(𝑡) and 𝑝(𝑡) = 𝑝𝑑(𝑡). 133

The architecture at disposal allows to estimate the actual 𝑝(𝑡) by one or more microphones, hence in Eq. (1) we can 134

take 𝑝𝑑(𝑡) = 𝑝(𝑡). 135

Let us first consider the case of a more familiar LTI target operator 𝑓𝑑(∙). In this case, both Eq. (1a) and Eq. (1b) are 136

LTIs systems, and can be rewritten in matrix notation: 137

{ �̇�𝐝(𝑡) = 𝐴𝐱𝐝(𝑡) + 𝐵𝑝(𝑡),
𝑝(𝑡) = 𝐶1�̇�(𝑡) + 𝐶2𝐱(𝑡) +𝐷1𝑖(𝑡),

(2a)
(2b)

where 𝐴, 𝐵, 𝐶1, 𝐶2 and 𝐷1 are constant matrices. In order to find the control output 𝑖(𝑡) as function of the input 138

𝑝(𝑡), we simply have to impose 𝑥(𝑡) = 𝑥𝑑(𝑡). By doing so, Eq. (2b) can be rewritten in the classical form of state-space 139

LTI systems: 140

𝑝(𝑡) = 𝐶𝐱𝐝(𝑡) +𝐷𝑖(𝑡), (3)

with 𝐶 = (1−𝐶1𝐵)−1(𝐶1𝐴+𝐶2) and 𝐷 = (1−𝐶1𝐵)−1𝐷1. From Eq.s (2a) and (3) we are used to get the corrector 141

transfer function between the input 𝑝(𝑡) and the output 𝑖(𝑡), in the Laplace variable 𝑠: 142
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𝐻(𝑠) =
𝑖(𝑠)
𝑝(𝑠)

= 𝐷−1[1 − 𝐶(𝑠𝐼 − 𝐴)−1𝐵] . (4)

Observe that if we compute the state-space representation of the filter 𝐻(𝑠), we would retrieve the system of 143

Eq.s (2). This observation provides an interesting interpretation of state-space representations, from a model-inversion 144

perspective: the first equation of the state space representation would describe the target dynamics, and the second one 145

the system model. 146

For its digital implementation, the corrector transfer function 𝐻(𝑠) is transformed in the discrete Laplace space 𝑧 by a 147

zero-order-holder (zoh) or Tustin transform [22]. Such transformations allow to approximate the convolution integral 148

𝑖(𝑡) = ∫ 𝑡
0 𝐻(𝑡)𝑝(𝑡− 𝜏)𝑑𝜏 by a finite sum of lower rectangles (zoh) or trapezoids (Tustin), hence to obtain the controller 149

𝑖(𝑡) at each time step. This is the classical convolution approach, for the design of the model-inversion control as in [8]. 150

151

A non-LTI target dynamics does not allow the passage to the Laplace domain and the direct definition of the 152

corrector 𝐻(𝑠). Nevertheless, the state-space representation of Eq.s (1), allows for another solution to enforce possibly 153

non-LTI desired dynamics in a LTI system. For clarity, the system of equations is rewritten in Eq.s (5) to specify that 154

the target dynamics can be non-LTI, while the system model is LTI and can, therefore, be directly inverted. 155

{ �̇�𝐝 = 𝑓𝑑(𝐱𝐝(𝑡), 𝑝(𝑡), 𝑡),
𝑝(𝑡) = 𝐶1�̇�(𝑡) + 𝐶2𝐱(𝑡) +𝐷1𝑖(𝑡).

(5a)
(5b)

At each time step 𝑡𝑛 of the digital implementation, we can retrieve the target state-vector 𝐱𝐝(𝑡𝑛+1) based upon the 156

measured pressure 𝑝(𝑡𝑛), by solving Eq. (5a) thanks to a numerical scheme. Then, we impose 𝐱(𝑡𝑛+1) = 𝐱𝐝(𝑡𝑛+1) in Eq. 157

(5b), in order to retrieve 𝑖(𝑡𝑛+1). The digital implementation strategy just proposed, essentially consists of two steps, 158

illustrated below: 159

1. Evaluate �̇�𝐝(𝑡𝑛) = 𝑓𝑑(𝐱𝐝(𝑡𝑛), 𝑝(𝑡𝑛), 𝑡𝑛), from the measured pressure 𝑝(𝑡𝑛) and the state vector 𝐱𝐝(𝑡𝑛) estimated at 160

the previous time step. Then, inject the controller 𝑖(𝑡𝑛) obtained by inverting Eq. (5b): 161

𝑖(𝑡𝑛) = 𝐷−1
1 [𝑝(𝑡𝑛) − 𝐶1�̇�𝐝(𝑡𝑛) − 𝐶2𝐱𝐝(𝑡𝑛)] . (6)

2. Apply an integration scheme to �̇�𝐝(𝑡𝑛) = 𝑓𝑑(𝐱𝐝(𝑡𝑛), 𝑝(𝑡𝑛), 𝑡𝑛) and estimate the target state vector 𝐱𝐝(𝑡𝑛+1) for the 162

next step. 163

Such control algorithm will be labelled as Real-Time-Integration (RTI) to differentiate it from the IIR implemen- 164

tation of the convolution-based algorithms. Notice that the RTI allows to transform the system acoustical dynamics 165

(given by the relationship between 𝑝(𝑡) and 𝐱(𝑡)) from LTI to non-LTI, while classical convolution-algorithms do not 166

permit the modification of the nature (LTI or non-LTI) of the original system. 167

168

Fig. 1 shows the block diagram of the two-steps control algorithm described above. The 𝑧−1 block in Fig. 1 follows 169

the symbolism of the Simulink toolbox of Matlab to indicate that the desired state vector, computed at time step 𝑡𝑛, is 170

employed in the controller 𝑖 at the next time step 𝑡𝑛 + 1. 171

Different choices can be made for the integration scheme employed to solve Eq. (5a). For example, a proper Runge- 172

Kutta scheme of fourth order (RK4) would require the pressure 𝑝 to be measured at the multiple instants 𝑡𝑛, 𝑡𝑛 + ℎ∕2 173

and 𝑡𝑛 + ℎ, with ℎ being the time step of the integration. In order to do that, the acquisition rate (control input) should 174

be twice the sampling frequency of the digital control output (𝑖(𝑡) and 𝑝(𝑡) should have different sampling frequencies). 175

Calling 𝑓𝑠 = 1∕𝑇𝑠 the maximum sampling frequency of our digital control, a proper RK4 integration scheme can be 176

obtained by considering ℎ = 2𝑇𝑠. This way, the acquisition sampling rate would be set to 𝑓𝑠, while the controller rate 177

would be 𝑓𝑠∕2. The numerical integration scheme employed in this contribution, presents a fixed sampling rate for 178

both the input 𝑝 and the output 𝑖 of the control, with integration step ℎ = 𝑇𝑠. This choice, does not allow to implement 179

a proper RK4 integration scheme, as the sound pressure 𝑝 is unknown at the intermediate stages. Nevertheless, the 180

pressure 𝑝 can be considered as constant at the intermediate steps of integration of Eq. (5a), while the increments of 181
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Figure 1: Block diagram of the two-steps control algorithm.

the unknown vector 𝐱𝐝 can be computed following the typical RK4 scheme. In this case, we cannot speak of a proper 182

RK algorithm, but of a RK-like scheme. Nonetheless, thanks to a high sampling rate of 50 kHz, keeping the pressure 183

unchanged at the intermediate stages of the RK scheme does not threaten the accuracy of integration, while allowing 184

to acquire the pressure signals at the fastest rate. In the following sections, the accuracy of such integration scheme 185

is assessed by comparison with the results and errors of classical IIR convolution algorithms, both numerically and 186

experimentally. 187

Observe also that, as for any digital implementation, this control entails a physiological time-delay 𝜏 between the input 188

and output [24], meaning that in Eq. (6) a 𝑝(𝑡𝑛 − 𝜏) is actually taken into account, and not 𝑝(𝑡𝑛). 189

In the next section, we numerically simulate the implementation of such control algorithm applied on an ER, in an 190

open-field acoustic environment. 191

3. Numerical validation 192

In this section we simulate the implementation of the RTI digital control algorithm described in Section 2, on an 193

ER placed in an open-field environment. So, let us first describe the physical problem. An open-field environment 194

means that the ER is placed on the boundary of a semi-infinite domain. An incident sound wave impacts the ER 195

diaphragm and a reflected wave is produced, as illustrated in Fig. 2. Hence, there is no-coupling between the ER and 196

the surrounding, i.e. the acoustic field is composed by the superposition of incident and reflected propagating plane 197

waves, which do not interact with each other except at the ER diaphragm. This simplified context allows to analyse 198

the response of the controlled ER alone, without any coupling effects with external acoustic modes, the latter being a 199

critical aspect especially for nonlinear resonators, and deserves a dedicated discussion which will be carried out in a 200

following paper. 201

202

In Fig. 2, the ER is placed on the boundary 𝜕Ω of a 2-dimensional (2D) semi-infinite acoustic domain Ω. On 203

the ER interface with the semi-infinite domain an incident plane wave 𝑝+ impacts on the ER with an incidence 204

angle 𝜃. Consequently, a reflected plane wave field 𝑝− is produced at the interface. The relationship between the ER 205

displacement and the incident and reflected sound pressure waves, is given by the linearised conservation of momentum 206

[25]: 207

−𝜌0�̈�(𝑡) = 𝜕𝑥𝑝(𝑥, 𝑦, 𝑡), on 𝑥 = 0 (7)
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Figure 2: ER interfacing with a semi-in�nite acoustic domain.

where 𝜌0 is the static air-density, 𝑢(𝑡) is the displacement of the ER, the upper dot indicating the time derivative, 208

and 𝑝(𝑥, 𝑦, 𝑡) is the sound pressure. The sound pressure 𝑝(𝑥, 𝑦, 𝑡) can be written in terms of incident 𝑝+ and reflected 209

𝑝− plane waves: 210

𝑝(𝑥, 𝑦, 𝑡) = 𝑝+(𝑥 cos 𝜃 − 𝑐0𝑡, 𝑦 sin 𝜃 − 𝑐0𝑡) + 𝑝−(𝑥 cos 𝜃 + 𝑐0𝑡, 𝑦 sin 𝜃 − 𝑐0𝑡). (8)

Hence, Eq. (7) becomes: 211

�̈�(𝑡) = cos 𝜃
𝜌0𝑐0

(

𝜕𝑡𝑝
+(𝑡) − 𝜕𝑡𝑝

−(𝑡)
)

⇒ �̇�(𝑡) = cos 𝜃
𝜌0𝑐0

(

𝑝+(𝑡) − 𝑝−(𝑡)
)

,
(9)

where 𝑐0 is the sound speed, 𝑝+(𝑡) and 𝑝−(𝑡) are the incident and reflected fields at the interface, with the 𝑦 212

dependence dismissed because we are interested in the local reaction. Let us now write our ER model equation, 213

according to the Single-Degree-of-Freedom (SDOF) approximation of the loudspeaker mechano-acoustical dynamics: 214

𝑀𝑎0�̈�(𝑡) + 𝑅𝑎0�̇�(𝑡) +𝐾𝑎0𝑢(𝑡) = 𝑝(𝑡) − 𝐵𝑙
𝑆𝑒

𝑖(𝑡), (10)

where 𝑀𝑎0, 𝑅𝑎0 and 𝐾𝑎0 are the acoustical mass, resistance and stiffness of the loudspeaker in open circuit, while 215

𝐵𝑙 is the force factor (magnetic field times the coil length) and 𝑆𝑒 is the equivalent piston area, of the ER [26]. Observe 216

that we have labelled 𝑝(𝑡) the sound pressure applied on the speaker membrane, supposed to be uniform (independent of 217

𝑦) at sufficiently low frequencies respect to the dimensions of the speaker diaphragm. By definition of a locally-reacting 218

boundary, the sound pressure can be considered uniform on each element of the (discretized) boundary [27, 28, 3], so 219

that the behaviour of locally-reacting boundaries can be described by their local impedance. This is true for wavelengths 220

sufficiently larger than the lateral size of the boundary element. Moreover, in the experimental EA prototype employed 221

in Section 4, the pressure input around the speaker is averaged, making the local impedance assumption effective up to 222

around 2 kHz [12, 29, 11] in the average sense. Clearly, at higher frequencies, the average locality fails and spillover 223

effects might arise. This drawback, along with the time delay of the digital control, limits the controllability of our ER 224

[24]. At sufficiently low frequencies, then, on the speaker interface 𝑝(𝑦, 𝑡) ≈ 𝑝(𝑡) = 𝑝+(𝑡) + 𝑝−(𝑡). 225

In Fig. 3, the SDOF model is illustrated in terms of the mechanical parameters (∙)𝑚0 = (∙)𝑎0 𝑆𝑒. 226

E. De Bono et al.: Preprint submitted to Elsevier Page 6 of 29



Nonlinear ER control

Figure 3: Sketch of the ER (a) and its SDOF piston-mode model (b) employed in the control synthesis.

Defining the state-space vector 𝐱(𝑡) = [𝑢(𝑡), �̇�(𝑡)], Eq. (5b) rewrites: 227

𝑝(𝑡) = [𝑅𝑎0, 𝑀𝑎0] �̇�(𝑡) + [𝐾𝑎0, 0] 𝐱(𝑡) +
𝐵𝑙
𝑆𝑒

𝑖(𝑡), (11)

where we can recognize the matrices 𝐶1, 𝐶2 and 𝐷1 of Eq. (5b), and 𝑖(𝑡) is obtained at each time step by the 228

algorithm defined in Section 2. As we know, our control aims at targeting a specific operator relating local sound 229

pressure 𝑝(𝑡) (input) and membrane vibration (actuator response 𝐱(𝐭)). Nevertheless, the local sound pressure 𝑝(𝑡) 230

depends, in turn, upon the system response itself 𝐱(𝐭), according to the external acoustic environment where the ER 231

is placed. In the Laplace/Fourier domain, it is the so-called radiation impedance [26], which operates like an acoustic 232

feedback on the boundary [24]. This equation defines the acoustical environment where the ER is placed. Observe 233

that such relationship cannot be retrieved by our ER local sensors, hence it cannot directly affect the target operator 234

synthesis. To properly assess and predict the performances of any acoustical device by numerical simulations, though, 235

such equation should be taken into account in the problem simulation. This means that the control input 𝑝(𝑡) should 236

not be considered as an independent term (as it were a source, as it is done in [21]) , but it should be written in terms 237

of the system response 𝐱(𝑡), the latter providing the scattering of sound waves. Indeed, Eq. (11) describes a so-called 238

non-ideal system [30], in the sense that the local sound pressure 𝑝(𝑡) depends upon the response of the system itself 239

𝐱(𝑡). In an open-field environment, the relationship between 𝑝(𝑡) and 𝐱(𝑡) is given by Eq.s (8) and (9), i.e.: 240

𝑝(𝑡) = 2𝑝+(𝑡) − [0, 𝜌0𝑐0∕ cos 𝜃] �̇�(𝑡). (12)

Hence, inserting Eq. (12) in Eq. (11), we obtain the following equation relating the source term 𝑝+(𝑡) and the state 241

vector 𝑥(𝑡): 242

2𝑝+(𝑡) =
[

𝑅𝑎0 +
𝜌0𝑐0
cos 𝜃

, 𝑀𝑎0

]

�̇�(𝑡)+
[

𝐾𝑎0, 0
]

𝐱(𝑡) + 𝐵𝑙
𝑆𝑒

𝑖(𝑡). (13)

For what explained above concerning the non-ideality of the system, the assumption of [21] of 𝑝(𝑡) as a fixed source 243

term in simulations, is incorrect. In an open field environment simulation, since the incident and scattered fields do not 244

interact with each other (except at the interface with the boundary), we can fix 𝑝+(𝑡) at all instants (as a known source 245

term) and find the time-evolution of 𝐱(𝑡) by numerically solving Eq. (13) at each time step 𝑡𝑛. The electrical current 246

𝑖(𝑡𝑛) in Eq. (13) is retrieved at the previous time step from Eq. (6). Once the state vector at the next time step 𝑥(𝑡𝑛+1) is 247

known, the total sound pressure 𝑝(𝑡𝑛+1) is computed from Eq. (12) (where 𝑝+ is known at all instants). Hence, 𝑝(𝑡𝑛+1) 248

can be fed into the control algorithm of Fig. 1, to find the controller 𝑖(𝑡𝑛+1), and the recursive simulation goes on. 249

Notice that a time-delay 𝜏 can also be simulated, by taking into account 𝑝(𝑡𝑛 − 𝜏) in the control Eq. (6). 250

251
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Figure 4: Sketches of the SDOF model of the ER (a) and of the target SDOF LTI resonator (b).

3.1. Linear target dynamics 252

In order to compare the performances of the RTI versus the classical IIR algorithm, let us first consider a linear 253

SDOF target dynamics (as in [8, 10, 12, 24, 11]). The desired behaviour is described by: 254

𝑀𝑎𝑑 �̈�𝑑(𝑡) + 𝑅𝑎𝑑 �̇�𝑑(𝑡) +𝐾𝑎𝑑𝑢𝑑(𝑡) = 𝑝(𝑡), (14)

where 𝑀𝑎𝑑 , 𝑅𝑎𝑑 and 𝐾𝑎𝑑 are the desired acoustic mass, resistance and stiffness of the ER target acoustical 255

dynamics, and 𝑢𝑑(𝑡) is the corresponding desired displacement. In Fig. 4, the target SDOF dynamics is illustrated 256

in terms of the mechanical parameters (∙)𝑚𝑑 = (∙)𝑎𝑑 𝑆𝑒. 257

In [8] the desired mass and stiffness are defined in terms of the open-circuit values 𝑀𝑎𝑑 = 𝜇𝑀𝑀𝑎0 and 258

𝐾𝑎𝑑 = 𝜇𝐾𝐾𝑎0, and the resistance is represented as a fraction of 𝜌0𝑐0. The desired resonance frequency can then 259

be expressed in terms of the open-circuit one 𝑓𝑑 =
√

𝜇𝐾
𝜇𝑀

𝑓0, with 𝑓0 = 1
2𝜋

√

𝐾𝑎0
𝑀𝑎0

. In what follows, the open-circuit 260

acoustical mass, resistance and stiffness of the ER are taken equal to 𝑀𝑎0 = 0.392 kg.m−2, 𝑅𝑎0 = 194 Pa.s.m−1 and 261

𝐾𝑎0 = 4.25 × 106 Pa.m−1 respectively, which brings an 𝑓0 ≈ 525 Hz. These values are the same as the ones identified 262

for the experimental prototype analysed in Section 4. 263

In this section, the open-field problem in case of normal incidence is simulated in time by a RK4 algorithm, both in 264

case of IIR and RTI control algorithms. For harmonic incident waves 𝑝+(𝑡), the reflection and hence absorption 𝛼𝑛(𝜔) 265

coefficients spectra can be retrieved by taking the Discrete-Fourier-Transform (DFT) of the incident and reflected 266

signals. 267

In Fig. 5 the time histories of the reflected pressure 𝑝−(𝑡), electrical current 𝑖(𝑡), and ER velocity for harmonic 268

incident pressure 𝑝+(𝑡) at 500 Hz and amplitude 1 Pa, are presented in case of IIR and RTI control strategies. The time 269

histories for IIR and RTI are indistinguishable. In Fig. 6, we show the normal absorption coefficients 𝛼𝑛(𝜔) retrieved 270

computing the DFT of the incident and reflected pressures signals, in case of IIR and RTI control implementation, 271

as well as the curve of 𝛼𝑛(𝜔) obtained directly from the Frequency-Response-Functions (FRFs) of the ER acoustic 272

mobility. The FRFs though, are here evaluated by taking the Tustin transform [22] of the discrete corrector 𝐻(𝑧) in 273

order to obtain 𝐻(𝑠), so that the transfer function 𝐻(𝑠) (i.e. 𝐻(j𝜔)) be equivalent to 𝐻(𝑧) in the sense described in 274

[22]. The target acoustic dynamics has 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0. 275

The two implementation strategies (IIR or RTI) look equivalent both in Fig. 5 and 6. Fig. 6 shows that the RK4 276

algorithm employed for the simulation of the normal incidence problem in time domain, produces a phase-shift due 277

to numerical errors, which grows up in frequency. Indeed, such a phase shift is present independently of delayed or 278

perfectly synchronized controllers, as showed in Fig. 6. Therefore, the loss of acoustical passivity displayed by 𝛼𝑛(𝜔) 279

from 2 kHz and above, is related to truncation errors of the numerical scheme, which is more important as the frequency 280

increases, for a fixed time resolution. In the simulation result of Fig. 6b, the time delay has been considered equal to 281
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Figure 5: Simulated time histories of ER velocity �̇�(𝑡), re�ected pressure 𝑝−(𝑡) and electrical current signals 𝑖(𝑡), for harmonic
normally-incident pressure wave 𝑝+(𝑡) of amplitude 1 Pa at 500 Hz, in case of IIR (in solid blue) and RTI (in dashed red)
controller implementations.
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Figure 6: Simulated normal absorption coe�cients obtained directly in frequency domain from 𝐻(j𝜔) (in black) compared
with the values obtained by the IIR (in blue) and RTI (in dashed red) time implementations of the controller. In (a) no
time delay is assumed, while in (b) a time delay of 2 × 10−5 seconds is considered. The target impedance operator is set
with values: 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0.

2 × 10−5 seconds as in [8]. 282

283

E. De Bono et al.: Preprint submitted to Elsevier Page 9 of 29



Nonlinear ER control

Figure 7: Sketches of the SDOF model of the ER (on the left) and of the target SDOF Du�ng resonator (on the right).

3.2. Duffing-type target dynamics 284

Once the equivalence of the RTI algorithm with the classical IIR one, has been numerically demonstrated, we can 285

now investigate on the implementation of a cubic (Duffing-type) target dynamics, as the one in Eq. (15): 286

𝑝(𝑡) = 𝑀𝑎𝑑 �̈�𝑑(𝑡) + 𝑅𝑎𝑑 �̇�𝑑(𝑡) +𝐾𝑎𝑑

(

𝑢𝑑(𝑡) + 𝛽𝑁𝐿𝑢
3
𝑑(𝑡)

)

, (15)

where the coefficient 𝛽𝑁𝐿 multiplies the cubic of the target displacement 𝑢3𝑑(𝑡), and has therefore the dimensions 287

of m−2. 288

Fig. 7 shows the SDOF model of the ER employed by the model inversion strategy described in Section 2, to target 289

a SDOF Duffing resonator sketched on Fig. 7b. 290

291

Same open field problem is considered with normally incident harmonic sound wave 𝑝+(𝑡) = 𝑝+0 sin(Ω𝑡). The 292

frequency Ω of the harmonic signal 𝑝+(𝑡) is varied in order to get the spectra. 293

The time-histories, along with its DFTs in case of 𝜇𝑀 = 𝜇𝐾 = 1, 𝑅𝑎𝑡 = 𝜌0𝑐0 and 𝛽𝑁𝐿 = 1 × 1013 m−2 are reported 294

in Fig. 8 and Fig. 9, for incident harmonic pressure wave with Ω = 2𝜋700 Hz. Fig. 8a clearly shows a multi-harmonic 295

response of the ER, due to the electrical current. In Fig. 8b the third harmonic (at 2100 = 700 × 3 Hz), typical of 296

the Duffing resonator response [30], is evident. Moreover, Fig. 8 presents the simulation results in case of time delay 297

𝜏 = 0 and 𝜏 = 2 × 10−5 seconds simulated in the digital control implementation. Fig. 9 zooms the velocity time 298

histories in the stationary regime and the DFT around the fundamental frequency. From Fig. 9, the effect of time delay 299

is clearly visible in detaching the actual velocity �̇� from the desired one �̇�𝑑 , both in the time history and in the frequency 300

spectrum. 301
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Figure 8: Time histories (a) and DFTs amplitudes (b) of incident 𝑝+ and re�ected 𝑝− pressures, electrical current 𝑖(𝑡),
target �̇�𝑑 and actual �̇� velocities, in case of Du�ng desired dynamics of the ER. The excitation 𝑝+ is at 700 Hz. Both
synchronous (𝜏 = 0) and delayed (𝜏 = 2 × 10−5 seconds) simulation results, are showed.

0.03 0.031 0.032 0.033 0.034 0.035

-2

-1

0

1

2
10

-3

550 600 650 700 750 800 850 900 950 1000

1.6

1.7

1.8

1.9

2

10
-3

Figure 9: Time history zoom in the stationary regime (top) and DFTs amplitudes zoom at the fundamental harmonic 700
Hz (bottom), of target �̇�𝑑 and actual �̇� velocities, in case of Du�ng desired dynamics of the ER. Both synchronous (𝜏 = 0)
and delayed (𝜏 = 2 × 10−5 seconds) simulation results, are showed.
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Fig. 10 shows the spectra of the Fundamental and Third harmonics of the ER responses, in terms of the amplitudes 302

of the target displacement 𝑢𝑑(j𝜔), of the actual displacement 𝑢(j𝜔) and of the electrical current 𝑖(j𝜔). The desired 303

displacement fundamental-harmonic spectrum is compared to the Harmonic-Balance analytical solution at the first 304

order (relative to a 1-term solution expansion, see Appendix B). The slight difference between the analytical solution 305

and the numerical one is due to the errors in the numerical integration of Eq. (13). Notice the residual peak around 306

𝑓0 in the plot of |𝑢(j𝜔)| in Fig. 10. This is due to the difficulty to fully cancel out the ER open circuit dynamics. Such 307

residual peak is present even in case of linear target dynamics, especially when 𝑓𝑑 ≠ 𝑓0, as showed in [24], and its main 308

cause is the time delay. In the zoomed area in Fig. 10, we spot a jump corresponding to the superharmonic resonance 309

at about 3 times the primary nonlinear resonance frequency relative to the fundamental harmonics. 310
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Figure 10: Fundamental and third Harmonics of the desired displacement amplitude |𝑢𝑑(j𝜔)|, and actual displacement
amplitude |𝑢(j𝜔)|, in case of Du�ng desired dynamics of the ER (with 𝜇𝑀 = 𝜇𝐾 = 1, 𝑅𝑎𝑡 = 𝜌0𝑐0 and 𝛽𝑁𝐿 = 1 × 1013 m−2).
The target displacement fundamental harmonics are compared to the Harmonic-Balance 1-term analytical solution. The
zoom of |𝑢𝑑(j𝜔)| and |𝑢(j𝜔)| is around the secondary jump.

Fig.s 11 and 12 show the fundamental harmonics of ER response, with varying target dynamics parameters or 311

excitation amplitude. The ER response is given in terms of the ratio between electrical current and pressure amplitudes, 312

as well as mobility (defined as �̇�(jΩ)∕𝑝(jΩ)) at the fundamental harmonics. Default values are 𝜇𝑀 = 𝜇𝐾 = 1, 313

𝑅𝑎𝑡 = 𝜌0𝑐0, 𝛽𝑁𝐿 = 1 × 1013 m−2 and 𝑝+0 = 1 Pa. The huge value of the nonlinear coefficient 𝛽𝑁𝐿 is needed for 314

the target dynamics to display its nonlinear behaviour at low excitation amplitudes. The higher 𝛽𝑁𝐿 is, the lower 315

excitation levels are necessary to trigger the same nonlinear phenomena. Fig. 11a shows the effect of the variation 316

of the nonlinear coefficient 𝛽𝑁𝐿, while Fig. 11b shows the effect of varying the excitation amplitude 𝑝+0 . The typical 317

“hardening spring” effect of Duffing-type oscillators with positive cubic nonlinearities [30], is evident and accentuated 318

as higher the nonlinear coefficient or the excitation amplitude. The effect of varying the reactive and resistance terms 319

in the ER desired dynamics, is illustrated in Fig. 12, showing that the jump moves toward higher frequencies for higher 320

values of 𝜇𝐾 /𝜇𝑀 , while a lower quality factor decreases the peak, hence smoothing the jump. These simulations 321

demonstrate the tunability of the RTI control strategy also in case of a non-linear (Duffing) target dynamics achieved 322

by the RTI algorithm exposed in Section 2. 323

Fig. 13 shows the responses in a quasi-stationary regime realized by a swept sine excitation of 5 seconds with 324
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Figure 11: Amplitude of the fundamental harmonics of the simulated stationary responses of the ER to harmonic excitation
𝑝+, in terms of electrical current and acoustic mobility, in case of varying 𝛽𝑁𝐿 (a) and 𝑝+0 (b).
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Figure 12: Amplitude of the fundamental harmonics of the simulated stationary responses of the ER to harmonic excitation
𝑝+, in terms of electrical current and acoustic mobility, in case of varying 𝜇𝑀 (a), 𝜇𝐾 (b) and 𝑅𝑎𝑡 (c).

frequency varying between 300 and 1400 Hz in the increasing or decreasing sense. The target parameters are set 325

to 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0∕4. This simulation demonstrates another typical behaviour of nonlinear systems, i.e. 326

the dependence upon the initial conditions. In particular, a cubic stiffness term realizes two possible stable responses 327

in certain frequency ranges. Depending upon the frequency variation sense, the Duffing resonator initial response 328

will be on the upper or the lower branch [30], jumping to the other stable response at higher or lower frequencies, 329

respectively. In Fig. 13, the EA response is provided in terms of auto-power-spectral-densities (auto-PSDs) of desired 330

velocity �̇�𝑑 , electrical current 𝐼 and actual velocity �̇� , divided by the auto-PSD of sound pressure 𝑃 in front of the 331

speaker diaphragm. The choice to present PSDs instead of pure FFTs, is firstly due to the non-stationary character of the 332
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chirp excitation. Moreover, we divided the auto-PSDs by the sound pressure auto-PSD in order to retrieve analogous 333

quantities of transfer functions, which are typically employed for linear responses, but which lose their significance in 334

case of multi-harmonic field. 335
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Figure 13: ER simulated responses in terms of auto-PSDs divided by sound pressure auto-PSD, in case of chirp excitation
𝑝+, with frequency increasing (solid blue) and decreasing (dashed red) between 300 and 1400 Hz.

4. Experimental validation 336

In this Section, the RTI algorithm is experimentally implemented to target a linear (in Section 4.1) and a nonlinear 337

dynamics (in Section 4.2) of the ER. Signal acquisition and control implementation are operated by a D-Space 338

MicroLabBox DS1202 hardware. The system is described in Fig. 14: the pressure 𝑝 on the speaker diaphragm, estimated 339

by four microphones around the membrane, after being digitally converted by the Analogue-Digital-Converter (ADC), 340

is fed into a programmable digital signal processor (DSP) where the output of the control is computed at each time 341

step. The Howland current pump [31] allows to enforce the electrical current 𝑖 in the speaker coil independently of 342

the voltage at the loudspeaker terminals. It consists of an operational amplifier, two input resistors 𝑅𝑖, two feedback 343

resistors 𝑅𝑓 , and a current sense resistor 𝑅𝑠. The resistance 𝑅𝑑 and capacitance 𝐶𝑓 constitutes the compensation 344

circuit to ensure stability with the grounded load [32]. 345

The ER prototype employed for the experimental validation is photographed in Fig. 15a. It consists of a 346

central speaker with four corner microphones used to retrieve the averaged pressure on the speaker. The back-case 347

accommodates the analogical electronic card interfacing with the D-Space. The test-bench to measure pressure and 348

velocity on the speaker diaphragm is illustrated in Fig. 15b. An external acoustic source excites the ER, whose dynamics 349
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Figure 14: Sketch of the ER architecture.

Thiele-Small parameters 𝑀𝑎0 𝑅𝑎0 𝐾𝑎0 𝐵𝑙∕𝑆𝑑
Units kg.m−2 Pa.s.m−1 Pa.m−1 Pa.A−1

Values 0.392 194 4.25 × 106 191

Table 1
Thiele-Small parameters of the ER.

is retrieved in terms of sound pressure (by an external Brüel and Kjaer microphone) and normal velocity at the centre 350

of the speaker diaphragm (by a Laser-Doppler-Velocimeter LDV). The noise source is placed on a caoutchouc basis in 351

order to isolate it from the heavy mass basis, where the rest of the equipment is placed. Fig. 16 is a sketch of the entire 352

experimental setup. It comprises the ER system with its power supply and digital communication with the DSPACE, 353

the external microphone and LDV, and the external noise source (a loudspeaker). The DSPACE communicates with a 354

computer where the digital control is defined and where the measurements data can be retrieved (through the Simulink 355

toolbox of Matlab). The channels of the DSPACE have been differentiated between those concerning the control 356

algorithm (C.I. and C.O. for control-input and control-output), and those employed for measuring the performance 357

(M.I. and M.O. for measurement-inputs and measurement-output). 358

The acoustic environment cannot be rigorously defined as open-field, nevertheless the coupling with the acoustic modes 359

of the (large) room where the test is carried out, is sufficiently weak to be able to retrieve the response of an acoustic 360

Duffing resonator alone, with low influence of the acoustic environment. 361

The parameters of the loudspeaker SDOF model employed for the model-inversion algorithm, are reported in Table 1. 362

They have been estimated by impedance measurements in different configurations, as reported in [29]. 363

4.1. The Linear target dynamics 364

As already done numerically, we prove, also experimentally, the equivalence of the RTI and classical IIR 365

convolution algorithms to target LTI mechano-acoustical dynamics. In order to check the reliability of the RTI control 366

strategy in following the linear target dynamics of Eq. (14) in a transient evolution, a first test has been conducted 367

by triggering an external sound source, emitting a pure sine at 500 Hz, after 3 seconds. Fig. 17 shows the time 368

histories of pressure, electrical current 𝑖(𝑡) and target and measured velocities (�̇�𝑑 and �̇�(𝑡) respectively) on the speaker 369

diaphragm. The target SDOF parameters are chosen as 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0. The results obtained by the IIR 370
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Figure 15: Photos of the ER prototype (a) and of the experimental test-rig (b) for the measurement of pressure and
velocity on the speaker diaphragm.

Figure 16: Sketch of the entire experimental setup.

implementation are reported in Fig. 17a, while the RTI outcomes are given in Fig. 17b. Notice how the RTI technique 371

allows to immediately follow the target velocity in the same way as the classical IIR. The dephasing between �̇�𝑑 and 372

�̇�(𝑡) mostly depends upon the inevitable time delay in the digital control implementation of the controller [24], which 373

seems to be unaffected by the control algorithm employed (it looks the same in both IIR and RTI), other than the 374

model-uncertainties in the control synthesis. 375

In Fig. 18a, the normalized mobility transfer function is plotted in amplitude and phase, along with the coherence 376

for 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0 in the frequency range 100-3000 Hz, for both IIR and RTI techniques. The mobility 377
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Figure 17: Time histories of pressure 𝑝(𝑡), electrical current 𝑖(𝑡) and desired and measured velocities (�̇�𝑑 and �̇�(𝑡) respectively)
on the speaker diaphragm, when an external sound source emitting a pure sine at 500 Hz, is activated after 𝑡 = 3 seconds.
A linear SDOF dynamics of the ER with 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0 is targeted either by the IIR (a) or by the RTI (b)
implementation strategy.
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Figure 18: Mobility (b) obtained by targeting a linear SDOF dynamics of the ER with 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0 (a)
and 𝜇𝑀 = 1, 𝜇𝐾 = 2 and 𝑅𝑎𝑡 = 𝜌0𝑐0 (b) by either the IIR (solid blue line) or the RTI (dashed red line).

is also plotted in case of 𝜇𝑀 = 1, 𝜇𝐾 = 2 and 𝑅𝑎𝑡 = 𝜌0𝑐0 in Fig. 18b. Observe in Fig. 18b that both the IIR and 378

RTI algorithms are equally incapable to fully cancel out the original speaker dynamics at 𝑓0, mainly because of time 379

delay [24]. Hence, a residual peak is present around 𝑓0 Hz. The loudspeaker mode employed for the model inversion 380

is the one around 𝑓0, while an additional loudspeaker mode (not taken into account in the model inversion) appears 381

around 2000 Hz. Fig. 19a shows the auto-PSDs of desired �̇�𝑑(𝜔) and actual �̇� (𝜔) velocity in case of 𝜇𝑀 = 𝜇𝐾 = 1 382

and 𝑅𝑎𝑡 = 𝜌0𝑐0, while Fig. 19b shows the corresponding percentage error, for both the IIR and RTI control strategies. 383

The percentage error on the velocity auto-PSD is defined as: 384
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Figure 19: Auto-PSDs of desired �̇�𝑑 and actual �̇� velocity (a), and corresponding error percentage (b), obtained by
targeting a linear SDOF dynamics of the ER with 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0 by either the IIR or the RTI.
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Figure 20: Auto-PSDs of desired �̇�𝑑 and actual �̇� velocity (a), and corresponding error percentage (b), obtained by
targeting a linear SDOF dynamics of the ER with 𝜇𝑀 = 1, 𝜇𝐾 = 2 and 𝑅𝑎𝑡 = 𝜌0𝑐0 by either the IIR or the RTI.

𝜖�̇� (𝜔) =
|�̇� (𝜔) − �̇�𝑑(𝜔)|

�̇�𝑑(𝜔)
. (16)

Observe that the spectrum of 𝜖�̇� (𝜔) is exactly the same for both the RTI and the IIR control algorithms, as expected 385

by the mobility plots of Fig. 18. Apart from the low-frequency region of weak coherence (check Fig. 18), the percentage 386

error stays below 1% at all frequencies except around the speaker own resonance of the controlled mode (500 Hz) and 387

around the additional uncontrolled mode of the speaker (nearby 2000 Hz). The cause of the IIR lost of performance 388

at the speaker own resonance is due to the physiological time delay of the digital control system, as it has been 389

demonstrated in [24]. The error around 2000 Hz is due to the presence of an additional mode of the speaker which has 390
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not been taken into account in the model-inversion control. In Fig. 20a, it is showed the velocity auto-PSD reached 391

by both IIR and RTI, for target parameters 𝜇𝑀 = 1 and 𝜇𝐾 = 2, which means a target frequency 𝑓𝑑 =
√

2𝑓0 ≈ 740 392

Hz. Moving 𝑓𝑑 away from 𝑓0, causes an increase in the residual pick around the original resonance frequency, and 393

consequently a higher percentage error (about 17%) around 𝑓0, as showed in Fig. 20b. Such error which, as commented 394

above, is due to the residual speaker dynamics when 𝑓𝑑 ≠ 𝑓0, will appear also in case of Duffing-like target dynamics, 395

as it also entails a shift of the resonance frequency because of nonlinearity. The percentage error 𝜖�̇� falls below 1% 396

soon after 𝑓0, and reaches about 5% at 2000 Hz because of the additional speaker mode. We highlight here that the 397

RTI control algorithm we propose in this contribution, demonstrates to not add any additional error in its experimental 398

implementation for linear target dynamics with respect to widely employed IIR control algorithms. Recent works have 399

demonstrated that a control exploiting also a microphone inside the back-cavity of the ER, is able to increase the 400

robustness of the control and significantly reduce the residual pick at 𝑓0 for linear target dynamics [33]. 401

In Appendix A, the target parameters of Eq. 14 are modified in order to assess the equivalence between the IIR and 402

the RTI approaches in tuning the linear target dynamics parameters. 403

Once assessed the reliability of the RTI algorithm in the linear case, as equivalent to the classically accepted IIR 404

strategy, let us now verify, experimentally, its potential to enforce nonlinear mechano-acoustical dynamics on the ER. 405

4.2. The Duffing-type target dynamics 406

As in the numerical simulations, here we experimentally target the Duffing-type mechano-acoustical dynamics of 407

Eq. (15). As for the linear case, the performance of the RTI is first proved in the transient regime. Hence, an external 408

sound source emitting a pure sine at 700 Hz is triggered after 3 seconds, and the response of the ER is reported in terms 409

of measured pressure, current and velocity in Fig. 21. Fig. 22a displays a zoom in the stationary regime of the time 410

signals. The electrical current clearly shows the presence of higher harmonics, which bring about the multi-harmonic 411

response of the ER diaphragm as it appears in the plot of the measured �̇�(𝑡). Fig. 22b shows the Fast-Fourier-Transform 412

(FFT) of the time signals. The system responds with a secondary resonance (related to the free oscillations) at 3 times 413

the excitation frequency as common of Duffing resonators. Observe how the measured velocity �̇� detaches from the 414

target one �̇�𝑑 in exactly the same way as in the simulations of Fig. 9, when a time delay 𝜏 was simulated in the algorithm. 415

For the reader to visualize the importance of time delay in the response of our ER with a Duffing-like target dynamics, 416

we report, in Fig. 23, the comparison between simulated and measured velocity. Notice how the experimental signal 417

follows the simulated trend, apart from some measurement noise and physiological differences due to the uncertainties 418

of the speaker model employed in the simulations. As for LTI target behaviour [24], time delay is the main responsible 419

for the errors also when targeting Duffing-like dynamics. 420

In Fig. 24 the auto-PSDs of pressure (𝑃 ) on the speaker diaphragm, of electrical current (𝐼) and of velocity 421

(�̇� ) are plotted, comparing the Open-Circuit (O.C.) performance to the cases of control with linear or Duffing target 422

dynamics. The auto-PSDs are retrieved from a swept sine excitation with frequency increasing between 100 and 3000 423

Hz in 10 seconds. The “jump” phenomenon due to the cubic function of 𝑢(𝑡) in the restoring force of the spring, 424

typical of the Duffing resonator, clearly appears at about 890 Hz. Observe also that the dynamics at the original 425

(open-circuit) resonance of the ER (around 500 Hz) is not totally cancelled out by the model-inversion control, in 426

case of Linear as well as Duffing-like target dynamics. Notice that the pressure auto-PSDs in Fig. 24 are almost the 427

same for each configuration, demonstrating that the nonlinear behaviour is achieved thanks to the control and is not 428

naturally triggered in the speaker by high excitation levels. The target SDOF resonator parameters are 𝑀𝑎𝑡 = 𝑀𝑎0, 429

𝐾𝑎𝑡 = 𝐾𝑎0 and 𝑅𝑎𝑡 = 𝜌0𝑐0, while the cubic term in the Duffing case is multiplied by a 𝛽𝑁𝐿 = 1 × 1013 m−2. Notice 430

also the jump phenomenon of the superharmonic resonance at about 2670 Hz, which is exactly 3 times the primary 431

nonlinear resonance frequency relative to the fundamental harmonics. This is the so-called superharmonic resonance 432

[30] already found in the numerical simulations (see Fig. 10), which is evident in the electrical current plot, and slightly 433

in the velocity spectrum. Observe that the velocity on the speaker diaphragm is also affected by the afore-mentioned 434

additional loudspeaker mode at about 2000 Hz. 435

Fig. 25a shows the auto-PSDs of desired �̇�𝑑 and actual �̇� velocity in case of 𝜇𝑀 = 𝜇𝐾 = 1, 𝑅𝑎𝑡 = 𝜌0𝑐0 and 436

𝛽𝑁𝐿 = 1 × 1013 m−2, with the corresponding error 𝜖�̇� plotted in Fig. 25b. As mentioned in Section 4.1, the shift 437

of the target resonance entails a high error around the open-circuit mode 𝑓0, with the error increasing as more the 438

target resonance is shifted away from 𝑓0. Here, due to the nonlinearity, the resonance is moved above 900 Hz, and the 439

percentage error reaches almost 30%. However, the jump is perfectly followed by the actual velocity spectrum, and the 440

error stays below 1% from 670 to 1900 Hz. 441
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Figure 21: Time histories of pressure 𝑝(𝑡), electrical current 𝑖(𝑡), target and measured velocities (�̇�𝑑 and �̇�(𝑡) respectively)
on the speaker diaphragm. An external sound source emitting a pure sine at 700 Hz, is activated after 𝑡 = 3 seconds. The
linear target SDOF dynamics of the ER has 𝜇𝑀 = 𝜇𝐾 = 1, 𝑅𝑎𝑡 = 𝜌0𝑐0 and 𝛽𝑁𝐿 = 1 × 1013 m−2.
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Figure 22: Zoom (a) of Fig. 21 in the stationary regime, and its DFT (b).

In the following, either the target dynamics parameters or the excitation amplitude have been varied in order to 442

identify typical Duffing-resonator responses and experimentally validate the tunability of such nonlinear system. The 443
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Figure 23: Simulated (top) and measured (bottom) time histories of desired (solid green) and actual (dotted red) velocities
on the speaker diaphragm excited by an external sound source emitting a pure sine at 700 Hz. The simulated response
considers a time delay in the control of 𝜏 = 2 × 10−5. The linear target SDOF dynamics of the ER has 𝜇𝑀 = 𝜇𝐾 = 1,
𝑅𝑎𝑡 = 𝜌0𝑐0 and 𝛽𝑁𝐿 = 1 × 1013 m−2.

ER responses are presented in terms of auto-PSDs of target velocity, electrical current and actual velocity, divided 444

by the auto-PSD of sound pressure. The reason for that choice is that the transfer functions typically employed to 445

characterize linear responses, lose their significance in case of multi-harmonic field. The PSDs ratio provides a form 446

of function which is the closest to the transfer function, allowing us to compare the experimental trends to the numerical 447

ones. Nevertheless, the PSDs ratio does not distinguish between fundamental and higher harmonics, as it was possible 448

in numerical simulations. To separate incident and scattered fields and retrieve the fundamental and higher harmonics 449

separately, a dedicated experimental setup should be conceived, which will be the subject of another contribution of 450

this article series, where both acoustical passivity (in the sense given by [24]) and absorptive performance of this 451

Duffing-like resonator will be investigated. Indeed, the experimental test-rig employed in this work, does not allow to 452

separate the incident field from the multi-harmonic scattered field. Moreover, the fundamental harmonic waves are not 453

physically uncoupled by the non-fundamental ones as the acoustic environment of the test-bench is non-perfectly open, 454

hence a multi-harmonic scattered field entails also a multi-harmonic excitation field. Nevertheless, even supposing to 455

achieve perfect anechoicity around the experimental setup, the LDV closely facing the ER, as well as the sound source 456

itself, might introduce a field scattered back to the ER speaker. The problem of separation of incident and scattered 457

fields in nonlinear acoustic absorbers requires non-trivial strategies to solve the multi-harmonic scattering problem, as 458

presented in [34, 35] for example. 459

460

As done in the numerical simulations, we plot the dependency of the frequency response upon the excitation 461

amplitude in Fig. 26b. Since, as said before, it was not possible to separate experimentally the incident from the scattered 462

fields, we refer in Fig. 26b to the variation of the external acoustic source signal (the voltage at the external loudspeaker 463

terminals), and not to the variation of the incident pressure field amplitude 𝑝+0 (as in the numerical simulations of Fig. 464

11b). This is also the reason for which a direct superposition between numerical simulations and measurements is 465

not possible, as we miss the information about the incident pressure field corresponding to the external source signal. 466
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Figure 24: Auto-PSDs of pressure, electrical current and velocity between 100 and 3000 Hz, in case of open circuit (O.C.)
loudspeaker (solid blue), Linear with 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0 (dashed red) and Du�ng with 𝛽𝑁𝐿 = 1 × 1013 m−2

(dotted green) target dynamics.
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Figure 25: In (a), the auto-PSDs of the target �̇�𝑑 and measured �̇� velocity, in case of 𝜇𝑀 = 𝜇𝐾 = 1 and 𝑅𝑎𝑡 = 𝜌0𝑐0. In
(b), the corresponding percentage error spectrum.

Nonetheless, by halving and doubling the external source signal, we can verify the trends showed in Fig. 11b. As the 467

excitation increases, the resonance frequency moves toward higher frequencies and the jump sharpens, as expected. 468

As in simulations, the effect of increasing the external excitation is similar to the one of augmenting 𝛽𝑁𝐿, the latter 469
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being showed in Fig. 26a. Notice how in case of 𝛽𝑁𝐿 = 1 × 1014 m−2, the resonance moves toward 2000 Hz, where 470

another speaker mode resonates, affecting the spectrum shape of the ER responses. 471
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Figure 26: Auto-PSDs of target velocity, electrical current and actual velocity, divided by the auto-PSD of pressure, for
varying 𝛽𝑁𝐿 (a) and excitation amplitude (b).
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Figure 27: auto-PSDs of target velocity, electrical current and actual velocity, divided by the auto-PSD of pressure, for
varying 𝜇𝑀 (a), 𝜇𝐾 (b) and 𝑅𝑎𝑡 (c).

In the following figures, we demonstrate the ability to tune each of the term in the target Duffing resonator dynamics, 472

by our RTI control. Fig. 27 experimentally proves the tunability of the Duffing dynamics by varying the target mass, 473

linear stiffness and resistance terms. Apart from the expected behaviours in accordance with the simulations, some 474

unexpected resonances occur in case of 𝜇𝑀 = 0.5. Observe that, in case of linear desired dynamics and IIR algorithm, 475

a lower target mass has been associated with lower level of acoustical passivity [24] after the target resonance, due 476

to time delay. The effect of combining non-passive behaviours of fundamental harmonics on the one hand, with 477

the higher harmonics produced by the nonlinearity on the other, is hard to predict at the present moment, but is 478

likely to be behind these unexpected jumps at 1355 and 1776 Hz. Indeed, these unpredicted trends are present only 479

in case of the lowest value of 𝜇𝑀 , suggesting the involvement of acoustical non-passivity. Proper formulations of 480
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both acoustical passivity and absorptive performances for nonlinear resonators, could be tackled when the full multi- 481

harmonic scattering problem will be solved by ad-hoc test-rigs as the ones presented in [34, 35]. Finally, in Fig. 28 we 482

experimentally verify the double-branch solution of Duffing-like resonators, as done numerically in Fig. 13. Fig. 28 483

shows the responses in a quasi-stationary regime realized by a chirp excitation of 30 seconds with frequency varying 484

between 100 and 3000 Hz in the increasing or decreasing sense. As expected, by varying the frequency in decreasing 485

sense, both the fundamental and secondary jumps shift toward lower frequencies. 486
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Figure 28: PSDs of target velocity, electrical current and actual velocity, divided by the PSD of pressure, for forward or
backard linear variation of frequency in the chirp excitation. The terms of the target dynamics are �xed as 𝜇𝑀 = 𝜇𝐾 = 1,
𝑅𝑎𝑡 = 𝜌0𝑐0 and 𝛽𝑁𝐿 = 1 × 1013 𝑚−2.

Fig.s 26, 27 and 28, demonstrate that the RTI algorithm for the first time exposed in this contribution, is capable 487

to reproduce a tunable Duffing-like behaviour of the ER at low excitation levels, without the need of additional 488

displacement sensors. 489

5. Conclusions 490

This paper has proposed the enlargement of the model-inversion technique to control the impedance of an 491

Electroacoustic Resonator, toward non-Linear-Time-Invariant target dynamics, based upon the sole measurement of 492

the pressure on the speaker diaphragm. As the measurement of the electroacoustic resonator diaphragm displacement 493

𝑢(𝑡) was not available, a Duffing-type response could not be achieved by simply inserting the cubic power of 𝑢(𝑡) in 494

the controller (as proposed in [21]), and an alternative strategy had to be devised. Via representation of the model- 495

inversion control in the state-space, and by interpreting the state-vector of the controller as the state-vector of the 496

target dynamics, we have proposed an alternative algorithm capable of targeting Linear-Time-Invariant as well as 497

non-Linear-Time-Invariant responses. Clearly, the possibility to exploit a measurement of the motion of the speaker 498

(such as by a microphone in the back cavity as in [21] and [33]) in our Real-Time-Integration control scheme, might 499

allow to reduce the problems of residual original dynamics. Nevertheless, compared to [21], which still relies on an 500

Infinite-Impulse-Response convolution scheme, our Real-Time-Integration control strategy has already demonstrated 501

significantly higher tunability (a large range of resonator parameters have been spanned) and performances, despite 502
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not disposing of the additional displacement feedback. 503

In order to validate our Real-Time-Integration control strategy, it has been tested first for linear target dynamics, 504

demonstrating its equivalence with respect to classical convolution-based correctors. Then, it has been tested against 505

target Duffing-type dynamics with hardening behaviour. In order to retrieve the response of the nonlinear system 506

uncoupled from external acoustic modes, the control algorithm has been simulated in an open-field external acoustic 507

environment, by solving the non-ideal problem, such it is the open-field response of the Electroacoustic Resonator, 508

where the sound pressure cannot be considered as a known term. After the numerical validation, our control has 509

been experimentally tested on a prototype of electroacoustic resonator, in a quasi-open field acoustic environment, 510

reproducing the expected trends and demonstrating the tunability of the control in varying all parameters of the Duffing 511

target response. Since in case of linear target dynamics the Real-Time-Integration algorithm is totally equivalent 512

to the Infinite-Impulse-Response, the former can be considered as a natural extension of the latter, opening up the 513

model-inversion concept to nonlinear target dynamics. Some unexpected additional resonances have been found in the 514

experimental campaign in case of low target mass. Being aware of the role of the target mass in the acoustical passivity 515

[24] right in the same frequency range as the unexpected resonances, authors have reasons to believe that the loss 516

of acoustical passivity is behind such unexpected behaviour of the nonlinear resonator after the fundamental jump. 517

The experimental campaign will continue toward the investigation of both passivity and absorptive performances 518

of our non-Linear-Time-Invariant absorbers, by an ad-hoc conceived test-rig, as the ones proposed in [34], [35], to 519

fully characterize the multi-harmonic scattering field. Numerical and experimental analyses are foreseen to verify 520

the Nonlinear Energy Sink capabilities of our electro-active resonator, as well as its optimization, in a coupled 521

environment, as done in [36]. Future contributions will analyse the enforcing of other non-Linear-Time-Invariant 522

responses of interest. The preliminary results presented in this contribution have indeed opened the doors toward 523

nonlinear programmable boundaries also in acoustics and at low excitation levels, encouraging the cutting edge research 524

in the inverse problem of nonlinear absorbers design for noise suppression and acoustic waves control. 525

Appendix A Comparing IIR and RTI in linear target dynamics tuning 526

Below we report the mobilities of the ER controlled by both the IIR and the RTI control strategies with linear target 527

dynamics. In Fig. 30 both the target mass and stiffness are equally varied to half (Fig. 29a) and twice (Fig. 29b) the 528

open circuit values. Fig. 30 and 31 show the single variation of the target mass and stiffness respectively, while Fig. 32 529

shows the variation of the target resistance term. These results demonstrate the total equivalence of the two strategies 530

IIR and RTI to achieve tunable linear target dynamics. 531
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Figure 29: Mobility obtained by targeting a linear SDOF dynamics of the ER with 𝜇𝑀 = 𝜇𝐾 = 0.5 (a) and 𝜇𝑀 = 𝜇𝐾 = 2
(a), and 𝑅𝑎𝑡 = 𝜌0𝑐0, by either the IIR (solid blue line) or the RTI (dashed red line).
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Figure 30: Mobility obtained by targeting a linear SDOF dynamics of the ER with 𝜇𝑀 = 0.5 (a) and 𝜇𝑀 = 2 (a), 𝜇𝐾 = 1
and 𝑅𝑎𝑡 = 𝜌0𝑐0, by either the IIR (solid blue line) or the RTI (dashed red line).
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Figure 31: Mobility obtained by targeting a linear SDOF dynamics of the ER with 𝜇𝐾 = 0.5 (a) and 𝜇𝐾 = 2 (a), 𝜇𝑀 = 1
and 𝑅𝑎𝑡 = 𝜌0𝑐0, by either the IIR (solid blue line) or the RTI (dashed red line).
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Figure 32: Mobility obtained by targeting a linear SDOF dynamics of the ER with 𝑅𝑎𝑡 = 0.5𝜌0𝑐0 (a) and 𝑅𝑎𝑡 = 2𝜌0𝑐0 (a),
and 𝜇𝑀 = 𝜇𝐾 = 1, by either the IIR (solid blue line) or the RTI (dashed red line).
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Appendix B Harmonic Balance 1-term solution of the Duffing dynamics in open field. 532

In this section, we develop the analytical solution of the Duffing target dynamics in open field, obtained by the 533

Harmonic Balance (HB) method with 1-term expansion [30]. Inserting Eq. (9) in (15) in open field, we get the target 534

dynamics equation in open field: 535

2𝑝+(𝑡) = 𝑀𝑎𝑑 �̈�𝑑(𝑡) + (𝑅𝑎𝑑 + 𝜌0𝑐0)�̇�𝑑(𝑡) +𝐾𝑎𝑑

(

𝑢𝑑(𝑡) + 𝛽𝑁𝐿𝑢
3
𝑑(𝑡)

)

. (17)

The excitation 𝑝+(𝑡) is taken as an harmonic function 𝑝+(𝑡) = 𝑝+0 cos(Ω𝑡). In the HB method, the 1-term expansion 536

solution to Eq. (17) is assumed as: 537

𝑢𝑑(𝑡) = 𝐴1 cos(Ω𝑡 + 𝜑) = 𝐴1 cos𝜙, (18)

with 𝜙 = Ω𝑡 + 𝜑, hence the excitation term can be written as: 538

𝑝+(𝑡) = 𝑝+0 cos(𝜙 − 𝜑). (19)

Substituting Eq.s (18) and (19) in Eq. (17), and exploiting the trigonometric identity cos3 𝜙 = 1∕4(3 cos𝜙+cos 3𝜙), 539

we get: 540

2𝑝+0 (𝑐𝑜𝑠𝜑 cos𝜙 + sin𝜑 sin𝜙) = − Ω2𝑀𝑎𝑑𝐴1 cos𝜙 − (𝑅𝑎𝑑 + 𝜌0𝑐0)Ω𝐴1 sin𝜙

+𝐾𝑎𝑑𝐴1 cos𝜙 + 3
4
𝐾𝑎𝑑𝛽𝑁𝐿𝐴

3
1 cos𝜙

+ 1
4
𝐾𝑎𝑑𝛽𝑁𝐿𝐴

3
1 cos 3𝜙.

(20)

Neglecting the third harmonic term cos 3𝜙 and equating the coefficients of cos𝜙 and sin𝜙 on the left-hand-side 541

(lhs) and right-hand-side (rhs) of Eq. (20), we get the following 2 equations: 542

cos𝜑 =
𝐴1

2𝑝+0

[

− Ω2𝑀𝑎𝑑 +𝐾𝑎𝑑

(

3
4
𝛽𝑁𝐿𝐴

2
1 + 1

)]

, (21a)

543

sin𝜑 = −
𝐴1

2𝑝+0
(𝑅𝑎𝑑 + 𝜌0𝑐0)Ω. (21b)

Squaring and summing up Eq.s (21a) and (21b), a quadratic equation in Ω2 is obtained, with coefficients depending 544

upon 𝐴1. By quadratic formula, Ω(𝐴1), i.e. the amplitude spectrum of the 1-term expansion of 𝑢𝑑(𝑡), is retrieved. This 545

solution is plotted in Fig. 10, comparing it to the fundamental harmonics of the DFT of the time integration of Eq. 546

(17). 547
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