
Joint use of SysML and Reo to specify and
verify the compatibility of CPS components

Perla Tannoury1,2, Samir Chouali1,3, and Ahmed Hammad1,4

1 University of Bourgogne Franche-Comté, France
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Abstract. Modeling and verifying the behavior of Cyber-Physical Sys-
tems (CPS) with complex interactions is challenging. Traditional lan-
guages such as SysML diagrams are not enough to capture CPS coordi-
nation. In this paper, we propose a novel approach called SysReo, which
extends SysML diagrams (RD, BDD, IBD, SD) with the Reo coordi-
nation language. Our main objective is to enhance the interoperability
of CPS by providing a more precise representation of system behavior
and interaction protocols. To achieve this goal, we extend the SysML
sequence diagram (SD) with Reo to create the SysReo SD. Through this
integration, we bridge the gap between traditional modeling languages
and the coordination demands of CPS. We develop an algorithm to gen-
erate Constraint Automata (CA) from SysReo SD, which ensures that
CPS components can seamlessly work together. These automata are used
in a verification tool that checks formulas expressed in Linear Temporal
Logic (LTL). By leveraging LTL and Constraint Automata, we enhance
the precision and rigor of CPS verification processes, while guaranteeing
that CPS components can seamlessly work together. Furthermore, we
apply our approach to a medical CPS case study, illustrating its effec-
tiveness in identifying design flaws early and ensuring system behavior
aligns with desired properties.

Keywords: CPS · SysReo · SysML · Reo · Constraint Automata · LTL
· Specification · Verification.

1 Introduction

In today’s technologically advanced world, Cyber-Physical Systems (CPS) have
become crucial in a range of applications, such as autonomous vehicles [37], mod-
eling smart city software interactions [38], and healthcare systems [1]. These sys-
tems combine the physical and digital worlds, resulting in improved automation,
control, and data processing. Despite the importance of CPS, modeling them can
be challenging, especially in the healthcare and medical sectors, as it involves
integrating various system components, behaviors, and interaction protocols. In
addition, collaborative efforts between designers, developers, and stakeholders
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are required to address these challenges. As CPSs continue to become more
complex, it is essential to establish an environment that facilitates the modeling
process while highlighting their fundamental, structural, and behavioral aspects.

Several languages and formalisms are used to model CPS [33,34,17,23]. In
our research, we have opted to use the System Modeling Language (SysML) [36]
language due to its ability to model heterogeneous systems that combine hard-
ware and software components. We aim to develop an approach that enables
users to easily create specifications using SysML, while taking into account both
verification and validation processes. SysML is widely used in industrial applica-
tions to model various aspects of a system, including its architecture, behavior,
and requirements. However, CPSs are typically composed of various components
that interact through various protocols, leading to complex system behaviors.
While SysML is a valuable language for describing CPS, it may not be sufficient
to formally specify and verify the complex interactions between CPS compo-
nents. To tackle this problem, we have proposed in our previous work [39,40]
a new domain-specific language (DSL) called SysReo that effectively uses the
strengths of both semi-formal and formal languages to improve the validation
and verification of CPS.

SysReo, is used to overcome the challenges in designing a CPS by clearly
expressing its interaction protocols at any design stage. By extending SysML,
a semi-formal language, with Reo [5], a formal coordination language, in the
SysReo framework, it becomes possible to model the complex components of a
CPS in an effective manner. This integration provides a powerful tool for repre-
senting component interactions, allowing for more precise and accurate modeling
of complex systems. SysReo empowers CPS designers to model all facets of a
CPS while explicitly defining the conditions under which data can flow between
components. However, it should be noted that SysReo has limitations in formally
specifying and verifying the behavioral aspects of CPS. In contrast, the SysML
Sequence Diagram (SD) [36] excels in representing component interactions over
time in CPS. Nonetheless, SD is semi-formal and lacks direct verification ca-
pabilities. On the other hand, Reo offers a formal representation of component
coordination and allows for system property analysis. However, stakeholders may
find Reo challenging to comprehend due to its complex representation.

In this paper, we first introduce a novel approach called ”SysReo Sequence
Diagram (SysReo SD)” that enhances the modeling and analysis of CPS. By
extending the SysML Sequence Diagram (SD) with Reo notation, we create a
”semi-formal-formal” model that captures the behavior and coordination of CPS
components using an exogenous protocol. Unlike traditional SysML SD, which
focuses on internal system behavior, SysReo SD imposes an external order on the
flow of data between components without directly affecting their behavior. The
SysReo SD model serves two main purposes: first, it bridges the gap between
visual representation and formal modeling, providing a comprehensive view of
system behavior and interaction protocols. Second, it enables the formal verifica-
tion and analysis of the interoperability and correctness of the CPS. To facilitate
the verification process, we develop an algorithm that generates Reo Constraint
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Automata (CA) [15] directly from the SysReo SD model. In the next phase, we
use the generated automaton CA as input in the vereofy [12] model checking tool
to formally verify Linear Temporal Logic (LTL) [11] properties. This allows us
to effectively verify the interoperability of CPS components, confirm compliance
with specified requirements, and ensure correct system behavior. To demonstrate
the effectiveness of our approach, we conducted a case study involving a smart
medical bed, showcasing its potential for real-world applications in the medical
CPS domain.

To the best of our knowledge, no previous research has comprehensively ex-
plored the extension of SysML Sequence Diagram (SD) with Reo to effectively
model the behavior and interaction protocols of CPS. Existing approaches either
resulted in verbose and less readable Reo circuits derived from scenario specifi-
cations [9,7], or encountered difficulties in establishing correlations between Reo
circuits and the original specifications [35]. Our work addresses this gap by en-
hancing SysML SD with the coordination capabilities of Reo and introducing a
novel algorithm that directly generates Constraint Automata (CA) from SysReo
SD diagrams. This is followed by a formal verification process to ensure CPS
interoperability and validate design correctness.

The paper is structured as follows. Section 2 provides a concise introduction
to Reo, Constraint Automata, and SysReo, highlighting their key concepts and
features. In Section 3, we present the related works. Moving forward, Section
4 offers an in-depth case study that showcases the practical application of our
SysReo model, focusing on the specification and verification processes involved.
Finally, Section 5 concludes the paper and briefly discusses future work.

2 Preliminaries

In this section, we give a brief introduction to Reo, constraint automata (CA),
and SysReo.

2.1 Reo and constraint automata (CA) in a nutshell

Reo, as described by Arbab in [5], is an external coordination model that pri-
oritizes efficient communication and coordination among different components.
It achieves this by using channel-based connectors to establish complex coordi-
nators. However, Reo does not focus on internal activities and communications
within individual components. Instead, its main emphasis is on the coordination
and interaction between components. The fundamental elements of Reo con-
sist of components, channels, nodes, and ports, working in harmony to enable
seamless data exchange and synchronization between these components [5,8,10].

The formal semantics of Reo are rigorously captured through the use of
Constraint Automata (CA) [15]. CA provides a systematic representation of in-
teractions among anonymous components, describing behavior and data flow in
coordination models. This formalism involves labeling transitions with sets of
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ports that are triggered simultaneously, complemented by data constraints ap-
plied to these ports. As a result, constraint automata offers a powerful means to
precisely specify and analyze component interactions within the Reo coordina-
tion model.
Definition 1 Constraint Automata (CA): A constraint automaton B = (S,S0,N,δ)
is composed of:

– S: set of states (or locations).
– S0: initial state where S0 ∈ S.
– N : set of port names.
– δ: transition relation δ ⊆ S × 2N × DC × S, where DC is the set of Data

Constraints (DC) over a finite data domain Data.

An example of a constraint automata B is illustrated in Fig.6 step2, where B=
( {S0, S1}, S0, {(A,V), (B,W)}, {(S0, (A,V), [A]=|V |, S1), (S1, (B,W), [B]=|W |,
S0)} ).

2.2 SysReo
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Fig. 1. From SysML diagrams to SysReo diagrams.

SysReo was introduced in [39,40] as a powerful modeling language that com-
bines the strengths of both SysML and Reo to provide a more comprehensive
and flexible approach to model a CPS. One of the main advantages of SysReo
is its ability to model all facets of CPS, from requirements to architecture and



SysReo to Specify and Verify CPS Components 5

interaction protocols, which is essential for designing complex heterogeneous sys-
tems. Fig. 1 represents the process of transforming the SysML Block Definition
Diagram (BDD) and Internal Block Diagram (IBD) into SysReo Extended Block
Definition Diagram (ExtBDD) and Reo Internal Block Diagram (Reo IBD). The
transformation consists of two parts:

(A) The SysML BDD (Fig. 1 A-1) is transformed into SysReo ExtBDD (Fig. 1 A-
2) by using SysML BDD meta-models and dividing the CPS hierarchy into
two levels. The first level presents the abstract model of the CPS, where the
primary components of the system are modeled as main blocks. The second
level presents the concrete components of the CPS, where they are modeled
as sub-blocks. Overall, the traditional SysML BDD offers a high-level view
of the system being designed, whereas the Extended BDD offers a more in-
depth view of the system structure. Using multiple levels of abstraction and
additional information in the ExtBDD can help to control the complexity
of the system being designed and ensure that the system design meets the
intended requirements.

(B) The SysML IBD (Fig. 1 B-1) is converted into SysReo Reo IBD (Fig. 1 B-2)
by using SysML IBD meta-models and replacing the IBD connectors with
”Reo connectors”. This replacement allows for more explicit representation
of the internal composition of components and their interaction protocols
by setting constraints on data flow, whereas SysML IBD connectors only
provide a generic way of depicting the interactions between components.
With Reo connectors, the CPS designer can more accurately capture the
specific communication and synchronization patterns between components,
and thereby improve the reliability, safety, and performance of the system. In
addition, Reo connectors have formal semantics, making them precise and
verifiable using formal methods. Overall, the Reo IBD diagram improves
system reliability and can save time and cost by detecting errors early in the
development process.

In summary, SysReo offers a more comprehensive and adaptable approach to
system design, which results in more effective and reliable CPS. The use of
ExtBDD provides a more precise and detailed hierarchical view of the system,
while Reo IBD allows for explicit modeling of the internal composition of the
system and the interaction protocols among its components. Although SysReo
has many advantages in modeling the structure and internal composition of the
CPS, it falls short of capturing the behavioral and coordination aspects of the
CPS. To bridge this gap, we present a new approach named SysReo SD in this
paper. Section 4.3 provides a comprehensive overview of SysReo SD, focusing
on its ability to effectively address the behavioral and coordination challenges
in CPS.
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3 Related works

CPSs are networks of different embedded systems connected in a physical envi-
ronment, making their specification and formal verification difficult due to their
complex and large-scale computing infrastructure.

Previous works in [22,3,32,26] proposed different approaches to model dif-
ferent aspects of CPS with SysML. To formally verify critical safety systems,
the authors in [19,18] proposed to extend the SysML sequence diagram (SD)
and automate consistency verification using the Clock Constraint Specification
Language (CCSL) [4]. Additionally, an approach was proposed [16] to transform
SD into interface automata (IA) to verify the compatibility and consistency of
components modeled with SysML. However, these works take an endogenous
approach to coordination and neglect the coordination of message exchanges,
leading to communication problems within CPSs. To address this problem, Reo
is proposed as a coordination language to fill the interfacing gaps and enhance
the modeling and coordination of CPSs.

Various researchers explored different approaches to model CPS using Reo
and have demonstrated its effectiveness through formal analysis techniques.
These include co-algebraic semantics [10], operational semantics [15] using con-
straint automata [15] and timed constraint automata [6,30], coloring seman-
tics [21], and converting Reo models to other formal models such as Alloy [28]
and mCRL2 [31] to leverage existing verification tools. Despite its advantages,
Reo remains complex for stakeholders to comprehend due to its lack of semi-
formal representation.

To our knowledge, there is no prior research that explores the extension of
SysML Sequence Diagrams (SD) with Reo to effectively model behavior and
interaction protocols in CPS. Previous approaches resulted in complex and less
comprehensible Reo circuits derived from scenario specifications [9,7], or faced
challenges in establishing connections between the Reo circuits and the original
specifications [35]. In our work, we bridge this gap by enhancing SysML SD with
Reo’s coordination capabilities and introducing a novel algorithm that directly
generates Constraint Automata (CA) from SysReo SD diagrams. This is followed
by a formal verification process to ensure interoperability of the CPS and validate
the accuracy of the design, addressing the limitations of existing approaches.

4 Case study: Smart Medical Bed (SMB)

In this section, we present our case study of the Smart Medical Bed (SMB)
system. First, we begin by briefly introducing the SMB system. Then, we gather
information about the SMB system and analyze it using our SysReomodels. This
process involves specifying the system’s requirements, designing its structure
and internal composition, and modeling the system’s behavior and interaction
protocol. Finally, we move on to the verification phase, where we rigorously verify
the correctness of our SysReo models.
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4.1 SMB overview
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Fig. 2. Smart medical bed architecture.

A Smart Medical bed (SMB) is equipped with various sensors and moni-
toring devices that collect data on vital signs of the patient, such as heart rate,
blood pressure, temperature, oxygen saturation, and other key indicators of their
health. These data are then transmitted to a Remote Terminal Unit (RTU), where
it can be stored and analyzed by healthcare providers as we can see in Fig. 2. RTU
plays a key role in connecting, controlling, analyzing, and communicating data
from the smart bed to the nursing station, providing valuable information to the
healthcare team and ultimately improving patient care. Continuous monitoring
helps identify potential health issues early, leading to informed decision-making
and efficient care delivery. The SMB infrastructure comprises the following com-
ponents: (1) the Smart Bed (SB), where the patient resides, (2) the Remote

Terminal Unit (RTU), where the collected data are stored, processed and an-
alyzed, and (3) the Nursing Station (NS), where the monitoring system and
the healthcare team are located. In this article, we focus on modeling and ver-
ifying the requirement, structure, behavior, and interaction protocol between
the Smart Bed (SB) and the RTU in the SMB system. Using our model-driven
approach, SysReo, we can analyze the system’s requirements, model the archi-
tecture and internal structure of the SMB. To handle complexity, we introduce
SysReo SD, an extension for modeling complex component behavior and inter-
action protocols.

4.2 Modeling SMB with SysReo

In this section, we focus on our modeling approach. As shown in Fig. 3, the pro-
cess is broken down into two phases. During the first phase, the CPS designer
begins by collecting requirements about the system and analyzing it. Using our
SysReo model, the designer then specifies the system’s needs, which results in
three main diagrams: (1) The requirement diagram that models the functional
and non-functional needs of the system. (2.1) The ExtBDD diagram that repre-
sents the hierarchical structure of the system as blocks, followed by (2.2) the Reo
IBD diagram that is used to model the system’s internal structure and interac-
tion protocols. (3) The SysReo sequence diagram (SysReo SD) used to model
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the behavior and coordination of CPS components. Finally, to satisfy our prede-
fined requirements, we link them to the Reo IBD diagram, and to verify them,
we establish a link to SysReo SD.

In the second phase, we focus on the verification process. To verify the in-
teroperability of CPS components, SysReo SD is translated into CA through
our algorithm that directly generates CA from SysReo SD. Then the require-
ments to Reo IBD are formally defined through property formulas such Linear
Temporal Logic (LTL) [11] for verification. This step is crucial to achieve the
objective of our modeling approach: creating a precise representation of the
CPS system’s needs, behavior, and coordination. By generating CA and trans-
lating the requirements into LTL formulas, the CPS designer can ensure both
the interoperability of the CPS components and the accurate representation of
requirements. Furthermore, the formal verification of these requirements can be
seamlessly conducted using specialized verification tools like vereofy [12,14]. This
helps to guarantee that the CPS system will function as intended and meets the
designer’s requirements.

After evaluating the verification results, the CPS designer checks if there are
any specification errors. If so, the process returns to the SysReo model specifi-
cation phase until a correct CPS model is obtained.

4.3 Specification process: SysReo models

Requirement The design process for any system is crucial for ensuring its
functionality and usability. The first step in this process is to identify the specific
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needs of the system, as outlined in the requirements table such as Table 1. In
this table, we only present two functional requirements of the SMB system to
guarantee the proper flow of data between its components. This is essential to
ensure that the system runs smoothly and meets the needs of its users. For
example in Table 1, requirement R1 states that the smart bed must constantly
send temperature data to the RTU component. This requirement ensures that
the RTU receives up-to-date temperature readings from the smart bed (SB) and
it is satisfied by the SB component.

Table 1. Requirement table of SMB.

Req ID Requirement description Satisfied by

R1 The “SB” must constantly send temperature data to
the “RTU” component using ”sendTempData” mes-
sage.

SB

R2 The “RTU” shall respond to the “SB” component with
an “ack” message.

RTU

Based on the requirements of Table 1, we can identify the main components
of the SMB system that are the Smart Bed (SB) and the Remote Terminal Unit

(RTU). In the next section (Section 4.3), these components will be used to create
a hierarchical view of the SMB system, to better understand the relationships and
overall functioning of the system.
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Fig. 4. The ExtBDD model of the SMB system.

ExtBDD The Extended Block Definition Diagram is used to model the hier-
archical view of the SMB system where each component is modeled as a block.
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The block defines a component by describing its internal operations as private
operations of the block and also its required and offered services as follows. Each
block is decorated by two proxy ports: 1) Input port that provides informa-
tion on the services that are available. These services are listed in an interface
block which specifies the type of the port. 2) Output port that describes the
required services in a similar manner. Fig. 4 [A] represents the abstract part
of the system by only showing the main components. It consists of the block
named "SMB" that represents the system as a whole. It is decomposed into two
sub-blocks: Smart Bed (SB) and the Remote Terminal Unit (RTU), in which
it is linked to them by the composition relationship. Fig. 4 [B] shows the con-
crete level of the SMB system. It depicts the sub-components that make up each
main component. As an example, the smart bed component is broken down into
two blocks, a Temperature Sensor and a Gateway. The main function of the
Temperature Sensor is to continuously measure, record, gather and transmit
the measured data to the Gateway.

Reo IBD SMB Reo IBD RTU
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(b) Reo IBD of Smart Bed (SB)
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Fig. 5. Reo IBD of SMB, SB, and RTU.

Reo IBD The Reo Internal Block Diagram is a combination of the coordination
language Reo and the SysML Internal Block Diagram (IBD) [24] where the IBD’s
connectors are translated into Reo circuits. Reo IBD is used to characterize the
internal components and structure of a system block, including its properties,
parts, connections, and interaction protocols. It explicitly specifies the rules and
conditions of the data that can be transferred from the component’s input to its
output through channels. In Fig. 5(a), two different channels are used to model
the interaction protocols among the following main components: the Smart Bed
(SB) and Remote Terminal Unit (RTU).

1. FIFO channel: for example, two FIFO channels ”sendTempData()” and
”ack()” are used to model the asynchronous communication between the
two components ”SB” and ”RTU”. The FIFO channel helps to efficiently
manage memory in a real-time system by processing the oldest data first,
thus preventing loss of information.

2. Sync channel: used to model the synchronization properties among compo-
nents.

Fig. 5(b) models the internal structure of the smart bed. First of all, the “Tem-
perature Sensor (TS)” sends the vital signs data of the patients to the “Gateway”
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component via the “TempDataOut()” flow port using a sync channel. Once re-
ceived, the “Gateway” component sends the data, which has been pre-processed,
to the RTU through the ”Medical Data Base (MDB)” component using a FIFO
channel ”SendTempData()”. Once it is received, the MBD replies to the smart
bed component with an ”ack()” using a fifo channel. Then in Fig. 5(c), the
”MDB” component analyzes the data and sends ”analyzeData()” to xrouter

component (
⊗

) via a filter channel where it models the routing replication of
data to ”Patient Alerts (PA)” or to ”Patient Update (PU)”. Once data enters
the xrouter component, it is sent either to ”PA” or to ”PU” but never to both.

Reo IBD has many advantages when it comes to modeling a CPS. Such as
effectively modeling component connections, characterizing message flow, satis-
fying predefined requirements, and enabling design flexibility while simplifying
documentation with its graphical representation. However, it is limited to mod-
eling temporal behaviors and formally verifying predefined requirements, which
are crucial aspects in correctly modeling a CPS. Therefore, in the next section,
we will extend the SysML sequence diagram (SD) with Reo and explore its
benefits on CPSs.

SysReo SD SysReo Sequence Diagram extends SysML SD with Reo notation,
including the introduction of the Reo Sequencer as an intermediary component.
This integration enriches the representation of message exchange, coordination,
and synchronization in a unified manner. In contrast to conventional SysML
sequence diagrams, SysReo SD facilitates the explicit specification of protocols,
eliminating the need for manual implementation of locks and buffers. This ap-
proach enhances accuracy, efficiency, and mitigates errors typically associated
with manual synchronization mechanisms. As a result, SysReo SD offers a ro-
bust and comprehensive approach for specifying protocols in system behavior,
particularly advantageous for capturing communication flow and coordination
patterns within a single diagram. Fig. 6 (A) presents a simple example of a
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VsendTemp
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Fig. 6. Extending SysML SD with Reo then translating SysReo SD to CA.
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SysML SD, demonstrating the behavior and message exchange between the two
components of SMB, smart bed (SB) and RTU. This coordination follows an
endogenous approach where protocols are implicitly expressed within the em-
bedded code fragments. However, modifying these protocols can be challenging
and may require extensive changes to multiple software components, potentially
impacting previously validated properties.

On the other hand, exogenous methods like Reo offer a more explicit and
modular approach to define protocols. In the given scenario Fig. 6 (A), where
components SB and RTU need to exchange messages, an endogenous approach
would involve directly implementing the exchange within their respective code.
However, in Fig. 6 (B) illustrates a different strategy, where a separate compo-
nent called the ”Reo sequencer” explicitly defines the message exchange protocol
between SB and RTU. For example, SB sends ”sendTempData()” to RTU using
reo ports {A, V} (depicted as red circles), and the Reo sequencer coordinates
this message exchange. This decoupling allows for easier protocol modifications
without affecting the implementation of SB and RTU. Employing Reo connectors
in exogenous approaches provides more flexibility and simplifies the specification
and adjustment of complex protocols in CPS.

The next step involves converting SysReo SD into constraint automata. To
achieve this, we will first present a formal definition of SysReo SD. Subsequently,
in Section 4.4, we will outline an algorithm that facilitates the automatic gener-
ation of constraint automata from SysReo SD.

Formal definitions of SysReo SD This section presents the formal definition
of SysReo message and SysReo SD.
Definition 2 (SysReoMes). A SysReo message is a tuple SysReoMes = (comps,
action, compf , P, Σ) where:

– comps: is the source component of the SysReo message.

– action: is the called method.

– compf : is the target component of the SysReo message.

– P : is the set of Reo ports.

– Σ = input, output is the set of synchronization constraints, specifying the
allowed input/output actions on Reo ports.

For example in Fig.6 (B) a SysReo message between the component SB and
RTU can be defined as SysReoMes= (SB, sendTempData, RTU, {A, V}, {[A],|V |}).
Definition 3 (SysReo SD). A SysReo SD is defined as tuple B = (IM, SysRe-
oMes, ReoSeq, ReoLoop, ReoAlt) is composed of:

– IM :is the initial message.

– SysReoMes: the set of messages in SysReo SD.

– ReoSeq = (ReoSeq1, ...,ReoSeqi, ... ,ReoSeqn) is the list of reo sequencer
combined fragments. ReoSeqi=(obj1, ... , obji, ...,objn), obji is message or a
fragment and card(ReoSeqi) ≥ 2.
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– ReoLoop = (ReoLoop1, ...,ReoLoopi, ... ,ReoLoopn) is the list of reo loop
combined fragments. ReoLoopi=(obj1, ... , obji, ...,objn), obji is message or
a fragment and card(ReoLoopi) ≥ 1.

– ReoAlt= (ReoAlt1, ...,ReoAlti, ... ,ReoAltn) is the list of reo alternator
combined fragments. ReoAlti=(obj1, ... , obji, ...,objn), obji is message or a
fragment and card(ReoAlti) ≥ 2.

In this paper, we focus on the Reo sequencer from the SysReo SD fragments
(ReoSeq, ReoLoop, and ReoAlt) mentioned above. Our main objective is to
translate SysReoSD=(IM, SysReoMes,ReoSeq) into reo constraint automata
using our algorithm. This automaton will serve as input to vereofy tool where we
can formally verify the correctness and interoperability of SMB system through
LTL properties.

4.4 Verification process: CA, Vereofy, LTL

This section outlines the verification process of SysReo. First, we start by propos-
ing an algorithm to construct CA from SysReo SD diagram. Then, the resulting
automaton is used as input for the vereofy tool to assess the accuracy and inter-
operability of the SMB system through the application of LTL properties.

Algorithm SysReo SD is a visual representation of the SMB system, which
consists of components and their interactions. However, to analyze and verify
the system formally, it is necessary to transform this visual representation into
a more structured and formal representation. Therefore through our algorithm,
we provide a systematic and automated approach to convert the SysReo SD into
constraint automata, which are well-suited for formal analysis.

Algorithm 1 is developed to transform a SysReo SD into a Constraint Au-
tomaton (CA), using a SysReo message and fragment list as inputs. The resulting
CA comprises a set of states (S), an initial state (S0), a set of port names (N),
and a set of transitions (δ). The algorithm begins by initializing the set of states,
checking for emptiness, and creating a new state as the initial state (cf. Algo-
rithm 1, lines 2-7). It then iterates through each object in the list. If the object
is part of a Reo sequencer fragment, the algorithm recursively calls itself with
the corresponding sub-list representing that fragment (cf. Algorithm 1, lines 8-
13). When encountering a SysReo message object (SysReoMes), the algorithm
creates a new state s′ if the message is not the last object in the list (cf. Algo-
rithm 1, lines 14-18). If it is the last object, s′ is designated as the initial state
s0. The algorithm then populates the sets S and N in the CA with the newly
created state and the ports of the SysReoMes, respectively. A new transition
is created from the previously added state s to s′, incorporating the port name
and constraints from the SysReoMes, and it is subsequently added to the set
of transitions δ. This process continues until there are no remaining objects in
the list to be processed (cf. Algorithm 1 line 19→30).

The algorithm, SysReoSDtoCA, has a linear complexity dependent on the
size of the objects set l in the SysReoSD diagram specification. When we apply
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Algorithm 1: Mapping SysReoSD to CA algorithm

1 Function SysReoSDtoCA(SysReoSD, l, CA)
Input: SysReoSD = (IM, SysReoMes, ReoSeq);
l: a list of objects in SysReoSD;
l = (obj1, ..., obji, ..., objn),
obji is a message or a fragment in SysReoSD.
Output: CA=(S,S0, N, δ)

2 Begin
3 if S = ∅ then
4 s = createNewState()
5 S = S ∪ {s} // add s to S (the set of states in CA)

6 S0 = s // set the initial state S0 to s

7 end
8 while (l ̸= ∅) do
9 Let obj the first element in l

10 if obj ∈ ReoSeq then
11 Let l’ be a list of objects composing the Reo sequencer fragment
12 SysReoSDtoCA(SysReoSD, l’, CA)

13 end
14 else
15 if obj ∈ SysReoMes then
16 if card(l) > 1 then
17 s’= createNewState()
18 end
19 else
20 s’= S0

21 end
22 S=S ∪ {s, s′} // the set of states

23 N=N ∪ obj.P // the set of port names

24 δ= δ ∪ (s, obj.P, obj.Σ, s’) // the set of transitions

25 s=s’ // initial state

26 end

27 end
28 l=l’- {obj}
29 end
30 End SysReoSDtoCA

this algorithm to the formal model of the SysReoSD diagram example, as pre-
sented in Fig.6 B, we obtain the constraint automata CA=(S,S0,N,δ) described
in Fig.6 step2. The CA is characterized by the following components:

1. Set of states: S={S0, S}.
2. Initial state: S0 = S0.

3. Set of port names: N= {(A,V), (B,W)}.
4. Set of transitions: δ= S x 2A,V x DC x S0 where DC = [A], |V |, and the

second δ= S0 x 2B,W x DC x S where DC = [B], |W |.
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Upon analyzing the resulting constraint automaton, we can observe the sys-
tem’s behavior when component SB sends the SysReoMes ”sendTempData” to
component RTU. This communication is coordinated by the Reo sequencer and
specified by the transition labeled with reo ports {A, V} and input/output ac-
tion interfaces [A], |V |. As a response, component RTU sends the SysReoMes
”ack” back to component SB through the reo sequencer ports {B, W} and in-
put/output action interfaces [B], |W |.

Vereofy tool Vereofy [12,14], developed at the University of Dresden, is a pow-
erful model checking tool specifically designed for analyzing and verifying Reo
connectors. It supports two input languages: the Reo Scripting Language (RSL)
for specifying coordination protocols, and the Constraint Automata Reactive
Module Language (CARML), a textual representation of constraint automata
used to define component behavior. With vereofy, one can verify temporal prop-
erties expressed in LTL [11] and CTL-like logics [29]. Distinguishing itself from
other model checkers [2,20,25], vereofy places a primary focus on verifying co-
ordination aspects, communication, and interactions at the behavioral interface
level. It employs a symbolic representation based on binary decision diagrams
(BDDs) to facilitate efficient verification algorithms. For a detailed understand-
ing of the modeling languages and verification techniques employed by vereofy,
refer to [13,12].

Next, we present the CARML code corresponding to the generated Con-
straint Automaton (CA) from SysReoSD. The code module provided below
specifically defines a sysreoCA. Initially, the sysreoCA is in an empty state de-
noted as S0. When the sysreoCA is not in a full state S1, and a data value is
written to its input port A, the data is stored in the ’sendTempData’ variable,
and the internal state changes from S0 to S1. Another component reading data
from the output port V resets the internal state back to S0. The data domain
has been locally set to the integer range (0,1). Although it is possible to set the
data domain to any other available datatype, it can only be done once across
the included files or as a runtime argument. The data flow within the system
may depend on the value of a variable of type ’Data’, as illustrated in the second
transition, where the ’sendTempData’ stored is written to the output port V,
represented as: #V == sendTempData.

#Vereofy CARML code :
TYPE Data = in t ( 0 , 1 ) ;

MODULE sysreoCA{
// i n i t i a l i z i n g the I /O port s {A,V} and { B,W}
in : A;
out : V;
in : B;
out : W;

// d e f i n i n g the s e t o f s t a t e s that are S0 and S1
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var : enum {S0 , S1} s t a t e := S0 ;

// d e f i n i n g the messages that should be exchanged
var : Data sendTempData := 0 ;
var : Data ack := 0 ;

//drawing the t r a n s i t i o n s from So to S1 and from S1 to S0
s t a t e = = S0 −[ {A} ]−> s t a t e :=S1 & sendTempData:=#A;
s t a t e = = S1 −[{V} & #V = = sendTempData ]−> s t a t e :=S0 ;

s t a t e = = S0 −[ {B} ]−> s t a t e :=S1 & ack:=#B;
s t a t e = = S1 −[{W} & #W = = ack ]−> s t a t e :=S0 ;

}

Verification of LTL properties LTL-based model checking rigorously verifies
system properties, boosts confidence in correctness and reliability, and identifies
design flaws for improvements. To verify the correctness of the specified protocol
and the interoperability between the smart bed and RTU, we propose to check
the following LTL properties in vereofy tool:

p1:LTL<<G(("{A}" & "#A==1")->X("state==S1"& "sendTempData==1"))>>

/*PASSED*/

p2:LTL<< G(("{W}" & "#W==1")-> X("state==S0" & "ack==1"))>>

/*PASSED*/

The evaluated LTL property in ”p1” ensures that when port A is active once, the
subsequent state must satisfy two conditions: the state variable should be S1 (in-
dicating a transition from S0 to S1) and the ’sendTempData’ variable should be
1 (indicating successful message transmission). The result, ”PASSED”, confirms
that this property holds for all execution traces. The same thing applies for the
evaluated LTL property in ”p2” where it indicates the successful transmission
of the ”ack” message.

5 Conclusion

Our paper introduces a novel diagram called ”SysReo SD” that enhances CPS
modeling and analysis. By extending SysML with Reo, we create a powerful
”semi-formal-formal” model that effectively captures the behavior and coordi-
nation of CPS components using an exogenous protocol. This allows us to en-
sure CPS interoperability, meet specific design requirements, and validate the
correctness of the system behavior. Furthermore, we illustrate the applicability
of our approach through a case study in the medical CPS domain, showcasing
the potential benefits of employing SysReo.
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Looking ahead, we are planning to explore the application of SysReo in Dig-
ital Twins (DT) [27] where we can accurately capture the interactions and be-
haviors of the components of a physical system in a virtual environment. With
the use of SysReo models, we can continuously monitor and optimize the per-
formance of the digital twin.
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