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Abstract: Vibration dose assessed by current standards is likely to be poorly suited to protecting
workers against vibration white finger (VWF). Therefore, we intended for a two-step approach to
better tackle vibration-induced pathophysiological vascular issues. In the first stage, a log2 linear
regression law between the amplitude of vibration acceleration and the wall shear stress (WSS) drop
was established. Then, in a second stage, we set up a mechanobiological model for computing the
arterial stenosis stemming from the WSS decrease and encountered in patients suffering from VWF.
Our findings highlighted a stenosis of about 30% when exposed for 10 years to a 40 m·s−2 amplitude
vibration for 4 h a day.
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1. Introduction

Sustained exposure to high-level hand-transmitted vibrations may lead to angioneu-
rotic disorders such as vibration-induced Raynaud’s syndrome, also known as vibration
white finger (VWF). Many physiological, histological, and epidemiological studies [1] have
highlighted that the vibration dose assessed according to the current ISO 5349 standard
may underestimate the onset predictions of such vascular injuries. In order to better tackle
vibration-induced pathophysiological vascular issues, we recently set up a strategy in
a two-step process [2]. First, we hypothesized that vibrations may acutely decrease the
shear stress exerted by the blood flow on the artery endothelium layer. Second, studies
have shown in various fields [3] that a chronic drop in this so-called wall shear stress
(WSS) may result in arterial stenosis. Furthermore, angiographies and biopsies have em-
phasized this reduction in arterial lumen in patients suffering from VWF. Our approach
then consisted of (i) assessing the relationship between vibration properties (frequency,
amplitude) and the WSS drop and (ii) implementing a mechanobiological model which
linked the vibration-reduced WSS and the resulting arterial stenosis. This current paper
aims to establish how this strategy might pave the way for a new framework to prevent
vibration-induced vascular risk.

2. Materials and Methods
2.1. Assessment of the Vibration-Altered Wall Shear Stress

An experimental device was set up to assess the vibration-induced WSS of the left
proper volar forefinger artery at the level of the distal interphalangeal joint [4] while
subjecting the right hand to mechanical vibration. The apparatus (Figure 1a) consisted
mainly of an ultra-high-frequency ultrasound transducer connected to an ultrasound
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imaging system. In all, 24 volunteers in good health and who are nonsmokers, aged from
19 to 39 years old (average age 25.1), participated in a WSS measurement campaign in a
room kept at a constant temperature (23 ◦C ± 0.5 ◦C). The protocol consisted of estimating
the WSS for three consecutive phases of 10 s each: (i) rest, (ii) exposure to vibrations, and
(iii) return to calm. Vibration was a pure harmonic acceleration at 125 Hz for six amplitudes:
1, 2, 5, 10, 20, and 40 m·s−2 root mean square. WSS was then assessed by using a Womersley
pulsatile flow model. The time averages of WSS (TAWSSs) over each of the three 10 s
phases were subsequently worked out.
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Figure 1. (a) Test setup for assessing the acute vibration-induced WSS; (b) The ABM-FE computational
framework for simulating the chronic adaptive changes of the artery.

2.2. Modelling the Vibration-Induced Arterial Stenosis

A mechanobiological framework made up of an agent-based model (ABM) cou-
pled with a finite elements (FE) model was set up (Figure 1b). The ABM caught up
the hemodynamics-driven and mechanoregulated cellular and molecular mechanisms
involved in vibration-induced intimal hyperplasia. Actually, this latter biological vas-
cular process was assumed to likely be in part responsible for arterial stenosis. Many
biological mechanisms were taken into account to model intimal hyperplasia, such as
the secretion of mediators by the endothelial cells and the smooth muscle cells (SMCs),
the proliferation/apoptosis and migration of SMCs, and the synthesis/degradation of
extracellular matrix [5]. These phenomena were regulated by the WSS values, as well as
the circumferential stresses (σθ) simulated by our FE model.

3. Result
3.1. Acute Impact of Vibrations on Arterial Hemodynamics

The drop in WSS triggered by the vibration occurred a few seconds after starting the
vibratory excitation (Figure 2a).
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The TAWSSs normalized by the basal state (Figure 2b) depended on the amplitude of
the vibration in a statistically significant way. They obeyed a log2 linear regression law of
the vibration amplitude.

3.2. Chronic Response of the Artery at Tissue and Molecular Scales Due to Vibration-Induced
WSS Drop

The normalized surface of the arterial lumen (Figure 3a) continually decreased with
exposure time. The reduction in this surface was 12% at 5 years and 30% at 10 years
of exposure. The mass per unit length of Matrix MetalloProtease MMP-2 (Figure 3b)
accumulated continuously and considerably with the working lifetime, changing from the
absence of MMP-2 initially to 50 pg/mm (picograms per mm) at the end of 10 years.
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Figure 3. Chronic adaptive changes of the artery at the tissular and molecular scales: (a) normalized
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3.3. Chart for Forecasting the Arterial Stenosis

The degree of arterial stenosis (expressed in %) is defined as the reduction in the
arterial lumen normalized by its basal value. The abacus for forecasting the arterial stenosis
(Figure 4) predicted a 20% arterial stenosis degree for an employee exposed to vibration for
2.5 h per day for 10 years. This same level of stenosis was also reached after 15 years of
work for a daily exposure to vibrations of about 1 h 10 min.
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4. Discussion

The development stage of VWF can be classified according to the degree of arterial
stenosis: (i) type 0: healthy, (ii) disease type I: stenosis < 50%, (iii) disease type II: stenosis >
50%, (iv) disease type III: obstruction of the proper digital artery, and (v) disease type IV:
obstruction of the common artery or upstream. Our model forecasted stenosis of around
30% after 10 years of exposure to a 40 m·s−2 amplitude vibration for 4 h a day, thereby
leading to type I stenosis in keeping with the aforesaid classification.

Furthermore, a relationship between vibration amplitude and the subsequent WSS
was established. Therefore, the WSS drop will be assessed by measuring in the field the
vibration acceleration level on the handle of a vibrating machine. Thus, knowledge of
the daily exposure (the model can take into account all types of exposure cycles) and the
WSS (or similarly, the acceleration on the machine), the mechanobiological model will
be permitted to work out the degree of stenosis and, thus, that of the disease for chronic
exposure to vibrations.

Otherwise, with regard to the molecular upshots of chronic vibration exposure, MMP-
2 accumulated substantially in the artery (Figure 3b). Thus, this enzyme could be a
particularly suitable candidate biomarker for warning about and monitoring the evolution
of VWF.

5. Conclusions

We succeeded in figuring out a relationship between acute vibration amplitude and
the induced WSS drop. Our mechanobiological model was then able to forecast the chronic
arterial stenosis elicited by that vibration-driven hemodynamic change. Linking vibration
amplitude, daily exposure to vibration, working lifetime, and resulting stenosis is being
used for building a new definition of vibration dose.
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