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Multibiosensor Data Sampling and Transmission
Reduction with Decision-making for Remote

Patient Monitoring in IoMT Networks
Ali Kadhum Idrees, Sara Kadhum Idrees, Tara Ali-Yahiya, and Raphaël Couturier

Abstract— The rise in chronic diseases and the aging of the population led to an increase in the demand for remote
healthcare systems that employ biosensors to monitor people’s health status. The increasing need for these automated
systems has led to the emergence of the Internet of Medical Things (IoMT) networks. In the IoMT networks, the biosensor
devices collect vital signs and transmit them to the gateway for further analysis and fusion. In light of the limited
biosensor device resources (power, storage, and computation) and the periodical transmission of a large amount of
data, it is necessary to optimize the transmission of data in order to conserve power while maintaining data quality at the
gateway. Also, it became important to have a decision-making-based machine learning model at the gateway to evaluate
a patient’s health and make a quick, accurate decision in case of an emergency. This paper proposes Multibiosensor
Data Sampling and Transmission Reduction with Decision-making (MuDaSaTReD) for Remote Patient Monitoring in the
IoMTs Networks. The MuDaSaTReD achieves this goal on two levels: biosensors and a fog gateway. It uses an Energy-
saving Lightweight Data Transmission (ELiDaT) algorithm to get rid of the repeated data and then adapts the sampling
rate of each biosensor using an Adaptive Data Sampling (ADaS) algorithm. The MuDaFuDeC implements the machine
learning model at the fog gateway to learn and decide the situation of the patient according to the received data from the
biosensors. The performance evaluation shows that the MuDaFuDeC outperforms other approaches in terms of the data
reduction percentage and energy consumption. It keeps a good representation of all the scores at the fog gateway and
makes automated, fast, and accurate decisions based on the patient’s condition.

Index Terms— Internet of Medical Things (IoMTs), Patient Health Monitoring, Machine Learning, Decision Making,
Sampling rate adaptation, Emergency Detection.

I. INTRODUCTION

Recent advances in the Internet of Things (IoT) technologies
have increased the number of interconnected devices [1]. As
the number of devices increases, it will be necessary to en-
hance network infrastructure in order to enable effective com-
munication or connectivity between geographically dispersed
devices [2]. These changes should make it easier to do things
in real-time with less delay and better performance. To achieve
these objectives successfully, an appropriate communication
platform is needed. 5G and beyond is a promising next-
generation network that allows a variety of expanded features,
including ultra-low latency, high dependability, seamless con-
nectivity, and user mobility [3]. In recent years, the number
of diseases and illnesses has increased globally. In addition,
wars and human-animal interactions led to the emergence and
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distribution of new viruses and diseases, including COVID-19.
Therefore, it will be very hard for medical staff to do their
jobs. The governments had to pay a lot of money to provide
different health and application services [4]. The IoMTs have
emerged as a result of the rapid development of IoT tech-
nology, medical sensing devices, and big data methodologies.
The automated remote patient monitoring systems represent
one of the important services that will be managed by the
ZTN. These systems allow medical staff to remotely access
patient data and provide convenient and economical options
for patient surveillance anytime, anywhere [5]. These systems
are based on biosensor devices, which are either spread on the
patient’s body or implanted inside the patient’s body [6]. Since
remote patient monitoring is continuous and in real-time, these
biosensors will send large amounts of data to the fog gateway,
which causes a loss of power to these biosensors, utilizes more
bandwidth, and will slow down the response time in IoMTs
network, which can lead to risk to the patient’s life. Biosensor
battery drain is a critical challenge. Because vital physiological
changes can be missed and data fusion can be disturbed if one
or more biosensor nodes die, the energy required by biosensor
nodes for detecting and transmitting is a challenge. Each
piece of health data has health importance. Because essential
signals are redundant and temporally correlated, ignoring or
eliminating them could lead to wrong decisions. The remote
automated patient monitoring system must conserve biosensor
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power so that the patient’s monitoring can continue for a
longer time. In addition, the fused vital signs of the patients
at the fog gateway should be trained with an efficient machine
learning method to accelerate the decision-making system to
evaluate the patient ’s health condition and recommend him or
her to the right healthcare professional. This paper introduces
the following contributions.

i) We propose Multibiosensor Data Sampling and Transmis-
sion Reduction with Decision-making (MuDaSaTReD)
for Remote Patient Monitoring in the IoMTs Networks.
The MuDaSaTReD is implemented on two levels: biosen-
sors and a fog gateway in the IoMTs network. This will
reduce the transmitting data after removing the redundant
ones, improve the energy consumption, decrease the band-
width usage, and introduce fast and accurate decisions
according to the patient situation.

ii) The MuDaSaTReD executes an Energy-saving
Lightweight Data Transmission (ELiDaT) algorithm
based on lightweight prediction model inside the
biosensor device to remove the repetitive data and save
the power of the biosensors.

iii) An adaptive sampling rate adaptation algorithm is pro-
posed. It changes the rate at which data is sampled inside
the biosensor based on the patient situation.

iv) The MuDaSaTReD implements a decision-making algo-
rithm at the fog gateway using machine learning algorithm
to decide the situation of the patient after receiving the
fused data from the biosensors.

v) To assess the proposed MuDaSaTReD, numerous ex-
periments are conducted using a Python-based custom
simulator. PhysioNet datasets MIMIC I and MIMIC II
(Multiple Intelligent Monitoring in Intensive Care) that
contain actual medical data are used [7]. Each experi-
ment’s simulation time is roughly two hours (70 periods).
To demonstrate the usefulness of the suggested approach,
the performance of the MuDaSaTReD approach is com-
pared to two close related works: dynamic risk, static risk
r = 0.4, and static risk r = 0.9 [8] and the Modified LED*
[9]. This method was chosen for comparison because it
is the most similar to the proposed work among recent
related works.

The remaining sections of this article are structured as
follows. The related works are described in the next section.
Section 3 describes the proposed MuDaSaTReD approach. The
performance assessment of the proposed work is presented in
Section 4. In Section 5, the conclusion and the forthcoming
work are addressed.

II. RELATED WORKS

Currently, the growing number of patients associated with
the appearance of new illnesses makes health evaluation and
monitoring a challenging duty for medical personnel and
institutions. In fact, the processing of large and heterogeneous
data acquired by biomedical sensors and the necessity for
patient categorization and diagnosis of diseases, as well as
providing automatic remote patient monitoring, have become
hurdles for a number of health-based sensing applications

based on IoMTs networks. Therefore, several research papers
are proposed to deal with these challenges.

In the presented work of [8], the authors present real-time
local adaptation of the sampling rate of a sensor node in
response to changes in the recorded vital sign and its hazard.
They offer a real-time, dynamic evaluation of the hazard of
any vital sign, based on the degree of the patient’s health status
and the harshness of the vital sign itself. They evaluated their
suggested method by applying it to actual health datasets.

In [9], the authors present a framework for biosensor
data management, from data collection to decision-making.
Initially, they suggest an adaptive data gathering strategy at
the level of the biosensor node. This method employs an early
warning score system to decrease the amount of sent data and
predict the sensing frequency in real-time. Then, they describe
a coordinator-level data fusion model based on a decision
matrix and fuzzy set theory.

The authors of [10] presented a BigReduce as a cloud-
based, networked healthcare approach. BigReduce’s purpose
is to decrease the cost of data processing at the base station
based on two schemes used locally by IoT Sensor devices:
reduction and decision strategies. In [11], the authors introduce
an energy-saving approach for stress assessment and detection.
A wireless body sensor network (WBSN) implanted in the pa-
tient’s body accumulates sensory stress-related digital signals.
The skin conductance is initially assessed. Then, if any stress
indicators are found, the level of stress is computed using the
Fuzzy Inference System based on the following vital signs:
respiration rate, heart rate, and systolic blood pressure. The
results show that the stress assessment was in line with the
many stages of experimentation that the person being looked
at has been through. In [12], the authors offer an energy-
efficient technique for WBSN data transfer. The suggested
technique accepts as input numerous network factors, such as
the bandwidth, the available power of the sensing devices, and
the number of hops to the coordinator, and chooses the next
hop device depending on the weights of each parameter and
the data’s priority. In [13], The authors present a technique
for the recognition and assessment of emergency cases that
uses WBSN infrastructure and is capable of distinguishing
true emergency cases from other situations by incorporating an
risk assessment process from each sensed data. Experimental
results have shown that the presented technique is capable of
achieving an average accuracy rate of 93%, a detection rate
of 87.2 %, and an energy usage profile suitable for WBSN
situations. Hospital and medical staff can benefit from sensor-
based predictive analytics for real-time patient evaluation and
monitoring. The suggested technique consists of three stages
emergency recognition, sensing frequency adaptation, and
real-time patient scenario forecasting. Through simulations
using actual health data, they demonstrate the superiority of
their approach to other recent methods [4].

SHORTCOMINGS. Despite demonstrating several meth-
ods for data fusion, data collection with reduction, and patient
monitoring, the majority of the related works did not take
energy-saving in biosensors into account. They presented
methods with some limitations, such as high processing com-
plexity, low redundant data reduction, and low data accuracy
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in biosensor devices. Moreover, most of these approaches
were unable to recognize the urgent situation at the level of
biosensor nodes. They detect the risk at the sink after getting
information from the biosensor nodes. In addition, the related
studies [8]–[13] did not take into account either the reduction
in response time or the automation of their systems to cope
with the concept of IoMTs networks. Furthermore, fast, smart,
automated, and accurate decisions are not considered in most
of the presented methods. As a result, the proposed solutions
are highly specialized, rely on complex methodologies, neces-
sitate extensive computations, and cannot be used in IoMTs
networks.

OUR APPROACH. We proposed Multibiosensor Data
Sampling and Transmission Reduction with Decision-making
(MuDaSaTReD) for Remote Patient Monitoring in the IoMTs
Networks. The proposed MuDaSaTReD is implemented at
two levels: biosensor devices and a fog gateway. In the
former, the MuDaSaTReD applies the data reduction-based
local emergency detection algorithm to eliminate redundant
data and save energy on the biosensor device. Moreover, the
sampling rate of the biosensor will be adjusted based on the
situation of the patient. In the latter, the MuDaSaTReD applied
the machine learning algorithm at the fog gateway to provide
fast decisions related to the status of the patient based on
the fused data from the biosensor devices on the body of the
patient. The fog gateway transmits the report of the decision
to the hospital staff center, which then takes the required
action on the patient remotely using the provided decision.
With the MuDaSaTReD approach, a remote automated patient
monitoring system that can handle the idea of IoMTs networks
is made possible.

III. THE MUDASATRED APPROACH

This section introduces the proposed Multibiosensor Data
Sampling and Transmission Reduction with Decision-making
(MuDaSaTReD) for Remote Patient Monitoring in IoMTs
networks in more detail. Figure 1 refers to the MuDaFuDeC
approach. This is the architecture of the proposed automated
remote patient monitoring system that will be based on the
IoMTs networks.

Fig. 1. The MuDaSaTReD approach.

The MuDaSaTReD approach works in real time by gather-
ing the patient’s data, removing redundancy at the biosensor

node, and updating its sampling rate periodically according to
the situation of the patient. Then, the trained machine learning
algorithm gives a fast and accurate decision about the status
of the patient. It works on two levels in the IoMTs networks:
biosensor devices and fog gateway levels. The MuDaSaTReD
will apply the Energy-saving Lightweight Data Transmission
(ELiDaT) algorithm in each biosensor device to the collected
vital signs before sending them to the fog gateway. The
ELiDaT executes the naive prediction model, which is very
light and simple and works in real-time on the patient’s
captured vital signs. The ELiDaT aims to reduce the number of
transmitted vital signs on the biosensor by removing redundant
ones. The ELiDaT is executed for each sensed vital sign to
decide whether to send it to the fog gateway if the difference
between the predicted score and current score is not equal
to ε; otherwise, it will remove it. The ELiDaT is designed
to work with continuous remote patient monitoring and to
deal with the continuously captured data by biosensor devices.
Furthermore, the MuDaSaTReD will implement the proposed
Adaptive Data Sampling (ADaS) algorithm at each biosensor
device at the end of each period. It adapts the sampling rate of
the biosensor device based on the patient’s situation. It is based
on a scoring approach to predicting the illness of the patient.
When the patient’s situation is bad, the algorithm adjusts the
sampling rate to the maximum, while in normal conditions,
the sampling rate can be adjusted to the minimum. This will
decrease the volume of captured and transmitted vital signs,
especially in a normal patient. The MuDaSaTReD approach
analyzes, updates, and aggregates the received vital signs
from biosensors at the fog gateway at each slot time in the
period and then uses the trained machine-learning technique
to provide the appropriate decision according to the situation
of the patient. Table I shows the symbols description used in
this paper.

TABLE I
SYMBOLS DESCRIPTION.

Parameter Meaning
VS set of vital signs
SC set of scores
ε threshold%
vsB , vsR, vsH , vsS , and
vsA

the vital signs of BLOODT, RESP,
HR, SpO2, and ABPsysm, respec-
tively

scB , scR, scH , scS , and scA the scores of vsB , vsR, vsH ,
vsS , and vsA, respectively

RE remaining energy
samMax maximum sampling rate
samMin minimum sampling rate
Wgtj weights of scores (j= 0, 1, 2, and

3)
r0Min, r0Max, r1Min, r1Max,
r2Min, r2Max, r2Min, r2Max

score ranges of weights

ν1, ν2 application-specific parameters
samRate the new sampling rate
ξk the updated score for the biosensor

k
Λ the aggregated score
Ie initial energy
ρ total number of vital signs in the

period
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A. Biosensor level
In this section, we will explain the two main algorithms

that will be applied by the MuDaSaTReD approach. It can be
seen from the Figure 1 that there are five bisensor devices that
will be deployed on the patient’s body to collect its vital signs
continuously and then transmit them to the fog gateway. These
biosensor devices are the oxygen saturation (SpO2), heart
(HR), systolic blood pressure (ABPsys), respiration (RESP),
and blood temperature(BLOODT). Each biosensor device is
in charge of collecting data and regularly forwarding it to
the fog gateway. Since these biosensors continue to transmit
important data for patient monitoring to the fog gateway, this
will put a big burden on the IoMTs network. Therefore, it
is necessary to propose an energy-efficient lightweight data
transmission algorithm to carry out the mission of transmitting
captured data at the biosensor devices, removing the data
redundancy and saving energy while maintaining the quality of
data reflecting variation in the patient’s condition, especially in
emergency situations at the fog gateway. The hospital’s health
team uses a physiological scoring system called the National
Early Warning Score (NEWS) to assess patients’ conditions
and give relevant treatment attention and care for those who
are at high risk. There are six physiological measures in
NEWS: awareness level, systolic blood pressure, temperature,
respiration rate, pulse rate, and oxygen saturation. NEWS
reflects a method for scoring. NEWS’ key characteristic is its
ease of use in estimating the patient’s risk level by utilising
appropriate ratings for each type of biosensor. The NEWS
can identify the patient’s state by rating the detected values of
various biosensors [16]. Figure 2 refers to the NEWS Chart.

Fig. 2. The NEWS Chart.

The six physiological measurements’ values are calculated
according to the National Early Warning Score (NEWS) that
is used by the National Health Service (NHS) in the UK. The
Royal College of Physicians recommends it for adult clinical
examinations. UK hospitals utilize NEWS to assess emergency
cases. NEWS is a weight-based chart that assigns scores to
physiological signals obtained during routine examinations
(whether in-person or in hospitals). In this article, the scoring
method is based on five physiological parameters (vital signs)
that represent the base of the scoring system: BLOODT, RESP,
HR, SpO2, and ABPsys. Each vital sign is given a score of

0 if it is in the normal range. It is scored 1, 2, or 3 based
on its divergence from the normal range, with 3 being the
most critical. Suppose that the vital signs of BLOODT, RESP,
HR, SpO2, and ABPsys are vsB , vsR, vsH , vsS , and vsA,
respectively. Hence, the score for each of these vital signs can
be calculated using the NEWS chart (see Figure 2) as follows.

scB =


3 if vsB 6 35.0
2 if vsB ≥ 39.1
1 if vsB ∈ (35.1− 36.0) or vsB ∈ (38.1− 39.0)
0 if vsB ∈ (36.1− 38.0)

(1)

scR =


3 if vsR ≤ 8 or vsR ≥ 25
2 if vsR ∈ (21− 24)
1 if vsR ∈ (9− 11)
0 if vsR ∈ (12− 20)

(2)

scH =


3 if vsH ≤ 40 or vsH ≥ 131
2 if vsH ∈ (111− 130)
1 if vsH ∈ (41− 50) or vsH ∈ (91− 110)
0 if vsH ∈ (51− 90)

(3)

scS =


3 if vsS ≤ 91
2 if vsS ∈ (92− 93)
1 if vsS ∈ (94− 95)
0 if vsS > 96

(4)

scA =


3 if vsA ≤ 90 or vsA ≥ 220
2 if vsA ∈ (91− 100)
1 if vsA ∈ (101− 110)
0 if vsA ∈ (111− 219)

(5)

1) ELiDaT algorithm: Each biosensor device will apply
the following Energy-saving Lightweight Data Transmission
(ELiDaT) algorithm on the collected data before sending
them to fog gateway. Suppose the set of vital signs of the
patient during one period k is VS = {vs1, vs2, ..., vsρ} and
the corresponding score values set after applying the NEWS
is SC = {sc1, sc2, ..., scρ}. Each biosensor device initialized
with 4000 units of energy, therefore the initial value of RE will
be 4000 units.. Algorithm 1 refers to the ELiDaT algorithm.

The ELiDaT algorithm is implemented in each biosensor
and operates in real-time on the patient’s vital signs. The main
goal of this algorithm is to reduce the number of transmitted
data on the biosensor by removing the redundant ones. In
Algorithm 1, step 1 refers to the condition of executing the
algorithm when the remaining energy of the biosensor is
greater than 0. Steps 1–2 are responsible for sending the first
vital sign and updating the remaining energy in the biosensor.
In step 4, the function NEWS() returns the score value of
the vital sign vs1 using one of the equations (1, 2, ...,5) that
are based on the NEWS chart and according to the type of
the biosensor. Steps 5-13 focus on the next set of vital signs.
The function NEWS() is used to compute the score value of
the vital sign vsi. Since these medical biosensors have very
limited resources, it would be better to use lightweight and
energy-efficient techniques in order to get rid of redundant
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Algorithm 1: ELiDaT Algorithm
Require: vsi: vital sign i
Ensure: vsi and sci i>1

1: if RE > 0 then
2: Transmit first vital sign vs1 ;
3: Update RE of Biosensor device ;
4: PreviousScore ← NEWS(vs1) ;
5: for each sensed vital sign vsi ∈ V S and i> 1 do
6: sci ← NEWS(vsi)
7: Predicted ← Naive model(PreviousScore);
8: if Predicted - sci 6= ε then
9: Send vsi to fog gateway ;

10: Update RE of Biosensor device ;
11: PreviousScore ← sci ;
12: end if
13: end for
14: end if
15: return sci;

data, preserve their medical value, and reduce energy costs.
The ELiDaT algorithm employs a very light prediction model
to predict the next value and then decides whether to send it or
not. It employed the Naive model to forecast the future vital
signs [17]. The following prediction will be made if the score
of given vital signs add up to sct:

sct+1 ← sct (6)

This means that the forecast for future score of vital signs is
sct, where sct is the most recently score of observed vital sign
value. In step 8, the Naive Prediction Model is used to predict
the score of the next vital sign of the patient using Eq.6. The
difference between the predicted scores and the current ones
is calculated next, and if this difference does not equal ε, the
vital sign is transmitted to the fog gateway and the biosensor’s
remaining energy is updated. The parameter ε is set to 0. It
is given a zero value to avoid sending the vital sign with the
same score as the previous vital sign.

2) Adaptive Data Sampling (ADaS) algorithm: This part
explains the proposed adaptive sampling algorithm that is
executed at each biosensor device at the end of each period.
Algorithm 2 refrs to the adaptive sampling algorithm imple-
mented on the biosensor device.

The novelty of the algorithm 2 lies in proposing a new sam-
pling approach that adapts the sampling rate of the biosensor
device based on the patient’s situation. Most of the sampling
algorithms depend on measures of similarity between the time
series data entered into them, and based on the similarity
value, the sampling rate decreases or increases. In the proposed
algorithm 2, it adjusts the sampling rate based on the patient’s
condition. When the patient’s situation is bad, the algorithm
adjusts the sampling rate to the maximum, while in normal
conditions, the sampling rate can be adjusted to the minimum.
The sampling algorithm 2 depends on adjusting the sampling
rate based on the scoring approach to forecast the illness of
the patient, which was calculated as shown in the algorithm 2.

Algorithm 2: Adaptive sampling algorithm
Require: V S: set of vital sign values, samMax: maximum

sampling rate, samMin: minimum sampling rate, Wgtj:
weights of scores (j= 0, 1, 2, and 3),(r0Min, r0Max,
r1Min, r1Max, r2Min, r2Max, r2Min, r2Max): score
ranges of weights, (ν1,ν2): application-specific
parameters, ρ: total number of vital signs in the period

Ensure: samRate: the new sampling rate
1: for each period p do
2: Set δj to 0, 0 ≥ j ≤ 3. ;
3: for i← 1 to ρ do
4: scoreListi ← ELiDaT Algorithm(vsi) ;
5: for j ← 0 to 3 do
6: if scoreListi = j then
7: δj ← δj +1 ;
8: end if
9: end for

10: end for
11: for j ← 0 to 3 do
12: αj ← δj * Wgtj ;
13: end for

14: samR ←
3∑
j=0

αj ;

15: end for
16: if samR ≤ r0Max and samR ≥ r0Min then
17: samRate ← samMin;
18: else if samR ≤ r1Max and samR ≥ r1Min then
19: samRate ← samMin + ν1;
20: else if samR ≤ r2Max and samR ≥ r2Min then
21: samRate ← samMin +ν2;
22: else if samR ≤ r3Max and samR ≥ r3Min then
23: samRate ← samMax;
24: end if
25: return samRate;

This scoring scheme idea was inspired from the research [18]
with some modifications.

The score weights Wgt0, Wgt1, Wgt2, and Wgt3 in
Algorithm 2 are defined as follows.

Wgt0 ← 1 (7)

Wgt1 ← 2 (8)

Wgt2 ← samMax+ 2 (9)

Wgt3 ← samMax2 + samMax+ 2 (10)

The weight ranges of scores r0Min, r0Max, r1Min, r1Max,
r2Min, r2Max, r3Min, and r3Max are defined as follows.

r0Min← samMin (11)

r0Max← samMax (12)

r1Min← samMax+ 1 (13)

r1Max← 2 ∗ samMax (14)

r2Min← 2 ∗ samMax+ 1 (15)
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r2Max← samMax2 + 2 ∗ samMax (16)

r3Min← samMax2 + 2 ∗ samMax+ 1 (17)

r3Max← samMax3 + samMax2 + 2 ∗ samMax (18)

In this algorithm, the parameters samMin and samMax
are set to 30 and 70, respectively. The application-specific
parameters ν1 and ν2 can be set according to the application
requirements, where in this paper they are set to 10 and 20
respectively. This algorithm is executed at the end of each
period to adapt the sampling rate of the biosensor device
for the next period. Steps 2–10 calculate the number of
occurrences of scores 0, 1, 2, and 3 in the scoreList and
save it in δ. Then, multiplying each value in δ with the weight
assigned to it and saving it in α is done in steps 11–13. Step 14
computes the sum of α and saves it in samR. In steps 16–24,
the resulted samR value is checked within the weight ranges
of scores to assign the appropriate sampling rate according to
the status of the patient. The output of this algorithm at the
end of each period is a new sampling rate samRate that will
be used by the biosensor to sense the data for the next period.

3) Computational complexity: The time complexity for ELi-
DaT algorithm 1 is θ(1), while the space requirement is θ(1).
Algorithm 2 requires θ(ρ) of time complexity and it requires
θ(ρ) of storage requirement.

B. Fog gateway level

The MuDaSaTReD approach analyzes, updates, and aggre-
gates the received data from biosensors at the fog gateway
and then uses the machine learning technique to provide the
appropriate decision according to the status of the patient. For
each slot time in the period, the received vital signs at the
fog gateway from different biosensor devices will be used to
calculate the updated scores for every biosensor. Each vital
sign converted to its score using NEWS. Hence, the updated
score ξk for the biosensor k is computed as follows.

ξkt ←
ξkt−1 + ξkt

2
(19)

The medical experts use the biosensors’ aggregated score
Λ to assess the condition of the observed patient. Hence, the
aggregated score Λ is the summation of update scores of N
biosensors and can be computed as follows.

Λ←
N∑
k=1

ξk (20)

Figure 3 depicts the clinical response chart. This chart
displays five categories of patient risk levels, ranging from
normal to urgent. The aggregated score Λ can be used to check
if the patient falls into any of the five categories.

The decision about the situation of the patient can be taken
by using the trained machine learning model. The machine
learning model is trained using an almost 9-hour-long dataset
for five biosensor nodes implanted on the patient’s body. This
dataset includes six features: ξ1,...,ξ5 and Λ. The labeled class
of each of input (features) is represented as the decision’s

Fig. 3. The clinical response chart.

TABLE II
THE DECISION’S NUMBER, CLINICAL RISK AND Λ

Decision’s Number Clinical Risk Λ
1 Low < 1
2 Low–medium 1- 4.99
3 medium 3 in one biosensor node
4 Medium-High 5 - 6.99
5 High ≥ 7

number according to the Table II. This table is derived from
the table in Figure 3.

In this paper, we employed six machine learning methods
such as Support Vector Machine (SVM), Naïve Bayes, Gradi-
ent Boosting, Random Forest, KNN, and Logistic Regression.
The proposed machine learning-based model is evaluated by
K-Fold cross-validation using real data of a patient dataset.
We found from the results that the Gradient Boosting method
produces better results compared with other methods. They
are implemented by Python programming language using the
"sklearn" library of machine learning. Hence, after training
this model, it can be used later to predict the required decision
according to the status of the patient and send it to the medical
center office.

IV. PERFORMANCE EVALUATION

This section outlines the performance assessment of the
proposed MuDaSaTReD approach. The simulation results can
be obtained by a custom simulator built on the Python pro-
gramming language. Real medical data from the PhysioNet
datasets MIMIC I and MIMIC II (Multiple Intelligent Monitor-
ing in Intensive Care) are utilized during the simulation. Each
experiment’s simulation time is roughly two hours (70 periods)
and period = 100 seconds (i.e, 1 reading/ 1.43 second).
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The parameters samMin and samMax are set to 30% and
70% respectively. The simulation results of MuDaFuDeC are
conducted based on two records of patients: Patient 1 with the
record s01840-3454-10-24-18-46n of MIMIC II dataset and
patient 2 with the record 276n of MIMIC dataset. We used
these records for the purpose of comparison with the related
paper in [8]. The three different cases in [8] are respectively
called as Dynamic Risk, Static Risk r = 0.4, and Static Risk
r = 0.9.

A. Sampling rate adaptation

In this experiment, we explore the adaptation of the sam-
pling rate for different biosensor devices deployed on patients
1 and 2 over 70 periods are applied. Figure 4 depicts the
sampling rate adaptation of the HR biosensors for patients 1
and 2 for the proposed MuDaSaTReD approach compared to
the three different cases in [8]: dynamic risk, static risk r =
0.4, and static risk r = 0.9. The three different cases in [8]
employ the ANOVA model and the behavior function to adapt
the sampling rate.

It can be observed from the results in Figure 4 that the
overall number of captured data in Figure 4 (a) is lower than
the total number of data in Figure 4 (b), making it easy to see
the differences in the sampling rate adaptation between the
two patients. Therefore, patient 1 has a better condition than
patient 2 regarding HR biosensor throughout the 70 periods.
The increase and decrease in the rate of sampling do not affect
the quality of data at the fog gateway in the case of the local
risk in the HR biosensor.

Comparing the two static scenarios for both patients (see
Figures 4 (e), (f), (g), and (h)), the scenario with r = 0.9
provides larger sampling rates than the scenario with r = 0.4
during the adaptation of sampling rate. This is because the
BV function definition leads to larger sample rates for the
higher risk level values. For Patient 1, the number of sampled
measurements was lower in the dynamic risk scenario than in
the two static scenarios. It can be seen that the sampling rate
adaptation in the proposed MuDaSaTReD approach results
in lower sampling rates than the static cases and dynamic
risk. This is due to the effectiveness of using the scoring
scheme with the sampling algorithm of the MuDaSaTReD
approach, which takes the situation of the patient into account
and results in lower sampling rates for lower risk levels. In
the case of patient 2, one can see that the dynamic risk gives
an amount of samples higher than the static case with r =
0.4 and lower than the static case with r = 0.9. The proposed
MuDaSaTReD approach provides sampling rates higher than
the static case with r = 0.4 and the dynamic risk, while
introducing sampling rates lower than the static case with r
= 0.9. This demonstrates that our proposed MuDaSaTReD
approach increases the sampling rates during the 70 periods
due to the patient’s worst situation. Hence, the proposed
MuDaSaTReD approach outperforms the three different cases
in [8] in terms of sampling rate adaptation. This is because it
uses a good patient-weighted scoring system that reflects the
patient’s situation and changes the sampling rate based on the
patient’s situation.

B. Remaining Energy

Energy conservation is critical in devices with limited
resources, such as biosensors. This section explores the impact
of the proposed MuDaSaTReD approach on the energy of
the biosensor device. Figure 5 shows the remaining energy
comparison between the MuDaSaTReD approach and the
three different cases in [8]: dynamic risk, static risk r =
0.4, and static risk r = 0.9 for both patient 1 and patient
2. The experiment is based on the same energy consumption
model that is used in [8]. Hence, the sending, sensing, and
computation consume 0.4, 0.04, and 0.16 units, respectively.
Each vital sign that is picked up costs 0.6 units of energy to
send to the fog gateway. The results in Figure 5 show that
the proposed MuDaSaTReD approach saves more energy for
the biosensor than the three different cases in [8] and for both
patients 1 and 2. The initial energy of the biosensor, Ie, is set
to 4000 units. In order to compute the percentage of consumed
energy for the proposed MuDaSaTReD approach and the three
different cases in [8], the following formula is used.

EnergyConsumptionPercentage← Ie −RE
Ie

∗ 100 (21)

Where RE is the remaining energy of the biosensor at the
end of the 70th period. In Figure 5 (a), the MuDaSaTReD
approach consumes 12.65% of the energy of the HR biosensor
device, whereas the three different cases in [8]: dynamic
risk, static risk r = 0.4, and static risk r = 0.9 consume
56.16%, 59%, and 62.16% of the energy of the HR biosensor,
respectively. In Figure 5 (b), the proposed MuDaSaTReD
approach consumes 22.83%, while the three different cases
in [8]: dynamic risk, static risk r = 0.4, and static risk r
= 0.9 consume 52.78%, 49.78%, and 56.78%, respectively.
The proposed MuDaSaTReD approach outperforms the three
different cases in [8] because it employs an energy-efficient
lightweight data transmission algorithm in conjunction with
an efficient sampling algorithm, which reduces the patient’s
sensed and transmitted data, particularly in normal situations.

C. Data Reduction

This experiment examines the rate of data reduction
achieved by the proposed MuDaSaTReD approach by employ-
ing the lightweight data transmission reduction and adaptive
sampling algorithms at the level of biosensor devices and
throughout 70 periods for patient1. Figure 6 refers to the
Data reduction percentage for the proposed MuDaSaTReD
approach and the three different cases in [8]: dynamic risk,
static risk r = 0.4, and static risk r = 0.9 for patient 1.

It can be observed from the results in Figure 6 that the
proposed MuDaSaTReD approach increases the percentage
of data reduction from 93.3% up to 99%, whereas the three
different cases in [8]: dynamic risk, static risk r = 0.4, and
static risk r = 0.9. introduced a data reduction percentage
of 38 % up to 65%, 37 % up to 65%, and 34 % up
to 65%, respectively. The proposed MuDaSaTReD approach
outperforms the three different scenarios in [8] because it
combines an energy-efficient lightweight data transmission
algorithm with an efficient sampling strategy, which decreases
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Fig. 4. Sampling rate adaptation. (a) Patient1: HR biosensor in MuDaSaTReD (b) Patient2: HR biosensor in MuDaSaTReD (c) Patient1: HR
biosensor in Dynamic Risk (d) Patient2: HR biosensor in Dynamic Risk (e) Patient1: HR biosensor in Static Risk r = 0.4 (f) Patient2: HR biosensor
in Static Risk r = 0.4 (g) Patient1: HR biosensor in Static Risk r = 0.9 (h) Patient2: HR biosensor in Static Risk r = 0.9.
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(a) (b)

Fig. 5. Remaining Energy (a) Patient 1 (b) Patient 2.

Fig. 6. Data Reduction for patient 1.

the patient’s sensed and transmitted data, especially when the
patients are in a normal situation. This will have a positive
impact on the energy consumption of the biosensors.

D. Integrity of Data
This experiment explores the effect of the MuDaSaTReD

method on data quality across 70 periods. Figure 7 depicts
the data integrity for patients 1 and 2 separately. The Figures
describe the distribution of the vital sign scores of the original
and sensed data recorded by MuDaSaTReD for the biosensor
devices of patients 1 and 2.

It can be seen from Figure 7 that the MuDaSaTReD
provides data integrity at the fog gateway, preventing scores
from being lost after applying the lightweight transmision
reduction and adaptive sampling algorithms at the biosensor
devices level. In spite of MuDaSaTReD is highly reduce the
HR biosensor node data to 99% of the original (see Figure 6),
but it preserves similar score distributions.

E. Aggregated scores with decision making
This study illustrates the aggregated score Λ and decisions

made by the proposed MuDaSaTReD through employing the

TABLE III
PERFORMANCE EVALUATION METRICS OF EMPLOYED MACHINE

LEARNING MODELS.
Machine learning model Accuracy Precision score Recall score F1 score macro Hamming_loss

SVM 0.990415335 0.989241712 0.962855272 0.975293524 0.009584665
Gradient Boosting 0.99893617 0.999038462 0.985714286 0.992110665 0.00106383

Random Forest 0.99787234 0.995995091 0.919047619 0.950572718 0.00212766
Naïve Byse 0.774468085 0.767526983 0.833538599 0.778206503 0.225531915

KNN 0.980851064 0.77026948 0.767699707 0.768902309 0.019148936
Logistic Regression 0.984042553 0.784199546 0.768753988 0.776153447 0.015957447

machine learning model at the fog gateway across 70 periods.
Figures 8 (a) and (b) display the total scores for patients 1 and
2 accordingly. The aggregated score is calculated by adding
the scores of all biosensor nodes that have been updated. The
greater the risk of the patient’s situation, the greater the value
of the summed aggregated score.

Decision-making for patients 1 and 2 is presented in Fig-
ures 8 (a) and (b), respectively. Each time received data
from the biosensor devices at the fog gateway, the proposed
MuDaSaTReD fuses, updates, and aggregates these data and
passes them to the trained machine learning model to provide
the decision about the status of the patient and then send
the decision notification to the medical staff office. First, the
machine learning model should be trained on the old received
data from the biosensors where the decisions were taken based
on the aggregated score and the chart of clinical response (see
Figure3). The machine learning model is trained based on six
features (updated scores and aggregated scoreΛ) and the label
of the decision class is determined by matching each calculated
aggregated score to the values in Table II that are inspired by
the chart in Figure 3. As shown in this table, the decisions are
labeled from 1 to 5 according to the level of patient risk. The
machine learning model was trained on the patient data for
nine hours. After that, the trained model will be used at the
fog gateway to automatically send the decisions to the medical
center office across the IoMTs Network.

We employed several machine learning models to make the
decisions at the fog gateway and to provide these automated,
fast, and accurate decisions remotely and continuously to the
medical center office across the IoMTs network while moni-
toring the patient. Table III shows the performance evaluation
metrics of employed machine learning models. The results
show that the Gradient Boosting machine learning model
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(a) (b)

Fig. 7. Integrity of Data (a) Patient 1 (b) Patient 2.

(a) (b)

(c) (d)

Fig. 8. (a) The aggregated score Λ for patient1 (b)The aggregated score Λ for patient2 (c) Decision making for patient1 (d)Decision making for
patient2

introduced better results compared with other models. Hence,
the proposed MuDaSaTReD approach can use the gradient
boosting trained model as a decision maker at the fog gateway.

V. FURTHER RESULTS

In this section, we present more results to show the effi-
ciency of the proposed MuDaSaTReD approach in comparison
with another related work named "Modified LED*" [9]. Real
medical data from the PhysioNet MIMIC dataset are used dur-
ing the simulation. The simulation time is roughly two hours

(70 periods), and a period is 100 seconds. The parameters
samMin and samMax are set to 10% and 50% respectively.
All simulation experiments are conducted based on the patient
record (267n) using the respiration biosensor node. We used
this record for the purpose of comparison with the related
paper in [9]. Figure 9 refers to the Sampling rate adaptation
and data reduction.

Using the same periods, the authors compare the findings for
a normal patient (risk = 0.4) and a critical patient (risk = 0.49)
in Figures 9 (c) and (d). Nevertheless, implementing various
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(a) (b)

(c) (d)

Fig. 9. Sampling rate adaptation and data reduction (a) MuDaSaTReD (Normal Patient) (b) MuDaSaTReD (Critical Patient) (c) Modified LED*
(Normal Patient) (d) Modified LED* (Critical Patient).

risk values does not appear to be sufficient to demonstrate
a significant difference in the adjusting of the sampling rate
since it provides less information regarding the variation in
severity of the patient’s condition between both risk instances.
On the other hand, Figures (a) and (b) illustrate a variation
in adjusting the sampling rate to various cases of patient
risk, with normal patients displaying lower values and critical
patients displaying larger values over the same number of
periods. The proposed MuDaSaTReD approach evaluates the
level of RESP risk in accordance with the patient’s actual
situation, identifies a precise risk value at the present time, and
changes the sampling rate based on this risk level. According
to NEWS, the lower sampled data in Figure 9 (a) show that
the vital signs are within the normal range. Consequently,
the sampling rates will be reduced to their minimum values.
Figure 9 (b) illustrates the variation in the sampling rates that
results in varied values. Whenever a patient’s condition is
determined to be critical, it becomes necessary to examine
the patient’s physiological parameters with a high sampling
rate in order to keep track of any changes that could have an
impact on the patient’s health state. Concerning the second
issue, the amount of sent data to the fog gateway during
each period is compared to how well both Modified LED*
and the proposed MuDaSaTReD approach are adapted. With
these two approaches, the amount of data sent to the fog
gateway was kept to a minimum (only a small amount of the
sampled data was sent), and only the first data of a given period
was sent. The proposed MuDaSaTReD approach outperforms
the Modified LED* method in the case of a normal patient,

allowing for greater data reduction. Because there is no change
in the patient’s normal state, it only sends the first vital sign
of each period to the fog gateway. Furthermore, in the case of
a critical patient, the MuDaSaTReD method works better than
the Modified LED* method, which means that more data can
be reduced. All of these elements contribute to lowering the
amount of data that does not need to be sent and improving
the transmission process, which in turn reduces the amount of
required power. Figure 10 compares the remaining energy for
the proposed MuDaSaTReD approach to the Modified LED*
method in normal and critical patient scenarios. The initial
energy of the biosensor is set at 700 units. We used the same
energy model as the Modified LED* method, with 0.3 and 1,
respectively, for the sensed and transmitted vital signs.

It can be observed from the results in Figure 10 that the
proposed MuDaSaTReD approach saves more energy than the
Modified LED* method in both normal and critical patient sce-
narios. This is due to the effectiveness of the adaptive sampling
algorithm and the ELiDaT algorithm used in the proposed
MuDaSaTReD approach in reducing the sampling rates and
data transmission according to the patient’s situation. Figure
11 shows the amount of collected data and the distribution of
scores after applying adaptive sampling (AS) to the respiration
rate node vs. when no adaptive sampling is done (NS) for the
proposed MuDaSaTReD approach for eight periods selected
out of the 70 periods in normal and critical patients. Figure
12 shows the amount of collected data and the distribution of
scores after applying adaptive sampling (AS) to the respiration
rate node vs. when no adaptive sampling (NS) for the Modified
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Fig. 10. Remaining energy.

LED* in a normal patient.
It can be seen from the results in Figure 11 (a) that the

proposed MuDaSaTReD approach reduced the average of
sensed data for eight periods to around 98.88%, whereas the
Modified LED* method (see Figure 12) reduces the data by
64.5% for a normal patient. More reduction in the sampled
data are shown in Figure 11 (a) when the patient is in a
normal state, reflecting the minimum range score (mostly zero
scores). Similarly, in Figure 11(b), when a patient is somewhat
critical, there is a 95.5% reduction in sensed data. This shows
the different score ranges and how bad the patient’s health is
since the maximum range score (2 and 3 scores) is included.
It is obvious that adaptive sampling, as used by the proposed
MuDaSaTReD approach, has no effect on the distribution of
scores and, as a result, on the data and information required for
decision-making. In spite of the high reduction in the sensed
data by the proposed MuDaSaTReD approach for both normal
and critical patients, it maintains a good representation of the
scores after applying adaptive data sampling, and no score
could be lost. This is necessary for the fog gateway to make
an accurate decision about the patient’s status. Figure 13 shows
the data reduction for the proposed MuDaSaTReD approach
and the Modified LED* method for eight periods selected
out of the 70 periods. According to the results described in
Figures 11(a), (b), and Figure 12, these percentages have been
calculated.

It can be noticed from the results in Figure 13 that the
proposed MuDaSaTReD approach reduced the sensed data
from 98% up to 99%, whereas the the Modified LED* method
reduced the sensed data from 50% up to 90% for the normal
patient. The proposed MuDaSaTReD approach reduced the
sensed data from 89% up to 99% for the critical patient.
Also, because there is not a lot of variations in how scores
are distributed, no important vital signs are wasted, and the
way scores are distributed has not changed over the period.
Therefore, the fog gateway’s decisions are not affected.

VI. CONCLUSION AND PERSPECTIVES

We have proposed Multibiosensor Data Sampling
and Transmission Reduction with Decision-making
(MuDaSaTReD) for Remote Patient Monitoring in the
IoMTs Networks. The MuDaSaTReD approach implements
the proposed ELiDaT and adaptive sampling algorithms
at the biosensor level to eliminate the redundant data and
save energy at the biosensor. Then, it fuses, updates, and
provides fast, accurate, and automated decisions based on
a machine learning model about the patient’s situation at
the fog gateway. The performance evaluation shows that the
MuDaSaTReD outperforms the Dynamic risk [8] and the
Modified LED* [9] methods in terms of the data reduction
and energy consumption. It keeps a good representation of
all the scores at the fog gateway and makes automated, fast,
and accurate decisions based on the patient’s condition.

In the future works, lightweight compression techniques will
be incorporated into biosensors in order to compress readings
and send them to the fog without affecting their meaning. In
order to use the proposed approach, it is also planned to do
real experiments with real biosensors and fog gateways.
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