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Université de Franche-Comté (UFC)
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Abstract—Success in supply-chain relies, in large part, on good
stock management. It is quite simple to guess that there will be
an increase in demand for a type of product, or rather reluctance
over a period of time, but it becomes complicated to know in
advance the exact or optimal number of products to order to
avoid stock-outs and at the same time overstocking.

This article shows how transactional data can be used with
Machine Learning to forecast demand in the retail industry. To
train the machine learning models, a sample of 5,115,472 records
of receipt data was obtained from the French branch of one of the
largest Belgian supermarket chains’s data warehouse. The results
revealed that the machine learning models manage to learn the
seasonality effects and allow to make better predictions.

Index Terms—supply chain, overstock prediction, retail indus-
try, machine learning, deep learning

I. INTRODUCTION

Forecasting demand is one of the biggest challenges in the
retail industry, which essentially answers the question: what is
the probability distribution, in the future, of the demand for a
product or a product family, over a given time period? Among
its numerous advantages, a predictive forecast is a crucial
enabler for lower costs thanks to better planned inventory
and fewer write-off items, as well as for a better customer
experience by reducing out-of-stock situations [9]. Manufac-
turers, distributors, retailers and other businesses are constantly
looking for more accurate predictions to reduce uncertainty in
decision-making. Accurate demand forecasting [1], especially
in retail, leads to well-informed purchasing and better inven-
tory management, scheduling, capacity management and as-
sortment planning decisions. A common definition of demand
forecasting refers to the practice of estimating future customer
demand over a predetermined period of time using historical
data and other information. [9].

When companies use loyalty cards, thousands of attribute
values are stored for each buyer. Those data include useful
knowledge which is often buried in the large array of raw
data. It should be noticed that these datasets mainly contain
structured data that can be requested through SQL and semi-
structured data such as Excel, JSON and CSV files. This
study uses a private dataset from Colruyt France (the French

branch of Colruyt which is one of the largest Belgian su-
permarket chain’ data warehouse), a retail company with 90
supermarkets (700 to 1200 m²), mainly located in the Franche-
Comté region, France. This dataset represents only in-store
purchases, i.e. sales receipts. The dataset does not directly
concern information related to the loyalty card and it focuses
on two major product families, the dairy family which includes
(milk, cheese, yogurt, ice cream, . . . ) and the fish family which
includes products derived from fish.

The most often used methods to forecast demand try to
identify seasonality and trend in time series of sales data and,
in this way, try to create correlations between the variable
of interest and other independent variables. However, these
methods struggle to perform effectively when the dependent
variable also depends on external variables. The techniques
presented in this document manage to deal with these situ-
ations by using state-of-the-art machine learning techniques
since it is now, widely accepted that Machine Learning tech-
niques manages to perfectly extract hidden characteristics from
raw data. Our approach, here, is to train machine learning and
deep learning models on the dataset presented above, with a
limited number of samples. We show that for the best scenario,
the Autoformer model [30] gives the best results with a Mean
Squared Error (MSE) equal to 0.43.

The remainder of the paper is structured as follows.
Section II presents the context, regarding the definition of
overstock and the different levels of difficulty that can be
encountered. Section III explains the methodology, from data
acquisition to evaluation of models. Section IV details the
different models used and section V presents the obtained
results and compares the different techniques used to tackle
the problem. Finally, Section VI summarizes the conclusions
drawn from the paper.

II. CONTEXT

A. The overstocking problem

Success in supply-chain relies, for a large part, on good
stock management. It is quite simple to guess that there will
be an increase in demand for a type of product, or rather



reluctance over a period of time, but it becomes complicated
to know in advance the exact or optimal number of products
to order to avoid stock-outs and at the same time overstocking.
Overstock in retail industry, usually means having too much
stock in a store that has not sold. One consequence of
overstocking in some supermarkets is that the latter is obliged
to make a special promotion called ’anti-waste’ on products
to make them more attractive. In anti-waste promotions, the
company agrees to sell excess products at a loss just before
their expiration date instead of throwing them away. This is
often the case with short-life products. Even an anti-waste
promotion cannot prevent some products from ending up in
the trash because customers were unable to purchase all of the
discounted products before their expiration date. Anti-waste is
very different from traditional promotion which is more about
attracting new customers.

B. Related works

During the past few years, there have been a lot of research
in the field of demand forecasting. This section will provide
an overview of the literature on time series forecasting and the
application on product sales [13], [26]. Traditional times series
models, Machine learning models and Deep learning models
are among the relevant works. Predicting time series allows
researchers to understand the changes in systems without
having to design the exact parameters that influence them.
After decades of study, time series models have made great
progress and have been used for various projects in many
application areas. The earliest data analysis methods can be
traced back to 1970. Following Markov process [14], we can
cite ARIMA [10], an auto-regressive model for recursively
sequential forecasting. However, an autoregressive process
is not sufficient to deal with non-linear and non-stationary
sequences. Already in 1996, Ansuj et al. [5] used the AutoRe-
gressive Integrated Moving Averages (ARIMA) model with
interventions and the Artificial Neural Network (ANN) model
to analyze sales data covering a 10-year period (1979 to 1989).
Compared to the ARIMA model, the ANN model’s predictions
were more accurate. In 2001, Alon et al. [3] conducted a
comparative research between conventional techniques and
ARIMA models with ANN models on US aggregate retail
sales data. Based on the empirical results, they were able to
deduce that for different forecast periods and different forecast
horizons, ANN performed best. In 2017, Aras et al. [6] provide
a good overview of the literature and a comparative study on
retail sales forecasting of ”an international furniture company,
which has operated in Turkey’s retail sector for many years”
between methods with different approaches like ARIMA and
ARFIMA models, ETS (Error, Trend, Seasonal), Artificial
Neural Networks (ANN) and Adaptive Network-based Fuzzy
Inference System (ANFIS). According to them, it is almost
impossible to know in advance which forecasting model will
perform best for a given data set. No single model is best for
all situations and circumstances. With the rise of deep neural
networks over the past few years, recurrent neural networks
(RNN) have been designed to better handle of sequential data.

To address the gradient vanishing or exploration problem,
RNNs such as LSTM and GRU [18] use a gated structure
to control the flow of information. DeepAR [22] incorporates
binomial likelihood into a sequential architecture for proba-
bilistic prediction. Attention-based RNN [24] uses temporal
attention to capture long-range dependencies. However, the
recurrent model is not parallelizable and cannot to handle
long dependencies. The recurrent model, on the other hand, is
not parallelizable and cannot handle extended dependencies.
Another useful family in sequential tasks is the temporal
convolutional network [23]. However, because the kernel’s
receptive field is limited, the extracted features are always
local, making long-term dependencies difficult to grasp.

Transformers-based architectures have shown their effec-
tiveness in natural language processing NLP and computer
vision tasks [15], [21], [28]. They are now also applied in
time series forecasting [29] and also show their efficiency.
For example in [25], an encoder-decoder architecture is used
for sequence-to-sequence time series forecasting tasks. In
transformers, the core layers are the self-attention and cross-
attention mechanisms.

However, to the best of our knowledge, no existing work
provides a clear answer as to the effectiveness of ML models
for the overstock prediction problem.

III. DATA ACQUISITION

This research includes Colruyt sales data from the years
2017 to 2022. Table I presents the structure of the dataset in
its raw state.

TABLE I: A sample of the input dataset

product ID date quantity unit price
229490008301 2015-02-02 738 1.2363
229490008301 2015-02-04 366 1.0368
229490008301 2015-02-05 521 1.1131

The product ID includes information about the category
it belongs to. Therefore, the products were grouped into
categories and two main categories were experimented in this
study. These two main product families were the ones that
usually generate the most anti-waste promotions. Namely the
dairy family which includes (milk, cheese, yogurt, ice cream,
. . . ) and the fish family which includes products derived from
fish. Table II gives an overview of this dataset.

TABLE II: An overview of the dataset

Labels Values
Number of sales 5,115,472
Number of articles families 2
Number of articles 150
Time period 2017 - 2022
Granularity days

IV. MODELS

In the following, we present some machine learning ap-
proaches that have been proven to work for time series fore-
casting in general and that we used in our experimentations.



A. Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) is an open-source

library that provides an efficient and effective implementation
of the gradient boosting algorithm [12]. Gradient Boosting
represents a set of Machine Learning algorithms that can be
used for predictive classification or regression modeling prob-
lems and that are built on decision tree models. XGBoost has
become the gold standard method and often the key component
of winning solutions for classification and regression problems
in Machine Learning competitions. In this paper we tested the
XGBoost Regressor API of the open-source Gradient Boosting
implementation.

B. LSTM
Long Short-Term Memory (LSTM) networks are a type of

recurrent neural network (RNN) that can learn order dependen-
cies in sequence prediction problems [18]. In traditional Neural
Networks, each input and output is independent, but in cases of
predicting the next word in a sentence, the previous words are
needed and therefore the previous words must be remembered.
Similarly for time series, past values can influence the current
value. This inspired the application of RNN for time series
and the development of RNN-based architectures for time
prediction. While introduced in the late 90’s, LSTM models
have become in last decade a viable and powerful forecasting
technique for time-series. An LSTM rectifies a huge issue that
recurrent neural networks suffer from: short term memory i.e.
the inability to learn dependencies from long sequences. Using
a series of ’gates’ [16] each with its own RNN, a LSTM
manages to keep, forget or ignore data points based on a
probabilistic model.

C. Attention family
Transformer, Informer and Autoformer models are all fun-

damentally based on the mechanism of Attention. Bahdanau
et al. [7] proposed the attention mechanism to address the
bottleneck problem that arises when using a fixed-length
encoding vector, as the decoder would have limited access
to the information provided by the input. This is thought to
be especially problematic for long and/or complex sequences,
whose dimensionality would be forced to be the same as for
shorter or simpler sequences. Among these three architectures,
the Transformer was the first to be developed [28] and has
shown its effectiveness in many areas (natural language pro-
cessing, computer vision...) In the following, the specificity
of the Autoformer model regarding to the rest of Attention
family will be explained.

D. Autoformer
Autoformer is a decomposition architecture that embed

the series decomposition block as an inner operator, which
can progressively aggregate the long-term trend part from
intermediate prediction [30]. Besides, there is an Auto-
Correlation [30] mechanism to conduct dependencies discov-
ery and information aggregation at the series level, which
contrasts clearly from the previous models of the attention
family. See figure 1 for an Autoformer illustration.

E. Hyper-parameters

For the XGBoost, we have used the Scikit-learn [20] library
and its hyper-parameters tuning function which considers the
cross validation, to automate the search for the best configu-
ration. We provided this function with the splitting of the time
series which is common to all the tested models. The search
ranges were [0.005, 0.05] for the learning rate, [5, 30] for the
maximum depth, [50, 1000] for the number of estimators. The
configurations then converged to a learning rate of 0.03, a
maximum depth of 100.

The LSTM model as well as the other attention-based
models took advantage of an automatic adjustment of the
learning rate and an early stopping system. The best of LSTM
models, contained 8 layers of LSTM with 16 hidden states
and a dropout equal to 0.25. The search ranges were [1, 10]
for the number of layers, [4, 32] for the hidden state dimension,
[0.2, 0.5] for the dropout. The learning rate started at 0.1 and
could be adapted during training, it could go down to 10−10.

The attention-based models, because of their similarity
to each other, were able to benefit from the same search
ranges overall. Some of them still gave better results on some
ranges than on others. The search ranges were [4, 35] for
the number of heads, [2, 5] for the number of encoding and
decoding layers, [10, 25] for the moving average, [1, 3] for the
attention factor. The activation functions Rectified Linear Unit
(ReLU) [2] and Gaussian error linear units (GELU) [17] have
been tested. The models gave better results with the GELU
activation function.

V. RESULTS AND DISCUSSION

A. Cross Validation & Forward chaining

Cross-validation [8] and Forward-chaining [4] are used to
evaluate the models in this paper. Cross-validation [8] is
frequently used in the evaluation of regression and classifica-
tion models. Applying it to the time-series or other naturally
ordered data adds some complexity because of the chronology
of events. To accurately simulate the real world forecasting
environment, in which we stand in the present and forecast
the future, the forecaster must withhold all data about events
occurring chronologically after the events used to fit the model.
Rather than using k-fold cross-validation, we use hold-out
cross-validation for time series data, in which a subset of
the data (split temporally) is reserved for validating model
performance. As shown in Figure 4, the test set data follows
the training set chronologically. Similarly, the validation set
follows the training subset chronologically.

Recall that the dataset used to evaluate the performance of
the tested forecasting models contains daily purchases of 150
products divided into 2 main categories.

B. Discussion

Root-mean-square deviation (RMSE) and Mean absolute
error (MAE) are used as measurement tools in this paper to
measure the reliability of the various prediction models [11]. In
the remainder, category A represents the Fish category, while
category B represents the Dairy category.
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TABLE III: Results on two datasets with predicted length as 1, 7, 30, 60. (Highest values in bold)

Models Autoformer Informer Transformer XGboost LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Fish 1 0.43 0.36 0.50 0.42 0.54 0.43 0.67 0.47 0.59 0.45
7 0.52 0.40 0.53 0.39 0.52 0.39 0.60 0.45 1.08 0.77
30 0.53 0.44 0.69 0.48 0.53 0.38 0.71 0.50 1.67 0.99
60 0.55 0.45 0.83 0.58 0.56 0.40 0.70 0.50 1.79 1.03

Lait

1 0.43 0.37 0.44 0.39 0.47 0.36 0.68 0.46 0.54 0.44
Dairy 7 0.48 0.37 0.49 0.38 0.48 0.38 0.60 0.46 0.98 0.73

30 0.52 0.45 0.64 0.46 0.48 0.36 0.72 0.51 1.52 0.94
60 0.51 0.43 0.78 0.56 0.53 0.39 0.75 0.53 1.64 0.98
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Fig. 2: Product category A dataset
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Fig. 3: Product category B dataset
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1) LSTM: The LSTM was developed to learn order de-
pendence in sequence prediction problems. And the results in
table III show that LSTM captured the patterns but encounter
difficulties against noise. All of the tested models were able
to understand the seasonality in the data on a global scale.
However, when trends are combined with seasonality, the
LSTM encounters difficulties, as shown in Figure 2. On
the product category A, the LSTM model reaches its best
prediction with MSE = 0.43 and MAE = 0.36. The number
of epochs has been limited to 15 for all the deep learning
models. With an Early stopping [19] and Auto adjust learning
rate [27] configuration enabled.

2) XGBoost: The results show that using 100 estimators
with a squared error as objective function, the XGBoost
model was able to capture the seasonality almost as the

LSTM did, but when it comes to long term prediction, the
XGBoost outperforms the LSTM, as shown in Table III.
The GridSearchCV class of the sk-learn library has been
used to automate the model selection. Thus, ranges of hyper-
parameters have been provided to the GridSearchCV, which
then returns the configuration that works best based on desired
evaluation technique. The best prediction (MSE = 0.67%,
MAE = 0.47%) was achieved with 100 estimators and a
maximum depth of 9.

3) Autoformer vs Attention family: It was determined that
Autoformer globally outperformed the other models in this
study. Precisely because with the series decomposition blocks,
Autoformer can aggregate and refine the trend-cyclical part
from series progressively. It was also designed to facilitates the
learning of the seasonal part, especially the peaks and troughs.



This verifies the necessity of the decomposition architecture.
The best results of the Autoformer, Informer and Transformer
were obtained with 8 heads when predicting on 1 day, and 30
when predicting on 7 to 60 days, with 3 encoding layers and
2 decoding layers, an ADAM optimizer, a moving average
equal to 13, an attention factor equal to 3. This confirms
the observation made in [30] — datasets with an obvious
periodicity tend to perform better with a high factor.

VI. CONCLUSION

In this paper we have seen the application of Machine
Learning models to predict overstocking. We addressed the
overstocking prediction problem, which can be formulated as
a demand forecasting problem. We compared 5 prediction
approaches, including Deep Learning approaches such as
LSTM, Autoformer, Informer, Transformer and a Machine
Learning approach, namely XGBoost. LSTM and XGBoost
were taken up and re-adapted for the regression problem and
then compared to attention-based models. The best results with
the MSE metric were generally observed with the Autoformer
model and the best results with the MAE metric were generally
observed with the Transformer model. In our future works we
plan to use other external and public data such as weather
to increase accuracy of the forecasting. Preliminary results
are very encouraging and confirm the superiority of the
Autoformer model.
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