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Abstract

Structural intensity fields provide a clear understanding of the noise, vibra-
tion and harshness (NVH) behavior of complex structures by showing the
vibration energy flow between zones of excitation and dissipation. The use
of models with fine meshes for automotive structures has allowed structural
intensity calculations to be performed at high frequencies. However, fields are
di�cult to understand at medium and high frequencies: the intensity field
has a vortical character that hides the vibration energy flow in these fre-
quency ranges. In this work, a methodology is presented to filter out vortices
in the structural intensity field. The approach uses the Hodge-Helmholtz
decomposition: the structural intensity field is decomposed into rotational,
irrotational, and harmonic components. Among them, only the irrotational
component is needed to describe the path of energy flow from sources to
sinks. The proposed methodology involves calculating the dynamic response
and solving a di↵usion equation similar to the thermal conduction equation
to obtain the irrotational field of interest. Plate examples are used to illus-
trate the e�ciency of the method, which provides a better understanding of
the mid- and high-frequency energy transmission paths.
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1. Introduction

In the automotive industry, using energy-based methods to predict the
mid- and high-frequency vibration behavior of complex structures is more ef-
ficient than conventional methods (modal analysis and frequency responses).
Standard structural dynamics techniques have challenges understanding be-
havior at high frequencies due to increasing modal overlap. In addition, the
vibration behavior changes considerably from one frequency to another, and
the dynamic response is highly a↵ected by small changes in the structural
properties. Fortunately, it is expected—for long-time experimental observa-
tions—that energy analysis can provide a robust understanding of vibration
propagation at least at high frequencies.

Statistical energy analysis (SEA) is a method developed to provide an
approximate model of the behavior of a built-up structure at high frequen-
cies [1]. The technique is e�cient at very high frequencies and requires a
high modal overlap [2]. In the SEA method, large structures are divided into
smaller subsystems. A modal density is then estimated for each subsystem
so that the number of modes in a given frequency band can be determined.
SEA assumes that the flow of energy between two subsystems is propor-
tional to the di↵erence in their averaged modal energies. This assumption
has many drawbacks, especially for heterogeneous structures in the mid-
frequency range where global and local modes may coexist. Determining the
coupling loss factors then becomes a real challenge. Researchers have devoted
significant attention to deriving the coupling loss factor from impedance and
transmission e�ciency information [3–5], highlighting the inability of stan-
dard SEA to model local behaviors within systems or in their connection’s
vicinity [6–11].

Therefore, other methods have been investigated to predict the dynamic
response of structures. Energy finite element analysis or power flow finite
element analysis (PFFEM) dates back to the 1970s. The technique uses the
same quantities (energy density and energy flow) as SEA. The approach is
based on a simplified equation similar to that of steady-state heat conduc-
tion, thanks to the acoustic temperature concept developed in early SEA
research [1]. The method has been applied with significant success to one-
dimensional structures. Nefske and Sung [12] developed and implemented
the method numerically for beams using the finite element to solve the con-
duction equation. They compared their energy solution to that of SEA and
to the exact solution. The PFFEM correctly predicts the average frequency
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and spatial response of the beam. It shows the fluctuation of the average
response along the beam (the local behavior), which is not provided by the
SEA method. The method becomes more e�cient as the frequency increases.
Bouthier and Bernhard [13] deduced the same equation for plates. The ap-
proach was then applied to a single plate. The structural responses of the
considered examples (lightly damped plates) were accurately obtained. How-
ever, the method is likely to encounter several di�culties for highly damped
plates. In this case, the direct field is likely to represent a significant part of
the structural response, and the mathematical form of the direct field pre-
dicted by the steady-state heat conduction equation is not consistent with
the known exact results [14].

Structural intensity was introduced in the 1970s to extend the notion
of acoustic intensity. It corresponds to the density of energy flow carried
by vibration waves. The spatial distribution of the structural intensity in a
given structure provides information on the energy transmission paths and
the positions of energy sources and sinks. The first studies concerning struc-
tural intensity dealt with the theoretical development and implementation
of measurement methods [15, 16]. Initially, the structural intensity field was
assessed using contact methods, such as accelerometers. The internal forces
were estimated numerically by the finite di↵erences. The main limitation of
this approach was the modification of the vibration behavior of the system
due to the additional mass of the accelerometers. Later, noncontact meth-
ods that do not add mass to the measured structure were used to detect
surface motions, such as acoustic holography [17], laser Doppler vibrometry
[18], holographic interferometry [19] and electron speckle interferometry [20].
Recently, a new technique has been developed to measure the structural in-
tensity field in a plate [21]. This technique allows the structural intensity field
to be reconstructed from the measured data (plate displacements) using just
a single moving sensor. However, the experimental characterization of the
structural intensity field is still inherently inaccurate. The spatial derivation
operator used to calculate the internal forces from displacements amplifies
the noise of the measurements.

Structural intensity analysis using the finite element method was formu-
lated by Hambric [22], and Gavric [23]. This approach has been successfully
used to numerically investigate major vibration transmission paths in struc-
tures at low frequencies [23–34]. The use of finite element models with finer
meshes for automotive structures allows this approach to be extended to
medium and high frequencies. However, understanding the structural inten-
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sity field becomes more di�cult as the frequency increases. The field presents
a vortex behavior that masks the energy flow from the source to the dissipa-
tion zones in the structure. Various studies have been conducted to eliminate
this vortex behavior of the structural intensity field. The structural intensity
vector field is composed of a rotational and an irrotational part [35]. The
rotational intensity is responsible for the vortices of the structural intensity
field showing conservative energy circulation. On the other hand, the irrota-
tional intensity is related to how energy flows from the sources to the sinks. A
direct application was proposed for plates [36] that uses the irrotational part
of the acoustic intensity field to identify and locate energy sources in a plate.
A method to evaluate the irrotational intensity has been proposed. It uses
a calculation in the wavenumber domain from a known radiated intensity
field over the whole space. Later, a method that computes the irrotational
part from measurement data was developed [37]. The approach is called test
functional series (TFS). It was used to determine the vibration sources and
sinks in a single plate.

In many studies, the irrotational intensity was mainly used to identify the
sources and sinks of vibration energy. However, the methods used to extract
this component are not practical in an industrial context, as they are based
on representations in infinite domains and do not consider the boundary
conditions of the intensity field. The purpose of this paper is twofold: first, a
new and rigorous technique is proposed to extract the irrotational component
of the structural intensity field in the framework of the finite element method.
Second, we show an academic application of this technique : the irrotational
intensity allows a better understanding of the transfer paths of structures
without the masking e↵ect of energy loops related to the rotational intensity.
These two steps open the way to industrial applications with higher structural
complexity. This paper is organized as follows: definitions and equations
related to structural intensity are presented in section 2. In section 3, the
theoretical concepts and the methodology for rotational intensity filtering
are discussed. Section 4 shows the calculation of the structural intensity and
the associated irrotational intensity on a simply supported plate. Section 5
presents the analysis of the propagation of vibration energy in a rectangular
plate structure using the irrotational intensity field.
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2. Structural intensity

The instantaneous structural intensity is a time-dependent vector quan-
tity that represents the variation in the energy density in an infinitesimal
volume. It is mathematically defined at a point M of the structure and at
time t as:

⇧(M, t) = ��(M, t)v(M, t), (1)

where �(M, t) and v(M, t) stand for the stress tensor and the velocity
vector, respectively.

In the case of steady-state harmonic vibrations, for a given frequency,
the time average of the structural intensity over a period represents the net
energy flow in the structure, and it can be expressed as:

I(M,!) = �1

2
<(�(M,!)v⇤(M,!)), (2)

where �(M,!) and v(M,!) are the stress tensor and the velocity vector
at point M and frequency !, respectively, and < stands for the real part of
a complex number. The symbol * denotes the complex conjugate operator.
In the following, M and ! are omitted to simplify the notation.

The time average of the structural intensity in the case of a flat thin plate
in the (x, y) plane is expressed as [38]:

( Ix = �!
2
=(Nxu⇤ +Nxyv⇤ +Qxw⇤ +Mx✓⇤y �Mxy✓⇤x)

Iy = �!
2
=(Nyv⇤ +Nxyu⇤ +Qyw⇤ �My✓⇤x +Mxy✓⇤y)

(3)

where Ix and Iy represent the components of the structural intensity field
along the x and y directions, respectively. Nx, Ny and Nxy are the complex
membrane forces. Mx, My and Mxy are the complex bending and torsional
moments. Qx and Qy are the complex shear forces. The displacement compo-
nents of the plate are denoted by u, v and w, and the angular displacements
are denoted by ✓x and ✓y. = stands for the imaginary part of a complex
number.
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Fig. 1. Sample chart of the structural intensity field

Fig. 1 shows a typical vibration energy flow pattern. The power Pinj is
injected at a specific location via dynamic loading. The vibration energy
flows through the structure along several flow paths represented by arrows
whose length and color represent the magnitude of the energy flow. As the
energy travels through the structure, it is dissipated by material damping
and other dissipation phenomena. This is illustrated by the arrow lengths
becoming shorter. The dissipated power is refered to as Pdiss.

In this study, the input power is injected through a single point of the
structure and is written as,

Pinj =
1

2
<(F.v⇤

in), (4)

where F is the excitation force vector applied to the structure, and vin

is the velocity vector at the excitation point. Since energy quantities are
proportional to the input power, most of the results will be normalized to a
unit input power.

When the dissipation is due to structural (hysteretic) damping, the power
dissipated per unit area within a structure vibrating in the harmonic regime
at frequency ! is usually expressed as [39]:

Pdiss = 2⌘!Ed, (5)

where ⌘ denotes the implicitly frequency-dependent structural damping
loss factor and Ed stands for the strain energy density. Without loss of
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generality, only structural damping is considered in the following.
The local energy balance in steady-state harmonic vibrations of an elastic

medium is equivalent to the variation in the structural intensity field [39]:

r.I = Pinj � Pdiss. (6)

The structural intensity divergence can then be estimated using the power
injected and the power dissipated per unit area through the structure.

The power flow through a cross-section S can be calculated using the
following Formula:

Pf =
x

S

I.ds (7)

In the case of structure assemblies, the power flow from substructure i to
substructure j is expressed in terms of structural intensity by the following
formula:

Pi!j =
x

Sb

I.ds (8)

where Sb is the common section shared by the two substructures.

3. IRROTATIONAL INTENSITY FIELD CALCULATION

3.1. Helmholtz-Hodge theorem

The Helmholtz-Hodge theorem states that any vector field u can be de-
composed into the sum of three components: an irrotational component u 
derived from the gradient of a scalar potential  , a rotational component u�

resulting from the curl of a vector potential � and a harmonic part uh, that
cannot be included in either of the two previous components, which is both
irrotational and rotational at the same time [40]:

u = u + u� + uh. (9)

Following this theorem, the structural intensity field I can be decomposed
into a rotational intensity Ir, an irrotational intensity Iir, and a harmonic
part h:

I = Ir + Iir + h. (10)
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3.2. Rotational intensity

The rotational intensity field is derived from a potential vector A:

Ir = r ^A. (11)

This component is responsible for the complexity of the structural intensity
field. It leads to vortices due to interference between propagative waves [35],
but it does not provide any information about energy transfer.

The local energy balance associated with the rotational intensity is zero
at any point of the structure as the divergence of the curl is zero:

r.Ir = r.(r ^A) = 0. (12)

Similarly, the global balance of the rotational intensity is zero for any
volume V bounded by a closed surface S. It can be computed as an integral
over a surface or a volume using the divergence theorem as follows:

{

S

Ir.n ds =
{

S

r ^A ds

=
y

V

r.(r ^A)dv

= 0.

Thus, the rotational intensity cannot start or end on a source or a sink of
energy because of its rotational nature. It either forms closed loops or starts
and ends at infinity. It does not a↵ect the quantitative assessment of the
transfer of vibration energy.

3.3. Irrotational intensity and heat conduction equation

The irrotational intensity is derived from a scalar potential  :

Iir = �r . (13)

It describes the transport of energy from injected power sources to dissi-
pative areas [35].

Using the Helmholtz-Hodge decomposition, the local power balance is
rewritten as :
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r.I = r.(Ir + Iir + h)

= r.(r ^A) +r.(�r ) +r.h.

The divergence of the rotational intensity and of the harmonic component is
zero. Thus,

r.I = �r.r . (14)

The structural intensity I and the irrotational intensity r share the
same divergence.

The flow of vibration energy through a closed surface S can be rewritten
using Eq.(9) as:

{

S

I.n ds =
y

V

r.I dv

=
y

V

r.(Ir + Iir + h) dv

=
y

V

r.Ir dv +
y

V

r.Iir dv +
y

V

r.h dv

=
y

V

r.Iir dv.

Thus,
{

S

I.n ds =
{

S

Iir.n ds =
y

V

(Pinj � Pdiss) dv. (15)

The energy flow through a closed section of the structure depends only
on its irrotational component. Therefore, it is convenient to describe the
propagation of vibration energy using only the irrotational intensity.

By combining the local energy balance in steady-state Eq.(6) and Eq.(14),
a new equation governing the vibration energy flow is derived. The equation
is analogous to the heat conduction equation:

�r.r = Pinj � Pdiss. (16)
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Eq.(16) highlights that the irrotational intensity is directly linked to the
energy sources and sinks. To obtain this vector field, Eq.(16) must be solved,
in which the potential scalar  is the unknown quantity, and its gradient r 
represents the irrotational intensity field. The right-hand side of the equation
is obtained from a dynamic response under harmonic excitation. The dissi-
pated power is obtained using Eq.(5). The injected power is determined from
Eq.(4). Practically speaking, the injected power can therefore be considered
as a thermal source in the di↵usion Eq.(16), which can then be solved with
a thermal solver.

3.4. Harmonic field

There are two distinct forms of harmonic fields. The first is specific to the
domain topology, and it is at the essence of Hodge’s work [40]. The second
is due to the choice of boundary conditions for the other components of the
decomposition calculation. In general, boundary conditions serve to ensure
orthogonality of the various components. Finding the right boundary con-
ditions that ensure this orthogonality often necessitates introducing a third
term into the decomposition. The harmonic field, in other words, is a residue
of the irrotational and rotational component calculations. For a theoretical
and numerical analysis of this field, the reader is invited to refer to the work of
Lemoine [41] and Bhatia [42, 43]. For our purpose, the irrotational intensity
is the component of interest. In the following section, we will illustrate the
boundary conditions to be used to compute this component. The boundary
conditions to obtain the rotational intensity are not yet known. We assume
here that the harmonic component is part of the rotational component since
these two components do not contribute to the flow of vibration energy from
a source to the dissipation zones. The intensity field decomposition is then
reduced to just two components: rotational and irrotational.

3.5. Boundary conditions

Boundary conditions are required to solve Eq.(16) on the considered do-
main. We consider a structural problem with no energy transfer to the out-
side of the structure and no dissipation at the boundary. Therefore, the case
of energy free boundaries is considered here. The normal energy flow is zero
at such free boundaries, which describes a total reflection of the energy flow.
Thus, the boundary conditions are written as

r .n =
@ 

@n
= 0, (17)
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where n is the unit vector normal to the considered boundary.

3.6. Power flow decomposition

Same as the structural intensity field, the power flow through a cross-
section S can be decomposed into two components: irrotational power flow
Pir and rotational power flow Pr. The total power flow represented by the
structural intensity can then be rewritten as follows:

Pf = Pir + Pr (18)

where,

Pir =
x

S

Iir.ds (19)

Pr =
x

S

Ir.ds (20)

3.7. Streamlines for structural intensity field analysis

In fluid mechanics, a streamline is a curve in space whose tangent, at any
time, is parallel to the local velocity of the fluid particles. Structural intensity
is the flow of vibration energy through a structure. It is characterized by a
vector field, known at any point of the structure. Analogously, we can define
the streamlines that correspond to the structural intensity field since they
provide a better visualization of vibration energy flows.

For the structural intensity field defined at each point by the vector
I(x,y, z), the di↵erential equations of the streamlines are expressed as fol-
lows:

dx

Ix
=

dy

Iy
=

dz

Iz
(21)

3.8. Numerical implementation

First, a structural dynamic response under harmonic excitation is re-
quired to determine the right-hand side of Eq.(16). The dissipated power
per unit area (Pdiss) is determined from the strain energy density, while the
injected power (Pinj) is assessed using the velocity at the excitation point.
This forced response can be calculated with the use of any appropriate finite
element dynamic solver, and it is worth noting that strain energy densities
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and velocities are typically standard outputs provided by most finite element
solvers.

Second, the solution of the di↵usion Eq.(16) is computed by the finite
element method using a thermal solver applied to the same finite element
geometry, with the appropriate thermal properties and thermal load. Fig. 2
shows the flowchart of the irrotational intensity calculation.

Practically speaking, all results presented in this paper are obtained using
Nastran software. The dynamic response corresponds to a direct frequency
response analysis (SOL108) and the thermal response corresponds to a steady
state analysis (SOL153), but it is worth noting that any dynamic or thermal
solver can be used. The method is set to be applied to industrial structures
involving solids, shells and beams. The modeling of the specific industrial
connections will be the subject of a future article.

Fig. 2. Scheme of the computational system for the irrotational intensity field
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4. POWER FLOW ANALYSIS USING THE IRROTATIONAL
INTENSITY FIELD IN A SINGLE PLATE

The model adopted to validate the numerical implementation is a homo-
geneous flat plate. The plate has the properties shown in Table 1. The
square plate (1⇥1 m2) is simply supported along its edges and is excited by
a harmonic normal force F of 1N at the center, as shown in Fig. 3. A uni-
form mesh of 50 linear quadrilateral elements (5 dofs per node) along each
direction is used for all computations.

Fig. 3. Plate excited by harmonic force

Length (mm) 1 000
Width (mm) 1 000

Thickness (mm) 1
Elastic modulus (MPa) 210 000

Poisson ratio 0.3
Density (kg/m3) 7 800

Structural loss factor 1%

Table 1: Plate properties

Fig. 4 shows the structural intensity field and the associated irrotational
intensity field at di↵erent frequencies for a unit power input. The structural
intensity field is calculated using Eq.(3), and the irrotational intensity is
assessed by solving Eq.(16). The vector fields are drawn using streamlines,
and the color corresponds to the amplitude of the vectors.

At 10Hz, the structural intensity and the irrotational intensity fields ap-
pear to be similar. Indeed, at low frequencies, i.e., below the first structural
mode, the dynamic response is quasistatic. No propagation occurs, and a
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transmission path does not mean much. Nevertheless, interestingly, in the
case of quasistatic sti↵ness behavior, the rotational intensity component is
not present.

At higher frequencies, the structural intensity field presents vortices that
mask the energy flow, making it challenging to understand the transfer paths.
The number of vortices in the field increases with frequency. On the other
hand, the irrotational intensity is smoother and is not perturbed by vortices.
The field clearly indicates the position of the source and the isotropic dissi-
pation of energy through the plate due to uniform structural damping. As
expected, no energy is transferred to the exterior, so all vectors near the
boundaries are parallel to the edges. It may also be noted that in this simple
case, the energy flow scheme appears almost frequency independent. Thus, a
transfer path—as expected from a practical point of view—makes sense over
a broad frequency band.

14



(a) Structural intensity field at 10 Hz (b) Irrotational intensity field at 10 Hz

(c) Structural intensity field at 200 Hz (d) Irrotational intensity field at 200 Hz

(e) Structural intensity field at 1000 Hz (f) Irrotational intensity field at 1000 Hz

Fig. 4. Structural intensity field and irrotational intensity field distributions in the plate:

the color scale indicates the magnitude, and the streamlines indicate the direction of

propagation.
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The elementary power flow in Fig. 5 represents the flow through each
finite element of the section (x = 0.6m) calculated using Eq.(7) and Eq.(19).
In this particular case the normal to the surface (x = 0.6m) is x.

(a) (b)

(c) (d)

Fig. 5. Elementary power flow through section (x = 0.6m) at di↵erent frequencies obtained

by the structural intensity and the irrotational intensity. (a) 10Hz; (b) 200Hz; (c) 1000Hz;

(d) 1500Hz; ( ) Structural intensity;( ) Irrotational intensity.

At very low frequencies, the power flows across the section obtained us-
ing the irrotational and structural intensity are identical. This confirms the
irrotational behavior of the structural intensity field in this frequency range.
At medium and high frequencies, the flow obtained with the irrotational
intensity spatially smooths the total structural intensity, additionally pro-

16



viding frequency-independent information. Therefore, it is highly preferable
to use the irrotational intensity for a safe analysis of vibration propagation
at mid and high frequencies. Indeed, in this first simple case the intensity
pattern provides an understandable way to analyze the system, regardless of
the frequency.

5. POWER FLOW ANALYSIS USING THE IRROTATIONAL
INTENSITY FIELD IN A PLATES ASSEMBLY

To illustrate the ability of the irrotational intensity field to properly de-
scribe the energy transfer path in assembled structures, a four rectangular
plates assembly is considered. This structure has the same properties as the
previous plate (see Table 1). It is simply supported on its sides. It is ex-
cited by a harmonic normal force of 1N on plate 1, and a viscous damper of
30Nm s�1 is located on plate 4 as shown in Fig. 6. To ensure convergence
at high frequencies, a uniform and fine mesh has been employed, consisting
of linear quadrilateral elements of size 0.02⇥ 0.02.

Fig. 6. Simply supported structure made with assembled plates

Fig. 7 presents the structural intensity field and the associated irrotational
intensity field at di↵erent frequencies. Again, in the following, intensity fields
and power flow are presented for a unit power input. The color describes the
magnitude of the vibration energy in the structure. The structural intensity
field is complex and di�cult to understand. It provides more information
than needed since the primary objective is to know how the vibration energy
propagates from one plate to another. The irrotational intensity field shows
an average distribution of the vibration energy propagation. This allows us
to perfectly localize the position of the source on plate 1 and the sink due
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to the viscous damper on plate 4. The power flow is also clearly visible:
the energy transfer path is distributed similarly between plates 2 and 3.
The dissipation of vibration energy is represented by the color change of the
irrotational intensity field.

(a) Structural intensity field at 400 Hz (b) Irrotational intensity field at 400 Hz

(c) Structural intensity field at 1000 Hz (d) Irrotational intensity field at 1000 Hz

(e) Structural intensity field at 2000 Hz (f) Irrotational intensity field at 2000 Hz

Fig. 7. Structural intensity field and irrotational intensity field distributions. The color

indicates the field magnitude; the streamlines indicate the direction of propagation.

A modification is then introduced to the structure to investigate the in-
fluence of damping heterogeneity on the path of vibration energy. The struc-
tural damping is no longer homogeneous over the entire structure. A damp-
ing of 3% is introduced on plate 3, while the other plates maintain the 1%
damping, as shown in figure 8.
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Fig. 8. Simply supported structure with heterogeneous structural damping

Fig. 9 shows the corresponding intensity fields. The propagation of vi-
bration energy is no longer symmetric. The irrotational intensity plot clearly
shows that more energy flows through plate 2 than through plate 3. As ex-
pected, more power is dissipated in plate 3 due to the increase in structural
damping.

(a) Structural intensity field at 400 Hz (b) Irrotational intensity field at 400 Hz

(c) Structural intensity field at 1000 Hz (d) Irrotational intensity field at 1000 Hz

(e) Structural intensity field at 2000 Hz (f) Irrotational intensity field at 2000 Hz

Fig. 9. Structural intensity field and irrotational intensity field distributions in heteroge-

neous plate. The color indicates the field magnitude; the streamlines indicate the direction

of propagation.

Table 2 shows the injected power obtained in the two configurations:
structure with homogeneous structural damping (configuration 1) and struc-
ture with heterogeneous structural damping (configuration 2). Notably, the
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power input is slightly di↵erent between the two configurations. This high-
lights the robustness of the structural input mobility to damping changes.
Tables 3 and 4 compare the net power exchanged between connected plates
in both configurations.

The total power flow is calculated using the full field of the structural
intensity Eq.(18). The irrotational and rotational power flows are computed
using Eq.(19) and Eq.(20) respectively.

Frequency
(Hz)

Injected power
in configuration 1 (W)

Injected power
in configuration 2 (W)

400 5.87⇥ 10�5 6.44⇥ 10�5

1000 3.95⇥ 10�4 4.00⇥ 10�4

2000 1.53⇥ 10�4 1.56⇥ 10�4

Table 2: Injected power for each frequency in both configurations. Configuration 1: struc-

ture with homogeneous structural damping; Configuration 2: structure with heterogeneous

structural damping.

Tables 3 and 4 clearly show that, regardless of the frequency, the expected
balanced transmission from plate 1 to plates 2 and 3 and from plates 2 and 3
to plate 4 is only revealed by the irrotational power flow. Total power flows,
to the contrary, present erratic results that totally defy any analysis.

These results di↵er because of a global vortex that extends over the 4
plates that can be clearly observed in the structural intensity field at 150 Hz
(Fig.9a). Such a vortex induces local power flows that cancel each other at
the full system level. Tables 3 and 4 show the di↵erence in the power flows
between the plates, which qualifies the vortex behavior. Indeed, a constant
power is exchanged between subsystems in a circular manner. Consequently,
the energy balance of each plate is preserved in both cases; calculations by
structural intensity and calculation by irrotational intensity remain identical.

This last result shows that computing power flows in assembled struc-
tures are also biased by the rotational components of the structural intensity
at the system level. The analysis of the di↵erences between configurations 1
and 2 now seems more relevant. The irrotational power flows show a logical
transmission mostly through plate 2 at all frequencies. In contrast, the total
power flow provides an unstable transmission scheme. To properly under-
stand the energy transfer path and correct estimation of power flows, the
irrotational intensity must be calculated. The method proposed here is a
simple way to reach this goal.
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Frequency
(Hz)

Total power flow
P1!2 P1!3 P2!4 P3!4

400 �0.04 0.40 �0.15 0.32
1000 0.18 0.03 0.15 �0.02
2000 0.25 0.09 0.16 0.03

Frequency
(Hz)

Irrotational power flow
P1!2 P1!3 P2!4 P3!4

400 0.19 0.17 0.08 0.09
1000 0.10 0.11 0.07 0.06
2000 0.18 0.16 0.09 0.10

Frequency
(Hz)

Rotational power flow
P1!2 P1!3 P2!4 P3!4

400 �0.23 0.23 �0.23 0.23
1000 0.08 �0.08 0.08 �0.08
2000 0.07 �0.07 0.07 �0.07

Table 3: Normalized power exchanged between the plates in configuration 1: structure

with homogeneous structural damping. Pi!j is the power exchanged between plates i and
j.

6. Conclusion

The irrotational intensity field is used to investigate the vibration energy
transfer. The derivation of the irrotational intensity is performed by solving
a simplified equation similar to the thermal conduction equation. The ap-
proach involves two steps: the first step consists of studying the frequency
response of the structure and calculating the injected power and the dissi-
pated power per unit area; the second step is to solve the di↵usion equation
using the finite element method thermal solver.

The interest in using the irrotational intensity field is illustrated by two
examples: a simple plate and a four-plate assembly. The field shows the
spatial average of the real energy flux in the structures. It enables the vi-
sualization of the energy paths without the masking e↵ects of energy loops,
which are associated with the rotational intensity. The irrotational intensity
also serves to precisely quantify the exchange of vibration energy between
plates in the case of the plate assembly. Indeed, the calculation of the power
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Frequency
(Hz)

Total power flow
P1!2 P1!3 P2!4 P3!4

400 0.02 0.41 �0.07 0.21
1000 0.19 0.07 0.15 �0.04
2000 0.25 0.11 0.17 �0.01

Frequency
(Hz)

Irrotational power flow
P1!2 P1!3 P2!4 P3!4

400 0.19 0.24 0.10 0.04
1000 0.11 0.15 0.07 0.04
2000 0.17 0.19 0.09 0.07

Frequency
(Hz)

Rotational power flow
P1!2 P1!3 P2!4 P3!4

400 �0.17 0.17 �0.17 0.17
1000 0.08 �0.08 0.08 �0.08
2000 0.08 �0.08 0.08 �0.08

Table 4: Normalized power exchanged between the plates in configuration 2: structure

with heterogeneous structural damping. Pi!j is the power exchanged between plates i
and j.

exchange is prone to error due to the vortices in the flow, which are caused
by the rotational intensity.

The irrotational intensity provides a better understanding of the propa-
gation of vibrations, and it is shown that this quantity can perfectly charac-
terize the energy sources and sinks in the plates. The irrotational intensity
hence constitutes a valuable tool for the design of complex structures. It
easily provides a representation and interpretation of the energy transfer
paths in built-up structures and quantifies the energy exchanges between the
substructures.
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Appendix A. Divergence of the structural and of the irrotational
intensity fields

As shown by Eq.(6) and Eq.(16), both the structural and irrotational
intensity fields have the same divergence. The divergence of the structural
intensity is required to obtain the irrotational intensity, while a very mode-
rich basis in the modal space is necessary to evaluate the structural intensity
[23]. This is the reason why the local power balance has been selected to
compute the divergence of the structural intensity, since the latter converges
faster. Fig.A.10 shows both the divergence of structural intensity and the
divergence of the irrotational intensity. The results are obtained using finite
di↵erences on the structural and irrotational intensity fields. The white re-
gion corresponds to the source, corresponding to a positive divergence due to
the injection of power into the structure at this location. On the other hand,
the dark regions correspond to areas where vibrational energy is dissipated,
resulting in a negative divergence. It is worth noting that the divergence of
the structural intensity is less accurate near the source, with the white spot
appearing larger than expected as the power is injected at a single node.
Thus, the divergence of irrotational intensity exhibits a notably improved
convergence, especially in the vicinity of the source.
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(a) Divergence of the structural intensity field

at 200 Hz

(b) Divergence of the irrotational intensity field

at 200 Hz

(c) Divergence of the structural intensity field

at 1000 Hz

(d) Divergence of the irrotational intensity field

at 1000 Hz

(e) Divergence of the structural intensity field

at 1500 Hz

(f) Divergence of the irrotational intensity field

at 1500 Hz

Fig. A.10. Structural intensity field and irrotational intensity Divergence.
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Appendix B. The irrotational intensity for low structural damp-
ing

In order to evaluate the e↵ectiveness of the method for low structural
damping, the results of the methodology applied for a case with structural
damping of 0.01% are shown here. By decreasing the overall damping, the
overall response of the structure remains qualitatively unchanged but the
power injected into the structure decreases. As a result, the vibration energy
propagation paths generally retain the same configuration as those observed
with 1% damping. However, The way in which the energy dissipates in the
structure di↵ers, and the amount absorbed by the viscous damping increases
due to lower structural damping. The energy now takes longer to dissipate in
the structure. It can be seen that the power flows from 1 to 2 and from 1 to
3 are greater than in the previous case (1% structural damping). Similarly,
there is also an increase in the flux from 2 to 4 and from 3 to 4.

(a) Structural intensity field at 400 Hz (b) Irrotational intensity field at 400 Hz

(c) Structural intensity field at 1000 Hz (d) Irrotational intensity field at 1000 Hz

(e) Structural intensity field at 2000 Hz (f) Irrotational intensity field at 2000 Hz

Fig. B.11. Structural intensity field and irrotational intensity field distributions for low

structural damping. The color indicates the field magnitude; the streamlines indicate the

direction of propagation.
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Frequency
(Hz)

Total power flow
P1!2 P1!3 P2!4 P3!4

400 �0.05 0.54 �0.12 0.50
1000 0.35 0.16 0.27 0.10
2000 0.58 0.02 0.50 �0.06

Frequency
(Hz)

Irrotational power flow
P1!2 P1!3 P2!4 P3!4

400 0.25 0.24 0.18 0.20
1000 0.24 0.25 0.16 0.20
2000 0.30 0.30 0.22 0.22

Frequency
(Hz)

Rotational power flow
P1!2 P1!3 P2!4 P3!4

400 �0.30 0.30 �0.30 0.30
1000 0.11 �0.10 0.11 �0.10
2000 0.28 �0.28 0.28 �0.28

Table B.5: Normalized power exchanged between the plates in configuration 2: structure

with heterogeneous structural damping. Pi!j is the power exchanged between plates i
and j.
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