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Abstract  
In this paper we develop a new approach in order to understand the origin of the quadrature error in MEMS 

gyroscopes. In an ideal and symmetrical gyroscope, there would not be quadrature error. However, 
technological defects, such as dispersion in the etching of the flexure springs could be the source of non-zero 
stiffness coupling between the X-axis and the Y-axis. As the stiffness coupling can generate quadrature signal 
and as the width of the flexure springs is a critical parameter in the MEMS design, it is necessary to investigate 
the impact of the width dispersion on the stiffness coupling.  To do so, we developed an approach which 
consists of determining the evolution of the stiffness matrix of the springs of the gyroscope as a function of the 
inhomogeneity of the bending beams width of the springs through FEA. A statistical analysis of the results of 
these simulations, allowed us to calculate the mean and the standard deviation of the absolute value of the 
amplitude of the quadrature signal for a given beam width dispersion. It turns out that even small silicon 
etching defects can generate high quadrature level with up to a root mean square (RMS) value of 1220 °/s for 
a bending beam width dispersion of 1%. Moreover, the quadrature error obtained through simulations has the 
same order of magnitude that the ones measured on the gyroscopes.   

1. Introduction

Silicon MEMS are very attractive for many uses 
because of their miniaturization and their 
performances. Although these devices are already 
present in many everyday objects, such as 
smartphones, their use for navigation applications 
in space, aeronautics or autonomous vehicles 
remains a real scientific and technological 
challenge. Indeed, the technological advances 
made on MEMS have effectively made it possible 
to approach, without however achieving, the levels 
of precision sought for this type of application. As a 
matter of fact, in the world of high performance, 
MEMS sensors must be 10000 times more precise 
than consumer sensors. Thereby, it is very 
challenging to design and manufacture silicon 
MEMS gyroscopes with performance levels of 
tactical and navigation grades [1] [2], which are so 
far dedicated to Ring Laser Gyroscopes (RLGs) [3] 
[4], Fiber Optic Gyroscopes (FOGs) [4] [5] [6] and 
Hemispherical Ring Gyroscpes (HRGs) [7] [8]. 

Since the creation of first MEMS rate 
gyroscopes and accelerometers thanks to the work 

of miniaturization of inertial systems carried out by 
Draper Laboratory in the late 1980s [9] [10], the 
precision of MEMS gyroscopes has improved a lot 
in the last decades, from a bias of few hundred 
degrees per hour [9] [11], to few degrees per hour 
[12] [13] [14] [15]. Moreover, thanks to all these 
years of research in MEMS gyroscope mechanical 
design and to the unceasing improvements in 
microfabrication, silicon, high-quality packaging 
and electronics technology, MEMS gyroscopes with 
0.1	°/𝑠 bias and 0.01	°/√ℎ ARW (Angular Random 
Walk) are now a near reality [16] [17] [18] [19]. 

Vibrating gyroscopes consist of one or more 
mobile vibrating masses [17] [20] [21] connected to 
each other and to their support by bending beams 
(which act as springs) in order to constitute an 
excitation resonator and a detection resonator, the 
two being coupled to each other by the 
acceleration of Coriolis [22]. Thus, when the 
gyroscope rotates around its sensitive axis, the 
composition of the forced vibration with the angular 
rotation vector generates forces, thanks to the 
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Coriolis effect, which induces vibration of the 
moving masses in the sensitive axis. This vibration 
is then detected by a detection transducer, the 
electrical signals of which are exploited by an 
electronic circuit to deduce therefrom a value of the 
angular speed around the sensitive axis. Therefore, 
any parasitic force exerted on the resonator with 
the same frequency as the Coriolis force and in the 
same direction as the sensitive mode will results, if 
it is not compensated, in an error on the sensor 
output called bias or zero-rate output (ZRO) [23]. 
Even though the bias can be removed from the 
final output signal with calibration, it varies over 
time and is sensitive to temperature variations and 
external vibrations (this phenomenon is called bias 
instability). So, in practical cases, its absolute value 
is minimized in order to reduce its instability. To do 
so, it is necessary to identify the factors that 
contribute to the bias of the gyroscope. 

One of the major error sources is the 
mechanical quadrature signal [23] [24] [25] [26]. 
The quadrature is an unwanted force resulting from 
the coupling stiffness between the excitation-mode 
displacement and the sensitive-mode of the 
gyroscope. This force has the same frequency as 
the Coriolis signal, but is in phase quadrature (90° 
phase shift) with it, hence its name [24] [27]. 
Although its amplitude can be far more important 
than the amplitude of the Coriolis signal, it is 
possible to set is impact on the output signal aside. 
Indeed, one can use the 90° phase shift between 
the Coriolis and the quadrature signal by using a 
phase sensitivity demodulation via a processing 
electronic. By doing so, it is possible to split the 
sense information in two, so we can retrieve the 
Coriolis output [28]. However, even a slight phase 
error on the demodulation (< 1°) can generate an 
important bias [29] [30] and the high amplitude of 
the Coriolis signal can saturate the input accepted 
by the demodulator [31]. It is then needed to 
reduce the amplitude of the quadrature signal. 

One way to do so, is to cancel the quadrature 
motion of the resonator using sense feedback 
electrodes. This can be done by applying an 
electrostatic force to the sense combs, with the 
same amplitude and in phase opposition with the 
quadrature force [28] [32]. Else, the quadrature 
signal can be compensated before the sense signal 

being demodulated. One can do so by adding a 
compensation signal with the same amplitude and 
in phase opposition with the quadrature force via a 
dedicated close loop [33]. Both of these methods 
work properly, but their feedback needs to be 
modulated, still letting us with the phase error 
problem. To overcome this issue, dedicated 
correction combs can be used to cancel the 
mechanical coupling stiffness. The idea is to apply 
the right DC voltage on the correction combs, so 
the electrostatic stiffness of these combs has the 
exact opposite value of the mechanical coupling 
stiffness [27] [34] [35] [36] [37] [38]. 

Whatever the compensation method(s) chosen, 
it is important to design a well-balanced resonator, 
while taking into account the manufacturing defects 
[39]. Indeed, on most of the MEMS gyroscope 
design, one or several springs are place 
symmetrically on each corner of the resonator so, if 
all the springs are identical, the resulting coupling 
stiffness is null [30]. Yet, if there is geometrical 
dispersion of the flexure springs, especially width 
dispersion as it is a critical dimension for the 
springs, the resulting coupling stiffness would not 
be equal to zero, which would generate a 
quadrature force. To our knowledge, few 
investigations have been carried out about the 
contributions of the geometrical dispersion of the 
springs on quadrature error [27] [30] [40]. These, 
even though they point and demonstrate the 
importance of width dispersion for the quadrature 
error, don’t make the link between width dispersion 
of the springs and the amplitude of the quadrature 
signal dispersion (i.e. the dispersion of the 
quadrature error of several gyroscope made with 
the same design). 

Hence, in this paper, we present an approach to 
estimate the impact of silicon etching dispersion on 
the variation of the amplitude of the quadrature 
signal. To do so, we run simulations using a finite 
elements method (FEM) in order to estimate the 
evaluation of the stiffness matrix of the springs of 
the gyroscope. Then, we used these results in 
order to calculate statistical values of the 
quadrature error. Next, these values are compared 
to the measures of the quadrature error obtained 
using a dedicated bench. 
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Fig. 1. Equivalent model of the gyroscope [41] 

 

2. Gyroscope dynamics 

The dynamic equations of a linear vibrating 
gyroscope can be expressed as [24] [42]: 

 
.𝑚 0
0 𝑚0

𝑑2𝑈
𝑑𝑡2 +

([𝐷] + [𝐶])
𝑑𝑈
𝑑𝑡

+ :
𝑘< 𝑘<=
𝑘<= 𝑘=

>𝑈 = 𝐹 
(1) 

 

where 𝑚 is the modal mass, 𝑈 = A
𝑥
𝑦D represents 

the displacement vector, [𝐷] represents the 

damping matrix, [𝐶] = : 0 −2𝑚𝛺H
2𝑚𝛺H 0 > represents 

the Coriolis matrix, 𝛺H is the angular velocity 
around the z-axis, 𝑘< and 𝑘= represents 
respectively the stiffness along the x and y-axis, 
𝑘<=  the coupling stiffness term bringing the 
quadrature signal and 𝐹 the driving vector force. In 
the y-axis (the sensitive direction), the equation (1) 
becomes: 

 𝑚	�̈� + 𝑑=�̇� + 𝑘=𝑦 = −𝑘<=𝑥 − 2𝑚𝛺H�̇� (2) 
It is then necessary to understand the origins 

and to calculate the 𝑘<=  term in order to deduce the 
amplitude of the quadrature signal. In this paper, 
we propose to evaluate the impact of silicon 
etching defaults on the coupling stiffness term. 

3. Expression of the coupling stiffness 

As we focus on the mechanical stiffness of the 
resonator, electrostatic combs are not taken into 
account in our study (their mass, though, are 
include in the total mass of the structure). That is 
why, for simplification purposes, an equivalent 
model of the considered gyroscope is used (cf. Fig. 
1). In order to describe the stiffness matrix of the 
flexure springs, two coordinate systems are defined 
as follows: 
• 𝐵(�⃗�; �⃗�) is the canonical  coordinate system (the 

x and y-axis) 
• 𝐵′O(𝑥PQQQ⃗ ; 𝑦PQQQ⃗ ) represents the eigenbase of the 

spring number i  
Thus, the transition matrix 𝑃O between 𝐵 and 𝐵′O is 
expressed by: 

 𝑃O = :cos
(𝜃O) −sin(𝜃O)

sin(𝜃O) cos(𝜃O)
> (3) 

Moreover, we define [𝑘]YO  and [𝑘]YZ[
O the stiffness 

matrix of the ith spring wrote in the coordinate 
system 𝐵 and 𝐵’O  respectively. Then, we have: 

 [𝑘]YO = 𝑃[𝑘]YZO 𝑃] (4) 
By substituting the equation (3) into the equation 
(4) we can deduce the total stiffness matrix [𝐾]Y of 
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the gyroscope, described in the 𝐵 coordinate 
system: 

 
[𝐾]Y =_[𝑘]YO

`a

Obc

= :
𝐾< 𝐾<=
𝐾<= 𝐾=

> (5) 

With: 
 

𝐾< =_𝑘<O
`a

Obc

=_d𝑎O + (−1)O𝑏O 𝑐𝑜𝑠(2𝜃O)i
`a

Obc

 

(6) 

 
𝐾<= =_𝑘<=O

`a

Obc

=_(−1)O𝑏O sin(2𝜃O)
`a

Obc

 (7) 

 
𝐾= =_𝑘=O

`a

Obc

=_d𝑎O − (−1)O𝑏O 𝑐𝑜𝑠(2𝜃O)i
`a

Obc

 

(8) 

 
𝑎O =

𝑘jO + 𝑘jjO

2 ;	𝑏O =
𝑘jO − 𝑘jjO

2  (9) 

Where  𝑘jO and 𝑘jjO  being the eigenvalues of the ith 
spring and 4𝑛 the total number of flexure springs.  

Therefore, in order to calculate the value of the 
coupling stiffness, it is necessary to determine the 
evolution of 𝑘<O , 𝑘=O  and 𝑘<=O  with respect to the 
variation of the silicon etching imperfections, which 
can be done through FEM simulations. 

A numerical three-dimensional finite element 
model has been developed on ANSYSTM to 
simulate the static mechanical response of the 
flexure springs. Our model consists of four Silicon 
springs, embedded on one end and subjected to a 
static load on the other end via a rigid remote point 
(cf. Fig. 2). The remote point coincides with the 
origin of the Cartesian coordinate system (𝑥, 𝑦, 𝑧). 
The width dimensions, illustrated in Fig. 3, of each 
springs can be changed in a different manner for 
each springs, but the length 𝑙 and the thickness ℎ 
of the beams remain the same for all beams. This 
model was meshed using eight-node elements 
(HEX8). In total, up to 212000 elements and 
276000 nodes were used. It should be noted that 
before carrying out simulations, a mesh sensitivity 
study was performed to ensure the convergence of 
the finite element simulation results. Degrees of 
freedom of the model’s nodes are 3D 

displacements 𝑥, 𝑦 and 𝑧.As we are keen to know 
the evolution of the coupling stiffness 𝑘<=  with 
respect to 𝑒< and 𝑒=, two steps of simulations are 
required.  

For the first step, only the flexure springs 1 and 
3 of the Fig. 2 are simulated and their widths are 
equal, i.e. 𝑒< = 𝑒= = 𝑒q. In such geometrical 
configuration, springs 1 and 3 behave as pure 
linear spring when a load is applied along the 𝑋c 
and 𝑌c axis. These axes correspond to the 
diagonals of the square shaped by the four beams 
of a flexure spring. Then, we can run two 
simulations, which simply consist of applying a load 
F on the remote point linked to the spring 1 and 3 
along the 𝑇 (respectively 𝑁) axis and retrieving the 
displacement 𝑑] (respectively 𝑑v) of the remote 
point along the same axis. So we have: 

 𝑘jc = 𝑘jw =
𝐹

2 ∗ 𝑑]
 (10) 

 𝑘jjc = 𝑘jjw =
𝐹

2 ∗ 𝑑v
 (11) 

For the second step, all flexure springs 
represented in Fig. 2 are simulated, the widths of 
the spring 2, 3 and 4 are equal to 𝑒q (the same 𝑒q 
as in the first step) and the widths 𝑒< and 𝑒= of the 
spring 1 are not identical, i.e. 𝑒< ≠ 𝑒=, but have a 
value close to 𝑒q. Thereafter, we run two 
simulations, in which we set up a load F on the 
remote point connected to all the springs along the 
𝑥 (respectively 𝑦) axis and retrieving the 

displacement z𝑋c𝑌c
{ (respectively z𝑋2𝑌2

{) of the 

remote point along the 𝑥 and 𝑦 axes. Next, let [𝑆] 
denotes the stiffness matrix of our four springs-
remote point system: 

 
[𝑆] = :

𝑆< 𝑆<=
𝑆<= 𝑆=

> =_[𝑘]YO
`

Obc

 (12) 

Thanks to the results of the previous simulations, 
we are able to calculate the terms of the matrix [𝑆]: 

 
𝑆< =

𝐹
𝑋c
}1 +

𝑌c2

(𝑌2𝑋c − 𝑋2𝑌c)
~ (13) 

 𝑆<= =
−𝐹𝑌c

(𝑌2𝑋c − 𝑋2𝑌c)
 (14) 

 𝑆= =
𝐹𝑋c

(𝑌2𝑋c − 𝑋2𝑌c)
 (15) 
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Fig. 2. Model used during simulations 

 

 
Fig. 3. Representation of the geometrical parameters of the spring 1 (a) View from XY plan (b) Cross section of one beam viwed 

from ZY plan 
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So, we are now able to calculate the value of [𝑘]Yc , 
the stiffness matrix of the spring 1, as we know the 
value of each terms of [𝑆] and of [𝑘]YO  for the 
springs 2, 3 and 4 (thanks to the results obtained in 
the first step and to the equations (6) to (11)): 

 
[𝑘]Yc = [𝑆] −_[𝑘]YO

`

Ob2

 (16) 

Then, we can run more simulations varying the 
value of 𝑒< and 𝑒=, (𝑒q could also be changed if 
needed) while remaining in the permissible range 
of the silicon etching defaults. 

 Once we have done a certain number of finite 
element analysis by varying the widths the spring 1, 
we can determine the evolution of 𝑘<c, 𝑘=c  and 𝑘<=c  
as a function of 𝜀 (Fig. 4), the value of the 
implemented geometric defects (𝑒< = 𝑒q + 𝜀 and 
𝑒= = 𝑒q − 𝜀). We also want to place emphasis on 
the fact that the evolution of the 𝑘< and 𝑘= terms as 
a function of 𝜀 is the same of the spring 1 to 4, only 
the evolution of the 𝑘<=  is different for the even-

numbered and the odd-numbered spring A𝑘<=c (𝜀) =

𝑘<=w (𝜀) = −𝑘<=2 (𝜀) = −𝑘<=` (𝜀)D. 
 

4. Impact on the amplitude of the 
quadrature signal 

Knowing the evolution of 𝑘<, 𝑘= and 𝑘<=  versus 
the width error of the spring, we can perform 
statistical calculations. Indeed, the manufacturing 
process being not perfect, a different error is made 
of the width on each beam of each springs of the 
gyroscope. Here, we assume that this error follows 
a centered normal law 𝑁(0	; 	𝜀/3) for 𝑒< and 𝑒=, of 
each spring. So, based on the equation(4) (5)  and 
the evolution formulas of 𝑘<O , 𝑘=O  and 𝑘<=O  versus the 
width error, 10�	 samples (a lot of samples are 
required in order to obtain accurate statistical 
values) are carried out, via a custom-built MatlabTM 
program, to calculate the mean and the standard 
deviation of the normalized amplitude of the 
quadrature signal 𝐾𝑂� caused by the caused by 

the coupling stiffness (with 𝜔q2 =
�������

2
, 𝜔< =

2𝜋���
�

 and 𝜔= = 2𝜋���
�

). 

 𝐾𝑂� =
𝐾<=	
2𝑚𝜔q

 (17) 

We can do so for different values of 𝜀, in order to 
determine the evolution of the standard deviation of 
�𝐾𝑂�� versus 𝜀. Fig. 5 shows that really small 
inhomogeneity of the bending beams width can 
generate high quadrature level (up to a RMS value 
of 1220 °/s for 𝜀 𝑒q⁄ = 1%). 

Then, we can compare our model to the 
measurements. 

 

 
Fig. 4. Normalized 𝐤𝐱𝐢 , 𝐤𝐲𝐢  and 𝐤𝐱𝐲𝐢  values as a function of the width error 
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Fig. 5. RMS value of �𝑲𝟎𝑸�versus standard deviation of the beam width error 

 

5. Electrical measurements of the amplitude 
of the quadrature signal 

5.1. Principle 

As we work with high Q factor gyroscopes 
(𝑄 > 10`) and low angular rate (vertical earth 
rotation), equation can be simplified as: 

 

z�̈��̈�{ + �
𝜔<2

𝑘<=
𝑚

𝑘<=
𝑚 𝜔=2

� A
𝑥
𝑦D = A00D 

 

(18) 

If 𝜔< = 𝜔= = 𝜔q, then equation (18) can be 
rewritten as: 

 z�̈�
�̈�
{ + :𝜔c

2 0
0 𝜔22

> A𝑋𝑌D = A00D 

 
(19) 

Where: 
• 𝜔c2 = 𝜔q2 +

���
�

 

• 𝜔22 = 𝜔q2 −
���
�

   

• 𝑥 = ���
2

 and 𝑦 = ���
2

 

Furthermore, if ����
�
≪ 𝜔q, then : 

 (𝜔c − 𝜔2)	~	
𝑘<=	
2𝑚𝜔q

 (20) 

Thus, according to equations (17) and (20), we 
have: 

 (𝜔c − 𝜔2)	~	𝐾𝑂� (21) 
Hence, if we are able to canceled the frequency 

mismatch (i.e. 𝜔< − 𝜔= = 0), we can estimate the 
amplitude of the quadrature signal by measuring 𝜔c 
and 𝜔2. 

5.2. Measuring bench 

A dedicated bench, illustrated in Fig. 6, has 
been developed to measure the quadrature error of 
each cell. The cell is mounted on a homemade 
interface board allowed us to retrieve the electrical 
contacts with the electrodes of the gyroscope. The 
resonator contains combs ensuring multiple 
functions such as the frequency mismatch 
compensation, sense and drive [13] [16] [34]. A 
NITM PXIe-1078 bench, with multiple modules and a 
custom-built LabVIEWTM program (cf. Fig. 7), was 
used to generate and record the excitation and 
detection signals. Each measurement was 
performed in three steps. 

In the first step, we apply an appropriate DC 
voltage on the combs dedicated to the frequency 
mismatch compensation, in order to cancel the 
frequency difference between the X and Y-axis (i.e. 
𝜔< − 𝜔=~0). In the second step, a ring down test is 
performed: a DC voltage, generated by a 
generator, and a white noise voltage signal, filtered 
in a band close to the resonance frequency 𝜔q, is 
send by  the PXI bench during two seconds (after 
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these two seconds the excitation is switched off), to 
the combs devoted to the drive function (both of 
these voltage pass through a custom-built filter to 
avoid any excitation noise). The PXI bench 
simultaneously records the decay of the resonator 
displacement via the sense combs (one set of 
combs for the x axis and another for the y axis) for 
a several seconds. Before being read by the PXI 
bench, the sense signals are amplified via a 

homemade charge amplifier, in order to convert the 
few nA of the transducer into dozens of mV. In the 
third step, our program filters the sense signals, in 
order to limit high and low frequency noise, and 
computes their power spectral density (PSD). 
Then, the program automatically find the maximum 
peaks of the PSDs and their frequency, which are 
the 𝜔c and 𝜔2 frequencies of the equation (21). 

 
 

 
Fig. 6. Scheme of th bench developed to measure the quadrature error (a) Contact with the x axis and y axis sense electrodes (b) 

Contact with the frequency mismatch compensation electrodes (c) Contact with the x axis drive electrode(s) 
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Fig. 7. View of the diagram of the LabVIEWTM program (a) Generation of the filtered white noise signal (b) Registration of the 

amplified x axis and y axis sense signals (c) Filtering the sense signals and computation of their PSD(d) Detection of the 𝜔c and 𝜔2 
frequencies 

 

 
Fig. 8 �𝑲𝟎𝑸� measurements 

 

5.3. Experimental results 

The absolute value of the quadrature error was 
measured (one cannot tell the difference between 
the 𝜔c peak and the 𝜔2 peak on the PSD) on a 

total of 24 cells and the results are shown in Fig. 8. 
A RMS value of 1210 °/s was calculated for the 
measurements of �𝐾𝑂��, which is in the same order 
of magnitude as the results obtained through the 
numerical simulations (as mentioned in section 4). 
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That means that, for the next gyroscope design, it 
is necessary the take the bending beams width 
dispersion into account in order to avoid too many 
cells with high quadrature error. 

It is important to notice that, even if our model 
match (for 𝜀 𝑒q⁄ = 1%) with the measurements, it 
nevertheless does not mean that the 
inhomogeneity of the bending beams width is only 
cause of quadrature error. Indeed, this error may 
have many origins such as the design of the 
resonator, material anisotropy, broken springs, or 
any other geometrical inhomogeneity. 

 
Conclusions 
This paper provides an approach to evaluate 

the amplitude of the quadrature signal caused by 
an inhomogeneity of the bending beams width. It 
has been shown that such silicon etching defaults 
can generate high quadrature error, thus it is 
necessary to take them into account during the 
design of a MEMS gyroscope. 

This is particularly true since high quality factor 
(𝑄 > 	10`) resonators are essential levers to 
improve the performance and the sensitivity of 
MEMS gyro [43]. To achieve such high Q, it is 
necessary to reduce thermoelastic damping, which 
is one of the major energy losses in 
micromechanical resonators [44]. But to do so it is 
necessary to reduce the width of the bending 
beams of the vibrating system. However the 
inhomogeneity of the bending beams width, could 
then have a significant impact on the device 
performances (the ratio 𝜀 𝑒q⁄  would be increased). 
To overcome this issue, we can either reduce ε, i.e. 
the maximum dispersion of the bending beams 
width, or we can try to cancel the quadrature error. 
The first option requires to significantly improve the 
geometric accuracy of the etching technology, 
while the second option requires a specific 
architecture of the transducers and a control 
electronic [13] [27]. However, doing so might make 
the nonlinear regime of the resonators easily 
reachable, which could decrease the sensor 
performances [45]. Thereby, we need to find a 
compromise between the quadrature error 
cancelation and the nonlinear effects. Further 
research is underway to investigate the real 

inhomogeneity of the bending beams width via 
SEM observations of our resonator. 
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