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Abstract

The breakthrough brought by generative adversarial networks (GANs) in computer vision (CV)
applications has gained a lot of attention in different fields due to their ability to capture the
distribution of a dataset and generate high-quality similar images. From one side, this technol-
ogy has been rapidly adopted as an alternative to traditional applications and introduced novel
perspectives in data augmentation, domain transfer, image expansion, image restoration, image
segmentation, and super-resolution. From another side, we found that due to the lack of indus-
trial datasets and the limitation for acquiring and accurately annotating new images, GANs
form an exciting solution to generate new industrial image datasets or to restore and aug-
ment existing ones. Therefore, we introduce a review of the latest trend in GANs applications
and project them in industrial use cases. We conducted our experiments with synthetic images
and analyzed most of GAN’s failures and image artifacts to provide training’s best practices.
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Obtaining sufficient training images is a major
obstacle in deep learning (DL) and industrial com-
puter vision (CV). While transfer learning (TL)
has helped to alleviate this issue through publicly
available high-quality datasets, the size of avail-
able industrial datasets is still smaller compared to
publicly available CV datasets. This is due to secu-
rity, privacy, and robustness constraints for the
acquirer, employees, and the project. Additionally,
traditional techniques for augmenting datasets,
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such as geometric, color, or kernel filter transfor-
mations, may not be suitable for specific industrial
CV models. The industrial sector has specific
standards and conventions, such as box dimen-
sions, color codes, and sign orientations, that
must be considered while augmenting. Acquiring
data becomes challenging when considering the
manual labor required to annotate such a huge
dataset for supervised training, such as bounding
boxes, segmentation, depth information, and pair-
ing images. This task is prone to human error,
time-consuming, subjective, and costly because of
the complexity and criticality of the images and
the need for specialists in the industrial field.
Generative Adversarial Network (GAN) is a
training methodology that can augment existing
image datasets by producing high-quality syn-
thetic images. The concept of GANs was first
proposed by Goodfellow et al. (Goodfellow et al,
2014). GANs consist of two adversarial deep neu-
ral networks (DNNs): a generator G and a dis-
criminator D. These networks are trained in an
adversarial zero-sum game to find the Nash equi-
librium, where G captures the distribution of the
dataset and produces data that appears to be real
to confuse D. In turn, D is trained to estimate the
probability of accurately distinguishing, as gen-
uinely as possible, whether the data is from a real
distribution or generated by G.

Hence, GANs are a powerful approach to gen-
erating realistic images using backpropagation
techniques. This method is more effective than
traditional deep generative models such as Boltz-
mann machines, variational autoencoders (VAEs),
and Markov chain-based algorithms (Chen and
Jia, 2021). This has led to GANs being widely
adopted and applied in various real-world applica-
tions, including the medical field (Yi et al, 2019),
molecular imaging (Koshino et al, 2021), deep
fake, cybersecurity (Yinka-Banjo and Ugot, 2020;
Cai et al, 2021), finance (Eckerli and Osterrieder,
2021), arts, video games, image and video restora-
tion, etc. (Pavan Kumar and Jayagopal, 2021;
Wang et al, 2021c).

However, training a GAN is not straightforward
despite the numerous GAN architectures and
training methods, as well as the diversity of CV-
based industrial applications, image modalities,
and challenges. Most authors focused on creating
GAN taxonomies based on ML general training

taxonomies (Chen and Jia, 2021), or GAN’s archi-
tectures and loss functions (Wang et al, 2021c).
From another perspective, some others concen-
trated on image generation or I2I exclusively
(Pang et al, 2021; Chen and Jia, 2021; Wang
et al, 2020c; Li et al, 2020a) in a general man-
ner (Farajzadeh-Zanjani et al, 2022; Pavan Kumar
and Jayagopal, 2021) or projected their reviews
in particular fields (Cai et al, 2021; Yi et al,
2019; Eckerli and Osterrieder, 2021; Yinka-Banjo
and Ugot, 2020; Koshino et al, 2021). On another
side, the fourth industrial revolution, aka. Indus-
try 4.0 aims to deploy autonomous robots to assist
human workers in their daily tasks (Schuh et al,
2017; Naumann et al, 2023; Tang and Veelen-
turf, 2019). Despite the superiority of CV-based
observations over human observations, CV-based
application is not widely integrated into the indus-
trial workflow (Rutinowski et al, 2022). Moreover,
to the best of our knowledge, there is no dedicated
GAN overview to support the industrial field. In
this paper, we aim to fill this gap by providing
a comprehensive review of various existing GANs
and their applications in Industry 4.0: We com-
pare existing methods by training on our rendered
synthetic datasets covering different, simple, and
complex 3D scenes composed of industrial assets.
We generated paired images with multiple modal-
ities for training various domain transfer archi-
tectures. We also applied image transformations
such as kernel filters, color augmentation, crop-
ping, etc., to imitate real industrial image settings
and outputs for training and testing image-to-
image (I2I) translation models.

This review is designed to provide a survey on
the most notable GANs and a comprehensive
implementation in industrial applications cover-
ing topics from dataset acquisition to appropriate
GAN architecture selection and assessment of gen-
erated image quality. In Section 2, we provide an
overview of GANs and their feasibility for indus-
trial applications and information on acquiring
appropriate training datasets. Then, in Section 3,
we present our synthetic data generation pipeline
and our rendered datasets used in our further
experimentations: In Section 4, we delve into the
latest techniques for image generation, including
the generation of global and local features. Sub-
sequently, in Section 5, we examine approaches
for texture generation. Moreover, in Section 6, we
compare different domain transfer 121 translations.
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Furthermore, in Section 7, we focus on method-
specific 121 applications such as image expan-
sion, de-filtering, and super-resolution. Finally, we
present various methods for assessing GANs and a
taxonomy for common failure modes in Section 8§,
before concluding and sharing our thoughts in
Sections 9 and 10.

2 GAN Applications in
Industry 4.0

CV-based applications can be widely used in
today’s industry for tasks such as training robots,
decision-making, and assisting human workers
in increasing productivity. Among the available
techniques, GANs have proven to be the most
effective and commonly used architecture for pro-
ducing high-quality images (Chen and Jia, 2021;
Farajzadeh-Zanjani et al, 2022). GANs have also
been widely adopted in a wide range of real-world
applications. However, the literature presents
limited GAN implementations in the industrial
IoT (IIoT) and Industry 4.0 fields related to
privacy and cyber-physical systems (Ashok et al,
2023; Hindistan and Yetkin, 2023; Nedeljkovié¢
and Jakovljevi¢, 2022), rare event simulation
(Baldvinsson et al, 2022), resource orchestration
(Gupta et al, 2023), defect and anomaly detec-
tions in image (Li et al, 2022; Bougaham et al,
2021) or sound (Hatanaka and Nishi, 2021) data,
and document restoration (Sharma et al, 2019).
In this review, we will elaborate more and focus
on the capacity of GANs to fill the gap in current
CV-based industrial applications based on the
industrial applications and specific use cases.

2.1 GAN Motivation

Basically, GANs are designed to replicate the
probability distribution of a dataset, to generate
new, previously unseen data that follows the same
distribution (Goodfellow et al, 2014). To achieve
this, GANs must produce diverse images within
each class and different across classes (Arora and
Zhang, 2017). Specifically, considering C' classes
in the training set, an optimal GAN should sat-
isfy inter-class and intra-class diversities (Arora
and Zhang, 2017). Whereby, in an ideal case of
a biased dataset, for n generated images, it pro-

duces & images for each class. Moreover, each

subset is representative of its initial class samples,
making it more challenging to achieve (GM et al,
2021; Shahbazi et al, 2022).

2.1.1 Conditional vs Unconditional

Vanilla GAN: Technically, GAN is structured
as a zero-sum game, i.e., minimax, between two
neural networks: a generator G and a discrim-
inator D. A generator network learn how to
create artificial data that is realistic enough and
similar to the training dataset, so it fools the
discriminator. In its turn, D is responsible for
distinguishing between real-world samples and
artificially generated data samples. Consequen-
tially, a GAN is successfully trained when both
models are achieved (Goodfellow et al, 2014).
However, because the loss functions may be stuck
in a local minimum, leading to mode collapse
failure, Arjovsky proposed replacing the minimax
loss function with a Wasserstein loss function
(WGAN) (Arjovsky et al, 2017). In this case,
the discriminator does not categorize instances
as real or fake, but it generates a number that
the higher it is, the more realistic the instances
are. This metric is not limited between 0 and 1.
Therefore, it is not a threshold-based comparison.

Conditional GAN (cGAN): It is a version of
GAN that applies conditional settings to both the
generator and discriminator networks (Mirza and
Osindero, 2014). These conditional settings can
include auxiliary information such as class labels
(Karras et al, 2020a), instance images (Casanova
et al, 2021), or data pairing (Isola et al, 2017).
The generator inputs both the latent space and
class information condition and produces images.
The conditionality applied to both networks is
necessary for the generator to generate outputs
that satisfy the discriminator (Boulahbal et al,
2021). Additionally, cGANs converge faster than
classical GANs as the generated images follow a
certain pattern.

2.1.2 Learning Overview

There are four major GAN learning methods
based on how training datasets are handled: super-
vised, unsupervised, semi-supervised, few-shot,
and transfer learning. Supervised learning (SL)
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uses labeled datasets to train GANSs, but acquir-
ing labeled data can be time-consuming and have
a likelihood of human error (IBM Cloud Edu-
cation, 2020). Unsupervised learning (UL) does
not use labels or domain pairings but requires a
larger dataset for optimal performance (Chen and
Jia, 2021). Semi-supervised learning (SSL) uses
a dataset with few labels and aims to label the
remaining images (Mustafa and Mantiuk, 2020).
Few-shot learning (FSL) models are based on very
few (Benaim and Wolf, 2018; Cohen and Wolf,
2019) or even a single image training dataset and
are evaluated based on their performance (Park
et al, 2020a; Lin et al, 2020; Shaham et al, 2019).
Moreover, regarding small training datasets,
Transfer learning (TL) is a method that leverages
knowledge learned from one task and applies it
to another related task (Pan and Yang, 2009). It
is useful when data or resources are scarce in the
target task, and it aims to improve the model’s
performance by transferring the knowledge from
the source task. More details are available in
Appendix C.

2.1.3 GAN Inversion

Reciprocally, GAN inversion is a process that
aims to invert a given image back into the latent
space of a pre-trained GAN model, such that the
image can be faithfully reconstructed by the gen-
erator (Pasquini et al, 2023). This process allows
for a better understanding of the GAN’s internal
representations and can enable applications such
as image manipulation, restoration, interpolation,
style transfer, and compressive sensing. Addition-
ally, researchers are looking into the application
of GAN inversion for dissecting GANs to under-
stand their internal representations, so they figure
out what GANs do not learn and to examine how
realistic images can be generated by GANs (Xia
et al, 2022).

2.2 Industrial GAN Applications

We can find and suggest GANs in a wide range of
applications in various industrial sectors. Some of
the notable examples include the following:

1. Data Augmentation: It is the primary goal
of GANs in the industrial sector to train

deep learning models, such as those used in
robotics for object detection and manipulation,
surveillance, and transportation tasks. Acquir-
ing image datasets from inside factories can
be challenging due to strict regulations and
permissions aimed at ensuring privacy, secu-
rity, and safety. The augmentation can affect
the lack of specific assets by mimicking the
distribution of another asset’s rich dataset.

. Safety: Uncommon and rare industrial scenar-

ios such as incidents, collapses, or fires pose
a high risk and are prohibited due to safety
precautions. However, gathering the correct
data at such moments is crucial for analytics,
but RGB images may not be sufficient to ful-
fill most application requirements. Therefore,
translation methods can replicate an image in
another modality, such as thermal imaging or
depth maps.

. Bridging Sim-to-Real Gap: Creating realis-

tic textures for 3D assets used in digital twining
increases the virtual scene realism, and there-
fore increasing the performance of training
robot in simulation, predicting and mitigating
severe issues in industrial settings. Moreover,
GANSs can bridge the gap between simulation-
based rendered images and real images by
transferring between both domains.

. Resource Optimization: Capturing data for

large, heavy, or rare industrial assets can be
expensive and time-consuming, especially when
moving or borrowing such assets. GANs can
disentangle existing image features and alter
the environment with additional randomiza-
tions of different setups.

. Robot Fine-Tune: GANs can be used to opti-

mize robots’ decision-making and increase their
CV model prediction by translating a training
dataset domain into the robot’s camera sensor
domain before training and deploying a per-
sonalized model, or reciprocally translating the
captured images into the dataset domain before
inference.

. Data Reusability: Existing and previously

collected data is “precious” and valuable data
(Sharma et al, 2019). Therefore, GAN restores
corrupted and degraded images suffering from
noise, poor resolution, lens distortion, and low
brightness or saturation,

. Privacy: GAN can be used to omit/replace

confidential data which are part of real images,
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such as human faces, serial and ID numbers,
operation barcodes, etc.

8. Authenticity Check: GAN inversion is used
to verify the authenticity of ideas and designs.
The method involves training a GAN model
on a set of existing product images or sam-
ple designs and then using it to compare new
designs with the original images. The pro-
cess starts with identifying the point in the
pre-trained GAN’s latent space that closely
reconstructs the new design, then projecting it
back into the image space and comparing it
with the original image. This approach allows
for distinguishing between authentic and fake
designs with high accuracy. Furthermore, it can
be used to monitor and ensure the quality of
products during the production process.

3 Experimental Setup

Data Description: In this review, we will use
in-house generated, synthetic data, which is part
of SORDI.ai (Abou Akar et al, 2022), to evaluate
and compare GANs in the context of Industry
4.0. These datasets were designed to showcase
the strengths and limitations of the GAN archi-
tectures under examination. Instead of relying
on commonly used datasets such as MS COCO
(Lin et al, 2014), ImageNet (Deng et al, 2009),
MNIST (Deng, 2012), Cityscapes (Cordts et al,
2015), GTA5 (Richter et al, 2016), etc. - that
have been used in the original research papers
- we benchmark the SOTA GAN performance
on novel datasets generated through techniques
such as domain randomization (DR) to create
custom datasets such as low variation and high
variation datasets, as well as paired datasets for
image translation applications, e.g., supervised
I21 translation. We used Unity and NVIDIA
Omniverse as simulation software and NVIDIA
RTX A6000 GPUs for rendering.

Data Acquisition: To render our dataset, we
followed the following six steps:

1. To begin, we created various small environ-
ments with different ground and wall colors,
textures, and lighting conditions.

2. We selected key industrial assets, such as: small
load carrier (KLT) box, trolley, forklift, jack,

pallet, stillage, smart transport robot (STR),
and electrical jack.

3. These assets were then arranged logically and
realistically to replicate industrial settings.

4. We applied DR affecting the asset positions,
rotations, visibility, and the room components’
textures and lights. The target of our DR is to
control the dataset variability and complexity
only.

5. We rendered images from these scenes from
different angles and perspectives while always
focusing on the main industrial assets. With the
help of Isaac Sim, this simulation allows render-
ing images with multiple annotations/modal-
ities, e.g., plain color, instance segmentation,
semantic segmentation, depth, etc.

6. We removed defective and high-occluded
images during a data cleaning phase.

In Appendix A, we present samples and details
of the datasets. For more technical details, we
recommend reviewing our previous work con-
cerning synthetic data generation for industries
(Abou Akar et al, 2022; SORDI.ai, 2023).

Experimental Material: We will delve into
the various GAN architectures and their appli-
cations in the industry in the following sections.
We will begin by discussing the most recent and
significant GANs for image generation, focusing
on global and local features and texture gener-
ation. Then, we will look into the various ways
to apply GANs in the industrial field, such as
domain transfer techniques for I2I translations
and image restoration. Our evaluation is based
on the literature review and qualitative results
of some of the latest GAN architectures that we
implemented and tested. We used NVIDIA RTX
3090 and NVIDIA Tesla V100 GPUs to train
our GAN models using the previously mentioned
datasets for all our experiments.

4 GANs for Image Generation

Image Generation is undoubtedly a key applica-
tion of GANSs, offering not only a new approach
for data augmentation, but a revolutionary and
limitless technique for expanding existing image
datasets (Shorten and Khoshgoftaar, 2019). In
this section, we distinguish between global and
fine-grained features image generation. However,
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in the global image generation technics, we dis-
tinguish between different GAN architectures that
handle large-scale and small size training datasets.
However, for the fine-grained features GANs, we
focus on image disentanglement technics, and
Text-to-Image synthesis approaches.

4.1 Global Image Generation

Global image generation is one of GAN’s main
tasks for data augmentation in case of data
scarcity, especially since DL models, e.g., object
classification and recognition, are “data hungry”.
As unconditional image generation is beneficial
for single-class dataset augmentation, conditional
image generation is more suitable for multi-
class dataset augmentation. Afterward, we utilize
knowledge transfer approaches such as transfer
learning or domain adaptation to train models on
the synthesized data and then to fine-tune the
models on real data, or mixing both datasets in
the training phase (Ravuri and Vinyals, 2019Db).

4.1.1 Large Scale GAN Training

StyleGAN Retrospective: Progressive GAN,
also known as ProGAN (Karras et al, 2017,
tkarras, 2017b,a), is capable of generating high-
resolution images by gradually increasing the
resolution of the images during the training
process. This approach starts by training on
small-dimensional images and gradually increases
the resolution to include fine details. This method
is adopted by both the generator and discrimina-
tor networks, resulting in faster training times.
ProGAN is considered the primary foundation of
StyleGAN architecture.

Limitations: However, it is worth noting that
despite its efficient nature, progressive growth-
based GAN is known to generate phase artifacts
(Karras et al, 2019) as shown in Figure 1.

Fig. 1 (a) Good match (b) Mismatch of sub-wood plates
in a generated euro pallet image

Inspired by the style transfer (Huang and
Belongie, 2017; Jing et al, 2019), StyleGAN
(Karras et al, 2019; NVLabs, 2021a) is an
advanced version of the traditional ProGAN
architecture (Karras et al, 2017) that generates
high-resolution images with detailed style-level
stochastic variations by using progressive res-
olution blocks, Gaussian noise injection, and
AdalIN normalization (Huang and Belongie, 2017;
Dumoulin et al, 2016, 2018; Ghiasi et al, 2017).
However, it has drawbacks, such as water droplet
artifacts and phase artifacts caused by pro-
gressive growing techniques. To overcome these
limitations, StyleGAN2 (Karras et al, 2020b;
NVLabs, 2021b) was proposed as a revised version
of StyleGAN. To reduce the artifacts, it replaces
AdalN normalization with estimated statistics,
generates mipmaps (Williams, 1983) with a mod-
ified version of Multi-Scale Gradients for GAN
(MSG-GAN) (Karnewar and Wang, 2020), and
uses skip connections (Ronneberger et al, 2015)
and residual networks (Gulrajani et al, 2017; He
et al, 2016; Miyato et al, 2018) for the generator
and discriminator, respectively. As a result, Style-
GAN?2 improves the training performance by 40%
compared to StyleGAN, but still requires a large
number of varying datasets to avoid discriminator
overfitting and training divergence. More details
are explained in Appendix D.

BigGAN: In 2018, Brock et al. published a
new leveraged GAN architecture named BigGAN
(Brock et al, 2018; ajbrock, 2019), which focuses
on scaling up GAN models for class-conditional
image generation. The architecture of BigGAN
supports larger model parameters, such as an
increased number of feature maps, larger batch
sizes of up to 2048 images, and additional archi-
tectural changes such as skip connections and the
truncation trick! to improve image quality.

Limitations: However, it is limited to generating
images of 512x512 pixels resolution. Additionally,
the generators of BigGAN are vulnerable to class
leakage, local artifacts such as the checkerboard
artifact (as shown in Figure 3), and collapse mode
failures as reported in (Brock et al, 2018; Vo
et al, 2022; Brownlee, 2019a). Furthermore, when

!The BigGAN truncation tricks consist of using different
distributions for the latent space while training and inferring
the generator.
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we applied the IC-GAN (as described in IC-GAN
in Section 4.1.1) for instance-conditional image
generation using BigGAN, the results displayed
texture blobs (as shown in Figures 4 and 2) due
to the limited number of images in the training
dataset that was similar to the condition image
or that satisfied the conditional input, specifically
in terms of the camera field of view and angle:
in our case, ground-level side image of the trolly
and the STR.

On the other hand, Sauer et al. proposed in
(Sauer et al, 2022) the StyleGAN-XL model,
a state-of-the-art (SOTA) approach for high-
resolution image synthesis on large unstructured
datasets such as ImageNet. By training the model
using the Projected GAN paradigm, neural net-
work priors, and a progressive growing strategy,
they improved the performance of the latest
StyleGAN3 generator, which performs poorly on
large unstructured datasets such as ImageNet.
StyleGAN-XL achieved a new SOTA in large-
scale image synthesis, with the ability to generate
images at a resolution of 1024x1024 pixels. Addi-
tionally, the model can invert and edit images
beyond the narrow domain of portraits or specific
object classes.

Limitations: One limitation of the proposed
StyleGAN-XL model is the increased compu-
tational cost due to its larger size, three times
larger than StyleGAN3. Future research could
explore GAN distillation methods that bal-
ance performance and model size. Additionally,
StyleGAN-XL is based on StyleGAN3. Therefore,
it inherits the reduced semantic controllability
introduced to achieve equivariance. Furthermore,
while the model could benefit from being tested
on larger and more diverse datasets, such datasets
are currently unavailable.

Fig. 2 BigGAN image generation with texture blob failure
- incorrect object anatony failure

IC-GAN: As previously stated, traditional
cGANs require a significant amount of labeled

Fig. 3 BigGAN image generation with local checkerboard
artifacts

data, which may be infeasible to acquire. To
address this issue, a team at Facebook AI Research
proposed in 2021 an extension of GANs known as
Instance-Conditioned GAN (IC-GAN) (Casanova
et al, 2021; Facebook Research, 2021). This
method utilizes a feature cluster-based approach
(Likas et al, 2003; Soucy and Mineau, 2001) to
generate images using unlabeled data.

During training, the discriminator considers each
sample’s latent vector neighborhood, which forces
the generator to generate images similar to the
sample’s neighbors based on cosine similarities.
This approach has been shown to be more effective
than partitioning the data into clusters, partic-
ularly when generating images in an overlapped
latent space. This is because, in such cases, the
image may belong to two clusters, and their
disjoint vectors may be vastly different. Once
the model is trained, a single new image, or
”instance,” is sufficient to generate similar images
to its closest neighbors in the dataset.

The Facebook team published a pre-trained net-
work based on ImageNet. Still, it is inadequate
for covering specific industrial assets, as demon-
strated in Figure 5. As a result, we trained our
network using BigGAN? using the same syn-
thetic dataset as in previous studies. We noted
that the generated images are similar not only
to the main actor-instance but also to its scale,
viewport, environment background, lighting, etc.,
as demonstrated in Figures 4 and I7. In con-
trast to traditional ¢GANs, which generate a
diverse range of images containing the class label
object in different viewports, backgrounds, etc.,
IC-GAN generates more specific, limited images
that are similar to the instance neighborhood in
the dataset.

Furthermore, Casanova et al. proposed a class-
conditional IC-GAN (ccIC-GAN) for labeled data,
in which the instance and class label conditions
are combined. This allows ccIC-GAN to create

2IC-GAN supports two training backbones: BigGAN and
StyleGAN2-ADA.
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IC-GAN

(@)

(b)

Fig. 4 IC-GAN and ccIC-GAN model trained from scratch: (a) Conditional instance (b) Generated output

the conditional class asset in the instance environ-
ment. For example, in Figures 4 and I8, we were
able to generate images for the class label within
the same surrounding environment of the image
instance, taking into account the initial cam-
era field of view, perspective, and distance from
the target asset. However, some results appear
”blobby,” particularly concerning low-level ground
angles, due to the lack of training data containing

images captured at low-level ground angles. Addi-
tionally, while generating the class asset in the
instance environment can result in more realistic
and rare images, some results may be considered
unusual (Meta AT, 2021). ccIC-GAN addresses the
bias that objects may not be present in specific
environments, for example, a forklift inside an
office. More examples are shown in Appendix I.
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(a) (b)

Fig. 5 ImageNet-based pre-trained model: (a) Condi-
tional instance (b) Generated output

4.1.2 Limited Datasets GAN Training

Small dataset hampers machine learning training
(Wang et al, 2020b), including generative net-
works. To tackle this problem, transfer learning
(Pan and Yang, 2009; Weiss et al, 2016; Torrey
and Shavlik, 2010) uses pre-trained models® to
transfer knowledge and fine-tunes the model with
fewer samples of data as in (Noguchi and Harada,
2019; Abbas et al, 2021; Wang et al, 2020a, 2018c¢;
Mo et al, 2020), instead of training from scratch
using random initializations and extensive data.
For example, training from scratch takes around
4000 iterations, while approx. 300 iterations are
enough in transfer learning. In Figure 6, we
trained the first model to generate red trollies;
then, we used the model’s weights to initialize a
model training for STR generation. Afterward, it
took around 300 iterations and a small dataset of
10,000 images to train a GAN to generate images
for an STR in a docking state or multiple instance
generations as in Figure 6 c. and d. respectively.
But, Karras et al. argues that the progress reverts
as soon as reasonable FID is achieved.

Mo et. al agrees in (Mo et al, 2020) that GANs
transfer learning is prone to overfitting or limited
to learning small distribution shifts. Instead, they
suggested FreezeD: It surpasses the literature
by freezing the discriminator’s lower layers and
fine-tuning its upper layers. Additionally, many
authors suggested data augmentation technics at
the discriminator level for efficient GAN train-
ing (Zhao et al, 2020d,b; Tran et al, 2021). For
instance, Bora et al. proposed in (Bora et al,
2018) AmbientGAN. They trained the discrim-
inator not in the raw data domain but in the

3Pre-trained models are models that have already been
trained on some other datasets.

measurement domain. The measurement domain
contains noisy, blurred, corrupted, and missing
data, i.e., occlusion augmentation. The authors
proved that it is still possible to recover the
true/good distribution by training the generator
if the measurement process is invertible under
a certain probability. This concept was highly
recommended to train GAN when it is impossible
to obtain fully-observed image samples but some
partial and noisy samples.

StyleGAN2-ADA: The NVIDIA team in
(Karras et al, 2020a) made modifications to the
discriminator network of StyleGAN2 by apply-
ing various augmentations such as pixel blitting,
geometric and color transforms, filtering, addi-
tive noise, and cutout to each image presented
to the discriminator. All augmentations were
applied with the same probability unless they
were skipped. The probability threshold of non-
leaking augmentations was determined to prevent
unwanted stochastic augmentations during gen-
eration. The probability parameter is not fixed
and is highly dependent on the sensitivity, prop-
erties, and size of the dataset?, as well as the
training setup. To address these limitations, Kar-
ras et al. introduced an adaptive control scheme
(StyleGAN2-ADA) (NVLabs, 2020). Later,
NVIDIA Labs published a PyTorch implementa-
tion of StyleGAN2-ADA (NVLabs, 2021) that is
5-30% and 35% faster in training using NVIDIA
Tesla V100 GPU and high-resolution inference,
respectively, when compared to the previous Ten-
sorFlow implementation (NVLabs, 2020).
Additionally, The use of a conditional GAN is
intended to enable class-based image generation,
as depicted in Figures 7 and I6.

Limitations: Upon visual inspection of the gen-
erated images, it was observed that all details
were “glued” to specific image coordinates instead
of the appropriate parent object surface (Karras
et al, 2021). This resulted in negative images and
signal effects on the generated output, such as
per-pixel noise inputs, positional encodings, and
aliasing (Azulay and Weiss, 2018; Zhang, 2019;
Parmar et al, 2021).

In an additional experiment, an unconditional
StyleGAN2-ADA model was trained using 20,000

4The larger the dataset size, the more harmful the augmen-
tation is (Karras et al, 2020a).
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Fig. 6 GAN trainings from scratch (a) Red trolly @ 3898 iterations and iterative transfer learning (b) Smart transport
robot (STR) @ 411 iterations (¢) STR under a trolly @ 313 iterations (d) Mixed assets between trollies and STRs @ 296
iterations

training images of pallets and KLT boxes, with
10,000 images for each asset. It was observed
that there were class leakage failures at itera-
tions 4000 and 4200 (refer to Figure 8), such as
(1) the presence of both assets, (2) collages of
asset parts forming an unusual shape, (3) feature
leakage from one class to another, for example, a
pink KLT box with a wooden pallet’s texture, or
reciprocal, a wooden pallet with pink gradients.
StyleGAN3 In Figure 9, it is evident that
StyleGAN2-ADA’s trolly texture sticks to the
empty area between its hand bars, unlike in Style-
GANZ3’s trolly, where this issue is greatly reduced,
and we can see continuous light gradient effects.
This issue, referred to as the ”texture-sticking”
problem, was addressed in StyleGAN3 (Karras
et al, 2021; NVLabs, 2021) by incorporating a
natural transformation hierarchy in the generator
architecture of the GAN. The authors approached
the problem by interpreting all network signals as
continuous signals rather than discrete values. To
achieve this, they adopted a classical Shannon-
Nyquist signal processing framework (Shannon,

1949) in the continuous domain, using high-
quality filters with over 100dB attenuation for
antialiasing (as seen in Figure 10). Additionally,
they employed Fourier features (Suzuki et al, 2018;
Tancik et al, 2020), filtering, and 1x1 convolu-
tion kernels to make the generator equivariant to
geometric transformations such as translation and
rotation. Now, each sub-pixel inherited its position
from the underlying coarse features. This results
in a more natural motion (Alaluf et al, 2022) and
enables the efficient generation of high-quality and
realistic videos and animations.

However, as previously noticed in StyleGAN, a
discriminator is responsible for multiple depen-
dent randomizations between the local and global
features. Thus, making the discriminator equivari-
ant is worth investigating as well.

Mode collapse: Additionally, we observed that
when trained on a dataset of 20,000 images of
pallets and KLT boxes with low variation, the con-
ditional training collapsed and generated distinct
images for each class. These images still retained
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(b)

Fig. 7 (a) Conditional (b) Unconditional StyleGAN2-
ADA generation sample

(a)

Fig. 8 StyleGAN2-ada class leakage failure at iteration
(a) 4000 (b) 4200

a distorted shape or color of the initial class fea-
tures (as shown in Figure 11 b.). On the other
hand, unconditional training generated only a sin-
gle ”blob” image that lacked any recognizable
characteristics of either class (as shown in Figure
11 a.). Additionally, we found that by introducing
variation in only one class of images, it was possi-
ble to prevent the training from collapsing, even if
the other class represented a lack of variation (as
shown in Figure 12).

(a)

(b)

Fig. 9 (a) StyleGAN2-ADA (b) StyleGAN3 generated
trolly

(b)

Fig. 10 (a) StyleGAN2-ADA (b) StyleGAN3 generated
stillage (left) and trolly hand (right)

Training divergence: Additionally, it is impor-
tant to note that the GAN training process
highly depends on the quality and variation of the
dataset used. In this case, it was observed that
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Fig. 11 Inter-class and intra-class collapse mode with (a)
unconditional (b) conditional training styleGAN3 respec-
tively

the previous training - referring to Figure 12 c.
- diverged and generated only black images for
both classes after a batch of good generation iter-
ations, as shown in Figure 13. This phenomenon,
known as overtraining, can negatively impact
the quality of the generated images. To address
this issue, Mittal (Mittal, 2019) suggests moni-
toring the Memorization-informed FID (MiFID)
and implementing an Early Stopping technique
to achieve the best results. It is also important

{1

A L
(a)

AU R AR UL JOSEL OREL (O N LR

AV R O U VR P DO LU SR

P T
(b)

3 R O L

YRS F RN

) OB ) 1R G L CTRL R R

(©

Fig. 12 (a) Pallet only training dataset (b) StyleGAN3
pallet generation - collapse mode (c¢) StyleGANS3 pallet with
a variation of KLT Box generation

to note that the GAN training process typi-
cally includes a period of stability, during which
the highest quality images are produced (Brown-
lee, 2019b). However, a quantitative-based “Early
Stopping” method may not always be sufficient
to detect this period, as the losses may fluctuate
randomly without indicating any issues (Pasini,
2019). Therefore, keeping the training running
longer and then, using opinion-based selection for
the GAN checkpoint is recommended.

4.2 Fine-Grained Image Generation

Previous GANs focused on coarse-grained image
generation, where many features in a single image
are considered (Karras et al, 2019). This approach
simultaneously considers a significant amount of
information, such as the asset type, background,
position, light, shade, texture, etc. However, in
many industrial applications, fine-grained object
recognition (Zheng et al, 2019) is required, such
as detecting small tools in a load carrier box,
identifying brand logos, or determining 3D pose
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Fig. 13 Training divergence: Image generation sample
at different training iterations from 10880 to 11800 with a
step of 40

within a static 2D image. Still, fine-grained based
applications face data scarcity limitations, such
as having only a single studio image for each
asset which can be scratched or having a lim-
ited number of images with partial views and a
limited number of viewports® (Karlinsky et al,
2017). Conversely, applying coarse-grained-based
GANs cannot distinguish intra-class subtle fine-
grained features (Chen et al, 2022b), and therefore
may easily collapse. To overcome these limita-
tions, it is possible to augment the training dataset

5These steps are followed by geometric and photometric
transformations to augment the dataset.

by either focusing on specific features and gen-
erating specific details variation, or interpreting,
manipulating and controlling existing image fea-
tures (Shen and Zhou, 2021; Hirkonen et al,
2020; Roich et al, 2022; Pan et al, 2023). In this
section, we present two approaches for fine-grained
image synthesis by either disentangling features
from existing images and then merging them in
new images, or by prompting a significative text
describing the output images.

4.2.1 Features Dissentanglement

Existing GANs such as InfoGAN (Chen et al,
2016), FineGAN (Singh et al, 2019), and MixN-
Match (Li et al, 2020c) can discover and dis-
entangle common features from existing input
latent vectors and apply them to the generated
synthetic output (More details in Appendix E).
For instance, based on FineGAN, MixNMatch
disentangles in a 2-stage approach, four factors:
background, object pose, object shape, and object
texture, with minimal supervision. In Figure 15,
we can see the combination of the KLT box tex-
ture, ground texture, and ground color features
in the generated output.Moreover, aside from
the hierarchical architectures, other researchers
adopted VAEs (Bao et al, 2017; Luhman and Luh-
man, 2023), GAN inversion (Song et al, 2023; Liu
et al, 2023), regularized the latent space’s spa-
tial organization (Chen et al, 2022b), or attention
mechanisms (Wang et al, 2021a; Cai et al, 2019).

4.2.2 Text-to-Image Synthesis

Text-to-image synthesis is another recent and
trendy approach to generating images with
detailed descriptions. It is a task in which a model
generates a visually realistic image based on a
given text description; it allows for capturing the
meaning of the text and converting it into an
image. It has many applications, such as computer
vision, natural language processing, and robotics.
One approach they mention is the IC-GAN+CLIP
(Radford et al, 2021; openai, 2022; Open Al,
2022), which uses the Contrastive Language-
Image Pre-Training (CLIP) method to generate
images based on text descriptions. CLIP is trained
on a large dataset of more than 400 million
image-text pairs scraped from the internet with
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Fig. 14 DALL.E 2 experimentation

text description® and can predict entire classes
of images it has not seen before, making it a
bridge between computer vision and natural lan-
guage processing. However, the authors note that
prompt engineering is necessary for better results
for each class. Similarly, StyleCLIP (Patashnik
et al, 2021) considers StyleGAN image generation
using the CLIP to modify the latent input vec-
tor. StyleCLIP suffered to reach visually diverse
datasets generation as in AFHQ wild and LSUN
Church datasets.

Another approach discussed is two-stage

SWIT400M dataset (Radford et al, 2021)

b. Forklift holding a stack of euro pallets

YN
TR

j. Tugger train, forklift, bicycle and trolly next to each
others

architecture-based GANs to generate high-
resolution, photo-realistic images from text
descriptions, such as StackGAN (Zhang et al,
2017a), StackGAN++ (Zhang et al, 2018a) and
AttnGAN (Xu et al, 2018). This architecture
is inspired by the process of a painter creating
a painting, with the first stage creating a low-
resolution image and the second stage refining it.
The authors note that this architecture mainly
analyzes complex text conditional descriptions to
generate the main target object, e.g., a bird with
a yellow crown and a black eye ring, a red bird
with a white and very short beak, etc. Still, much
research is needed in the area of complex-wide
scenes with multiple objects.
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In addition, authors in (Ye et al, 2021) propose
a contrastive learning approach to improve syn-
thetic images’ quality and semantic consistency
in text-to-image synthesis. They evaluate their
approach on two popular text-to-image synthesis
models, AttnGAN and DM-GAN (Zhu et al, 2019)
using COCO and CUB datasets, and find that
it significantly improves the quality of synthetic
images as measured by IS, FID, and R-precision.
Another work (Tao et al, 2022) proposes Deep
Fusion Generative Adversarial Networks (DF-
GAN) that are simpler but more effective for
synthesizing realistic and text-matching images.
They proposed a novel one-stage text-to-image
backbone that directly synthesizes high-resolution
images without entanglements between different
generators, a novel Target-Aware Discriminator
composed of MatchingAware Gradient Penalty
and One-Way Output, which enhances the text-
image semantic consistency without introducing
extra networks, a novel deep text-image fusion
block, which deepens the fusion process to make a
full fusion between text and visual features. The
approach followed previous work experimentation
strategies and was also tested on COCO and
CUB datasets.

Huang et al. introduced in (Huang et al, 2022)
the Product-of-Experts Generative Adversarial
Networks (PoE-GAN) framework, which can
synthesize images conditioned on multiple input
modalities or any subset of them, even the empty
set. It learns to synthesize images, as in MM-
CelebA-HQ and MS-COCO, with high quality
and diversity and outperforms the best existing
unimodal conditional image synthesis approaches
when tested in the unimodal setting.

Finally, Open AI researchers launched a trendy
and powerful transformer language model
DALL.E 2 (Ramesh et al, 2022), a successor of
DALL.E (Ramesh et al, 2021) with CLIP latent.
It considers attributes, style, and concepts while
interpreting the text prompt to generate photo-
realistic images. However, DALL.E releases are
out of the scope of our review because they are
based on VAE and diffusion technologies, respec-
tively.

Limitations: Still, image generation on CLIP
struggles to binding attributes leading to mixed
colors and realistic scale mismatches (check
Figure 14 b, h), producing details in complex

images as a big number of assets, or light condi-
tions in Figure 14 i, e respectively, and starting
to miss elements as in Figure 14 d, h, j. Plus, we
found that it widely covers industrial and logistic
assets (Figure 14 f). Instead, it produces high
asset variations in a small synthesized sample,
in terms of shape, size, color, etc. (Figure 14 a,
¢), but which may not answer targeted indus-
trial applications as detecting a specific tool
with predefined dimensions. Moreover, it did not
translate number and count prompts conditions
as in Figure 14 g.

However, in practice, the captions annotated by
humans for the same image can have a large
variance in terms of content and choice of words,
which can lead to synthetic images deviating
from the ground truth. This is due to the inabil-
ity of the model to generalize to unseen data,
as it has only been trained on a specific set of
captions and images. This can be particularly
problematic when working with datasets that are
not diverse or are limited in size. Furthermore, a
model trained on one dataset may not be able to
generalize well to new datasets with different cap-
tions and images. This limitation is an important
area of research in text-to-image synthesis, as it
is crucial for the model to be able to generate
high-quality images that are consistent with the
given text description.

StyleGAN-T is a text-to-image synthesis model
that aims to regain competitiveness for GANs
compared to diffusion models. The model, pro-
posed by Sauer et al. (Sauer et al, 2023), is
based on the StyleGAN-XL architecture and is
specifically designed to meet the requirements of
large-scale text-to-image synthesis such as large
capacity, stable training on diverse datasets,
strong text alignment, and controllable variation
vs. text alignment tradeoff. One key advantage
of StyleGAN-T over diffusion models is its fast
inference speed, as it only requires a single for-
ward pass, while diffusion models require iterative
evaluation to generate a single sample. Further-
more, StyleGAN-T also guarantees smooth latent
space interpolation. The architecture was trained
on a total of 250M text-image pairs from different
public datasets, at a resolution of 64x64 7, with

“Knwoing the ability of GANs to generate high-resolution
images, the authors prioritize their budget cost instead of
spending them on super-resolution stages. Still, it was less
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a budget of 4 weeks on 64 NVIDIA A100s. As a
result, StyleGAN-T outperformed current SOTA
diffusion models at a resolution of 64x64.
Limitations: At 256x256, while StyleGAN-T
improves upon the zero-shot FID previously
achieved by a GAN by half, it still falls behind the
SOTA diffusion models. Additionally, StyleGAN-
T wuses CLIP as part of the loss function
training®. Therefore, it sometimes inherits the
same limitations as previously mentioned above.

4.3 Summary

Table 1 provides an overview of GAN-based image
generation techniques previously discussed in the
literature. These techniques include those based
on various StyleGAN models, transfer learning,
conditional generation, training with both limited
and large-scale datasets, as well as fine-grained
feature disentanglement.

5 GANSs for Texture
Generation

While many texture classifications exist: highly
random, semi-structured, or regularly repeated
(Liu et al, 2002), non-parametric, or parametric
(Jetchev et al, 2016), isotropic, or anisotropic
(Shaham et al, 2019), artistic, shape, or natural
(Chen et al, 2022a), stationary, or globally-
variant (non-stationary) (Wei et al, 2009; Zhou
et al, 2018), etc. textures and surfaces occupy a
part of the industry, especially when detecting
materials, scratches, or even augmenting data or
implementing DR in the simulation to reduce the
sim-to-real gap. SOTA includes efficient texture
synthesis using DL and CNNs (Gatys et al, 2015a;
Ulyanov et al, 2016a; Li et al, 2017; Liu et al,
2020). However, adopting the traditional GAN
image generation architectures may collapse since
the input images are similar and lack diversity.
Although, randomly selected patches from the
same texture images are perceived to be similar

(Wei et al, 2009). Therefore, specific GANs can

costly than Stable Diffusion cost (Rombach et al, 2022; Com-
pVis, 2022)

8The use of strong CLIP guidance in the model can limit
the diversity of the generated images and introduces image
artifacts (Sauer et al, 2023)

be considered for procedural texturing® (Porte-
nier et al, 2020). Next, we will explore existing
GANs for texture generation.

Spatial GANSs: Inspired by DCGAN (Radford
et al, 2015). Jetchev et al. introduced Spatial
GAN (SGAN) as the first fully unsupervised tex-
ture synthesis method based on GAN (Jetchev
et al, 2016). It allows real-time, fast, and scalable
generation of high-resolution images and the abil-
ity to merge multiple source images to create new
textures. Additionally, it supports seamless tiled
texture'® generation.

Limitations: However, due to the strong mixing
characteristic of SGAN, it does not work effi-
ciently on all texture classes such as non-mixing
textures or statistical dependant patterns, e.g.,
chess grid pattern, aligned letters, etc. It will
fuse all input together. Also, it does not support
realistic texture morphing - a smooth transition
between two or more textures.

Afterward, the authors improved SGAN and pub-
lished a periodic SGAN (PSGAN) (Bergmann
et al, 2017) to generate periodic textures and to
blend between different textures creating new
ones. Still, aperiodic textures are not supported,
e.g., Penrose tiling, perspective projections, etc.
Limitations: Additionally, depending on Vanilla
GAN, SGAN, and PSGAN inherit the same GAN
problems as mode collapse, mode dropping, con-
vergence problems, etc. (Bergmann et al, 2017;
Alanov et al, 2019). Plus, the training is unsu-
pervised, and therefore the generation is random,
still similar to the training texture images, and
cannot be controlled to specific textures class
input or new unseen textures.

Implicit Periodic Field Network: Chen et
al. argues in (Chen et al, 2022a) that visual
pattern synthesis models are assessed based on
the generated samples’ authenticity, diversity,
and scalability. To align with these three char-
acteristics, the authors designed an Implicit

9A procedural texture is when an algorithm generates the
texture instead of relying on the time-consuming process
of photogrammetry or error-prone projection of the texture
mapping.

10 A tiled texture is, when repeated side-by-side with a copy
of itself, displays no visible seam or junction where the two
tiles meet.
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Code Mode Feature Mode

Fig. 15 MixNMatch with code and feature mode generation

Periodic Field Network (IPFN) as a combina-
tion of GAN and periodic encoding: It learns (1)
high-frequency details using Fourier encoding (2)
from different randomly shifted patches, and (3)
periodicity for modeling the observed stationary
variations from a single input training image.
Limitations: The authors developed their design
because most natural patterns are stationary or
bidirectional, without considering the synthesis of
radial, web, or spiral textures.

LocoGAN: Struski et al. used local learning
to train their convolutional GAN (LocoGAN)
models so it fits on different image size datasets
to generate infinite long images such as wall-
papers and panoramic images (Struski et al,
2022). Applying LocoGAN to texture synthesis,
the authors take a single high-resolution texture
image and crop it to equal patches to create a
new dataset out of it. Then the GAN generates
periodic parts. Each fragment is taken and can
be repeated many times.

Limitations: Despite the variety of the fragment
itself, the whole synthesized texture sample is
a set of repetitive “cloned” patterns; instead, it
would be better if the fragment was expanded.

Multi-Texture Synthesis: Alanove et al.
supports in (Alanov et al, 2019) multi-texture
conditional generation and force cover all textures’
latent representations in the training dataset by
using a loss function that penalizes all wrong
texture generations. Additionally, it can learn
texture manifolds from high-resolution images.
Limitations: It requires a well data pre-
processing and preparation to learn the manifolds.
In addition, some texture manifolds could be
unrealistic when they contain mixed patterns or
features.

TileGAN: Friistiick et al. were the first to
attempt in (Frithstiick et al, 2019) the problem
of combining seamlessly multiple input images
to generate a large-scale output image without
boundary artifacts. Considering synthesizing an
image with hundreds of megapixels, the proposed
approach excelled quickly in producing large-scale
maps from aerial images at different levels of
detail.

Texture Mixer: Yu et al. trained in (Yu et al,
2019) an autoencoder and a ¢cGAN to smoothly
interpolate between different textures to synthe-
size a user-controllable and visually real-looking
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Table 1 GAN-based image generation approaches (From top to bottom: general image generation, text-to-image
synthesis, and fine-grained generation approaches

Architecture

Advantages

Drawbacks

Dataset

StyleGAN
et al, 2019)
StyleGAN2 (Karras
et al, 2020b)

(Karras

Transfer  Learning
GAN (Karras et al,
2020a)

StyleGAN2-ADA
(Karras et al, 2020a)

StyleGAN3  (Karras
et al, 2021)

BigGAN
et al, 2018)

(Brock

StyleGAN-XL
(Sauer et al, 2022)

IC-GAN (Casanova
et al, 2021)

ccIC-GAN
(Casanova et al,
2021)

Generates similar image to the input training
dataset
Fixes StyleGAN generation’s artifacts

Necessities a small amount of training dataset

Necessities only thousands of training data as
input + Supports conditional-based generation

Solves StyleGAN2-ADA’s
and aliasing problems

“texture-sticking”

Supports class-conditional image generation
with extra model parameters and larger batch
sizes

Improved performance of StyleGAN3 on
unstructured and large datasets. A modular
framework that supports other GAN architec-
tures

Generates images similar to the input image’s
neighborhood in the latent space

Desentangles the class conditioned object-of-
interest in the image-conditioned environment

Produces droplet and phase artifacts

Necessities huge amount of training dataset as
input

Overfits and limits the learning of small distri-
bution shifts

Produces per-pixel noise, positional encodings
and aliasing

Unlinks local features positions from their
global features. Poorly performs on unstruc-
tured larger datasets as ImageNet

Leaks class features from one class to another

Models are three times larger than previous
StyleGAN models. Semantic controllability is
reduced for the sake of StyleGAN3’s equivari-
ance. Hence, it is hard to edit

Depends on the architecture backbone’s draw-
backs: StyleGAN2-ADA or BigGAN

Generates low-quality images - sometimes unre-
alistic - if the object of interest’s new pose is
not highly occurrent in the training dataset

FFHQ, LSUN (Bed-
room, Car, Cat)

FFHQ, LSUN (Car,
Cat, Church, Horse)

FFHQ, MetFaces,
BreCaHAD, AFHQ
(Cat, Dog, Wild),
CIFAR-10
MetFaces-U,
AFHQv2, FFHQ,
Beaches®
ImageNet, JFT-
300M°

ImageNet
ImageNet, COCO-
Stuff, Cityscapes,
MetFaces, PACS,
Sketches

Same as previous

IC-GAN+CLIP
(Meta Al 2021)

StyleGAN-T (Sauer
et al, 2023)

AttnGAN (Xu et al,
2018)

Generates images based on text description in
an environment similar to the image condi-
tioned environment
Outperform diffusion models at 64x64 resolu-
tion images. Fast inference and smooth latent
space interpolation.

Generates text-conditioned images similar to a
painting process (2 stages)

Requires prompt engineering and does not sat-
isfy a real industrial setting similar to our
proposed environment

It still falls behind diffusion models at 256x256
inference. Similar to DALL-E 2, STyleGAN-T
inherits CLIP’s limitations: attributes binding
issues, scale mismatches, missing details in com-
plex images, etc.

Focuses on modifying the object-of-interest,
contrary to the static industrial assets, and not
a whole complex multi-object scene

WIT400M

Union
CC,
Redcaps,
aesthetic-6+

of: CCl2m,
YFCC100m,
LAION-

CUB, COCO

InfoGAN (Chen
et al, 2016)
FineGAN (Singh
et al, 2019)

MixNMatch (Li et al,
2020c)

Disentangles common features between training
dataset subsets for feature generation maxi-
mization

Disentangles multiple features and combines
them in a new background

Disentangles simultaneously, and with minimal
supervision, four features from an image: back-
ground, pose, shape, and texture

Varies only common features in the training
dataset without considering multiple features
from new multiple images

Supports only latent code instead of images

Generates low-resolution images since it is
based on FineGAN architecture

MNIST, SVHN
house numbers,
CelebA, 3D chairs

CUB Birds, Stanford
Dogs, Stanford Cars
CUB Birds, Stanford
Dogs, Stanford Cars

“Self-collected, proprietary, 20,155 512x512 beach images provided by Getty Images
Internal Google dataset of 300M images dedicated for image classification tasks

single-output texture image. The interpolation
task is executed after projecting the textures in

the latent space.

Limitations: Training such a model requires a
large dataset of textures highlighting rich intra-
variability samples of each texture category.

Non-Stationary Texture Synthesis: Zhou
et al. proposed in (Zhou et al, 2018) a new self-
supervised GAN approach to expand by doubling
the size of, mainly, non-stationary texture images
while conserving and maintaining all visual char-
acteristics and natural appearance similarities to
the original exemplar. Stationary textures are
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Fig. 16 SinGAN generation for (from top to bottom) brick, metal, and wood textures: (a) Input (b) Generated output

also supported, including regular, near-regular,
and stochastic structures. The approach drops in
the field of image translation application rather
than the generation field since the GAN aims to
expand a random cropped texture block belong-
ing to the exemplar. Hence, the discriminator
distinguishes between the produced extension vs
the initial larger (doubled) block of the exemplar.
Moreover, iteratively repeating the expansion
cycle would lead to large-scale texture images.
Limitations: Existing models cannot generalize
to new unseen data; hence, every new exemplar
requires a dedicated generator to be trained.
According to (Liu et al, 2020), the training phase
is extremely slow - more than 6 hours using Tesla
V100 GPU. However, the authors argue that the
synthesis inference is extremely fast once the
training is done.

SinGAN: SinGAN (Shaham et al, 2019) is an
unconditional GAN trained on a single natural
image. It consists of a pyramid of patch-GANs
(Markovian discriminator) (Li and Wand, 2016;
Isola et al, 2017) where training and inference
are executed coarse-to-fine. The model collects

patch distributions and trains at different scales
of the complex image, capturing global properties
such as shapes in the image and fine details such
as texture information. Additionally, each GAN
has small receptive fields and a limited capacity,
preventing it from memorizing the whole single
image, but however, can generalize well to unseen
image inputs. Additionally, it is worth mention-
ing that Shaham et al. developed SinGAN to go
beyond texture generation.

Limitations: Nevertheless, after the examination
(check Figure 16) (tamarott, 2020; kligvasser,
2021), we found that only the image center dif-
fers from one generation to another. At the same
time, it conserves the borders that are always
similar to the initial image used for training. Liu
et al. argue in their transposed convolution filter
texture synthesis that SinGAN’s inference is slow
regarding a large number of textures (Liu et al,
2020). Yet, it reached competitive synthesis scores
compared to other texture generation approaches,
e.g., the previously mentioned non-stationary tex-
ture synthesis (Zhou et al, 2018). Although, Gu
et al. proposed a new improved SinGAN with less



Springer Nature 2021 ETEX template

Isotropic

Anisotropic

(@)

Fig. 17 GramGAN generation for (from top to bottom) granite (100,000 iterations), brick (139,000 iterations) and wood

textures (145,000 iterations): (a) Input (b) Generated output

training time and an additional attention mecha-
nism to increase image realism (Gu et al, 2021).

GramGAN: Unlike all the GANs mentioned
above, GramGAN (Portenier et al, 2020) is a
novel texture synthesis framework that aims to
generate infinite and high-quality textures given a
conditioned exemplar image of the target texture.
From one side, despite the importance of the style
loss function for anisotropic texture, e.g., wood,
solely optimizing the style loss function causes
artifacts as tiny replicas when zoomed-in (Mord-
vintsev et al, 2015). Conversely, the GAN loss is
more effective on isotropic textures like granite.
As a solution, Portenier et al. proposed a new loss
function combining both style transfer (Gatys
et al, 2015a) f = 1 and GANs (Goodfellow et al,
2014) o = 0.1 to learn noise frequencies and to
match Gram matrices so it generates highly real-
istic textures. A Gram matrix computes the style
loss and extracts/captures the style of an image
(Gatys et al, 2015b,a; Johnson et al, 2016; Gatys
et al, 2016b; Ulyanov et al, 2016a).

While training the model or generating an image,
it is essential to classify the texture as isotropic,
e.g., stones, granites, etc., or anisotropic, e.g.,
wood, brick, etc.: the sample considers random
slices while random rotations are restricted,
respectively. Therefore, the parameters must be
fine-tuned to satisfy a logical output (tportenier,
2020). However, in the proposed publication

(Portenier et al, 2020), we found great interest
in isotropic use cases over anisotropic considera-
tions. In the anisotropic use case, we remark that
the generated image shares common color distri-
bution, gradients, and outlines with the training
image. As displayed in Figure 17, the overall
result for the brick and wood textures does not
look the same as the training image, but both
images can be semantically related.
Limitations: The training is time-consuming
and necessitates many iterations (more than
100,000) for acceptable texture quality.

In Table 2, we summarize previously discussed
GAN-based texture-generation approaches. It
should be noted that some texture synthesis
approaches may not generalize to new unseen
data and require the training of a new dedicated
GAN model, making it a time-consuming pro-
cess. However, GramGAN effectively generates
isotropic textures, while SiInGAN is better suited
for anisotropic textures. Additionally, while most
texture synthesis methods may take a long time
to train, they are relatively fast for a generation.

6 GANs for Domain Transfer

In industrial environments, multiple sensors with
different functionalities and hardware configura-
tions are often used in the same production area
(Jacques and Christe, 2020), leading to various
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Table 2 Texture Generation Approaches’ Brief

Approach Advantages Drawbacks Dataset
SGAN (Jetchev et al, First fully unsupervised texture synthesis Inefficient for all texture classes (only: sta- Flower, Amsterdam
2016) GAN in high resolution including tiles tex-  tionary, ergodic and stochastic textures) and Barcelona’s

PSGAN (Bergmann
et al, 2017)

IPFN (Chen et al,
2022a)

LocoGAN
et al, 2022)

(Struski

Multi-Texture Syn-
thesis (Alanov et al,
2019)

TileGAN (Friihstiick
et al, 2019)

Texture Mixer (Yu
et al, 2019)

Non-stationary Tex-
ture Synthesis (Zhou
et al, 2018)

SinGAN
et al, 2019)

(Shaham

GramGAN (Porte-
nier et al, 2020)

tures

Supports periodic texture generation

Emphasizes local and stationary texture
generation

Variety of generated texture fragments
using single image high-resolution texture
image

Cover all dataset texture and generates
texture manifolds from high-resolution
images

Fast generation large-scale images from
multiple images at a different level of
detail

Smoothly interpolate different textures
with high realism and user-controllability

Expands by doubling non-stationary (and
stationary) texture images while main-
taining the natural appearance similarities
- Once the model is trained, the inference
is fast

Able to generalize even with a single image
input. Fast sampling (in terms of time,
less than a second). Efficient for both:
anisotropic and isotropic textures without
producing repetitive global structures
Infinite width and height texture genera-
tion

and does not support texture morphing

Ineffiecient for aperiodic textures. Suffers
from the same Vanilla GAN (dropping,
collapse, convergence) problems

Inefficient for radial pattern textures

Final “infinite” image consists of cloned
single-synthesized texture fragment

Requires well-prepared and processed
images before learning manifolds

Focusing on restoring large scale images,
such as maps, by bringing additional tex-
tures and details to it - Training could last
for days according to the authors’ imple-
mentation

Requires a rich intra-variability training
dataset which is hard to find online

Extremely time-consuming (more than 6
hours on Tesla V100 according to (Liu
et al, 2020))

Static fixed borders, and slow training
(around 45-50 minutes on Tesla V100, or
GTX 1060)

Time-consuming, necessites a lot of train-
ing iterations. Mostly efficient for isotropic
textures, e.g., stones, granite, etc.

Google Maps satel-
lite views®

Oxford Describable
Textures Dataset
(DTD), Facades,
Sydney Google Maps
satellite views, P6
and Merrigum House
collected  from  fur-
thermore Commons
DTD

self-developed
dataset

DTD

self-collected
datasets®

self-collected animal
and earth texture
datasets

DTD

BSD100

online
textures

self-collected
stone
dataset

“Self-collected snapshots from Google Maps at specific GPS coordinates

YThey collected terrain maps from Google Maps, satellite imagery from Landsat dataset (https://landsat.gsfc.nasa.gov/data/),
and thousands of tile samples from high-resolution art and sky images.

image qualities, resolutions, color ranges, settings,
and modalities''. This makes it difficult to train
adaptive models for each robot, as collecting and
labeling training datasets from different hardware
is time-consuming, costly, and repetitive. As a
solution, it is possible to transfer a perfectly col-
lected dataset from its original domain to another
application domain before training the model.
Additionally, each sensor modality introduces a

1A modality represents information in a specific medium
(Bernsen, 2008; Tzovaras, 2008)

different type of information, such as segmentation
images for autonomous driving tasks (Kaymak
and Ugar, 2019; Geyer et al, 2020), depth images
for depth estimation and 3D reconstruction tasks
(Song et al, 2017), or thermal images for visu-
alizing thermal distribution and outdoor security
surveillance (Hasan et al, 2019). Therefore, multi-
modality fusion (Magsood and Javed, 2020; Zhang
et al, 2018b) aims to collect multi-source infor-
mation for the same captured instance, extend
knowledge, and deeply understand the captured


https://landsat.gsfc.nasa.gov/data/
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scene. However, capturing a single image with dif-
ferent modalities simultaneously requires different
types of synchronized hardware or advanced image
processing and AI models, which can be expen-
sive, time-consuming, and confusing (Chen and
Jia, 2021; Petrovic and Cootes, 2006). As a solu-
tion, Image-to-Image (I2I) translations can map
different domains and transfer one image from
one domain, such as modality, into another (Pang
et al, 2021). This allows for a domain transfer
that can translate images captured by different
cameras to a single reference and trusted domain
with better predictions, thus reducing additional
training complexity. By using I2I translation and
multimodality fusion, it is possible to overcome
the challenges of variations in image quality and
modality and to improve the performance of mod-
els trained on industrial data.

In further experimentation and as a proof of
concept for some industrial Image-to-Image (12I)
translation applications, we focused on modern
and widely supported I2I architectures. However,
we distinguish between two-domain I2I and
multimodal I2I translations. Pang et al. have
divided the I2I methods into four categories in
(Pang et al, 2021)'2: Supervised, Unsupervised,
Semi-Supervised, and Few-Shot trainings. These
categories refer to the different levels of supervi-
sion provided during training. Supervised methods
require paired data, unsupervised methods do not
require any paired data, semi-supervised methods
require some paired data, and few-shot methods
require a small number of paired data.

6.1 Supervised Training

For a single-modal output, a source image is
mapped to a target image, generating a single
output. A robust supervised two-domain GAN
architecture for single-modal output generation is
Pix2Pix (Isola et al, 2017). Additionally, several
variants have been proposed to address its limi-
tations. For example, DRPAN includes a reviser
to address Pix2Pix’s blurry output. Wang et
al. proposed Pix2PixHD (Wang et al, 2018a) to
mitigate the instability and prone issues of the
previous version while considering high-resolution
images, and it supports image generation of up to

2For technical details, we recommend reading Pang et al.’s
review of I12I methods and applications (Pang et al, 2021)

2048x1024 pixels. However, all versions of Pix2Pix
fail to capture complex scenes, especially when
both domains have severe deformation and evident

different views. Other architectures, such as Selec-
tionGAN (Tang et al, 2019), SPADE (Park et al,
2019), CoCosNet (Zhang et al, 2020b), CoCos-
Netv2 (Zhou et al, 2021), etc., have been devel-
oped to deal with cross-view translation prob-
lems, optimize the computational cost, or improve
image quality. In technical terms, a single-modal

=

(@) (b)

Fig. 18 (a) One to (b) many translations as ground truth
paired data

output corresponds to a bijective function, that is,
a one-to-one mapping (Chen and Jia, 2021). Pre-
cisely, a source image is mapped to a unique target
image in a particular domain, such as translating a
plain color image into an instance segmentation or
depth image. However, the reverse translation is a
non-injective, surjective function, resulting in mul-
tiple possible outputs, referred to as multi-modal
outputs. For instance, as depicted in Figure 18,
a depth image is a grayscale image with a single
color channel, where each pixel has a single inte-
ger value ranging between 0 and 255. The higher
the value, the darker the color, the greater the dis-
tance. Consequently, all asset pixels are mapped to
black pixels, regardless of their specific attributes
after a certain distance threshold. In industrial
applications, translating a 2D plain color image
into a depth image for depth estimation is con-
sidered more critical than reconstructing a plain
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Plain Color (GT)

Plain Color Depth (GT)
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Fig. 19 Comparing domain transfer for colorization and depth estimation tasks using Pix2PixHD and CUT (200 epochs

and 1500 paired images: 3000 total images)

color image from a depth image, highlighting the
importance of single-modal output applications.
The multi-modal output approach enables data
augmentation by associating a single source image
with a distribution of different outputs in the tar-
get domain, i.e., one-to-many associations (Chen
and Jia, 2021) (cf. Figure 18), for example, col-
oring a single outline drawing with multiple com-
binations of colors, textures, light settings, and
backgrounds. Unlike the mode collapse problem
(Goodfellow, 2016; Durall et al, 2020; Mao et al,
2017), where multiple inputs are mapped to the

same generated image, some multi-domain trans-
lation architectures, such as BicycleGAN (Zhu
et al, 2017b), and PixeINN (Bansal et al, 2017),
address this issue by using GAN mode collapse
solutions and nearest neighbors approach respec-
tively, to generate multiple outputs for a single
input sample. Additionally, authors in (Denton
et al, 2017; Kim and Mnih, 2018; Chen et al,
2016; Gonzalez-Garcia et al, 2018) adopted disen-
tangled representations to generate different style
variations while preserving the content, thereby
avoiding unrealistic combinations.

Experimentation: In figures 19, 110 and 19, we
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demonstrate the translation of images from the
plain color domain to the depth domain and from
instance segmentation images back to plain color,
respectively. The models were trained using a
dataset from a single scenario in both a super-
vised manner (using Pix2PixHD) and an unsuper-
vised manner (using CUT as described in Section
6.2). Results show that supervised models out-
perform unsupervised ones compared to ground
truth images. In the Pix2PixHD depth transla-
tions, small blob artifacts and dark lines were
observed in high-detail areas, but the visual qual-
ity remains acceptable. For image colorization in
Figure 19, Pix2PixHD maintained the original col-
ors of the stillages while CUT, in most cases,
adopted the same pink color for all assets. Fur-
thermore, fewer details and more wavy lines were
noticed in the unsupervised translations.
Limitations: However, despite the advantage
of generating/translating complex scenes/modal-
ities, a supervised two-domain I2I translation
training necessitates a large number of paired
data: Each image in domain A (source domain)
must be associated with its corresponding image
in domain B (target domain). This makes acquir-
ing a supervised paired training dataset challeng-
ing and prone to human errors, as it requires
a deep understanding and association of images
from different domains (Chen and Jia, 2021). In
contrast, unsupervised I2I only requires a larger
dataset for each domain (Mustafa and Mantiuk,
2020), making it a broader and more robust
branch of scientific research, particularly when
creating mapping relationships between different
domains while preserving high-quality and realis-
tic translated images.

6.2 Unsupervised Training

In recent years, various methods have been pro-
posed to address the lack of supervised paired
data in image-to-image translation tasks. These
include DualGAN (Yi et al, 2017), DiscoGAN
(Kim et al, 2017), CycleGAN (Zhu et al, 2017a),
UNIT (Liu et al, 2017), SCAN (Li et al, 2018), and
U-GAT-IT (Kim et al, 2019b), among others. One
common approach used in these methods is the
cycle-consistency constraint, which involves
translating an image x from a source domain A
to a target domain B (x4 — xp) and vice versa
(rtp — x4), and then comparing the original

source image x4 to its reconstruction from the
target domain zapa (i.e., x4 — xp — x4) (Zhu
et al, 2017a; Chu et al, 2017).

Limitations: However, this constraint is inef-
ficient when both domains are heterogeneous!s.
This is because the cyclic loss forces the model to
generate in the translated image all the informa-
tion present in the source image, e.g., keeping the
beard in male-to-female face translations, which
can lead to the preservation of irrelevant textures
or the inability to remove or change large objects
or shape (Zhao et al, 2020c).

As a solution, researchers in the field of 121
have proposed various architectures to overcome
the limitations of the cycle-consistency con-
straint, which can be inefficient when dealing
with heterogeneous domains. These architectures
focus on maximizing the common features, infor-
mation, and semantics between the source and
target images: One approach is to modify the dis-
criminator based on semantic segmentations, as
proposed in GANimorph (Gokaslan et al, 2018).
Another approach is to use a Siamese network to
compare image similarities between both domain
images, as proposed in TraVeLGAN (Amodio
and Krishnaswamy, 2019). TransGaGa (Wu et al,
2019) disentangles domains into a Cartesian prod-
uct, while ACL-GAN (Zhao et al, 2020c) replaces
the cyclic loss function with an adversarial-
consistency loss. Other architectures have focused
on translations beyond the cycle-consistency
constraint. These architectures take advantage
of (i) insusceptible semantic information towards
geometric transformations (Fu et al, 2019), (ii)
equal distance between two source images and
their translation images (Benaim and Wolf, 2017),
(ili) self-similarity to represent a scene structure
(Zheng et al, 2021), or (iv) contrastive learning to
ensure a one-side translation process (Park et al,
2020a). Examples of these architectures include
GcGAN, DistanceGAN, F-LSeSim, and CUT,
respectively.

Unlike CycleGAN, CUT (Park et al, 2020a)
does not use hand-crafted loss or inverse network.
In addition to adversarial learning, CUT imple-
ments a contrastive learning-based framework to

13Cyclic loss best practices are manifested in small domain
gaps: horses to zebras, summer to winter, etc.
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Fig. 20 Domain transfer from industrial (Domain A) to
office (Domain B) environment assets (245 epochs and
approx. 10,000 unpaired images: 20,000 total images)

maximize the mutual information between input
(source) and output (target) domains (taesungp,
2020). “Contrastive learning is a popular form of
self-supervised learning that encourages augmen-
tations (views) of the same input to have more
similar representations compared to augmenta-
tions of different inputs” (Saunshi et al, 2022).
Taken two images from both domains, i.e., input
and output, CUT considers the following: a pair
of (1) positive pair (z,z"), and (2) negative pairs
(2,27 ), where z refers to an output patch, 2T a
similar patch to z in the input image and shar-
ing common features at a same similar location:
edge, shape, pattern, etc., and z; are different
patches from other locations of the input image.
Afterward, CUT maximizes the cosine similarity
of the positive pair while minimizing it between
the negative pairs. This approach allows for faster
model training and lower memory consumption,

Simulation —> Real

Fig. 21 Simulation-to-Real translation using CUT

and has been shown to produce impressive results,
such as translating images of pink KLT boxes in
an industrial setting into cardboard boxes in an
office environment (Figure 20), or to reduce the
simulation-to-real gap and transferring rendered
images into a realistic domain (Figure 21).
Limitations: However, it should be noted that
CUT is only a one-sided I2I model. Furthermore,
authors in (Junyanz, 2017) note that both domain
datasets must share common visual content. Oth-
erwise, it fails on random combinations.
Additionally, since the contrastive loss uses inter-
nal patches of the same image, the CUT model
can be extended to single-image training, where a
single image represents each domain. Additional
details are provided in the next section.

Yet, SOTA approaches for I2I translation
have focused on transferring the whole style
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of the source image without considering fine
or local object translations. Several approaches
have been proposed for fine-grained object
translations to address this limitation. These
include approaches which (i) only translate seg-
mented objects while keeping other regions, such
as backgrounds, intact (Mo et al, 2018), (ii)
attention GANs and attention-guided 121 meth-
ods which focus on individual objects (Chen
et al, 2018; Alami Mejjati et al, 2018), and
(iii) instance-aware 12I approaches for fine-grained
local instance manipulation (Shen et al, 2019).
Additionally, many researchers have extended the
CycleGAN from one-to-one mapping to one-to-
many or many-to-many mappings for multi-modal
outputs (Kazemi et al, 2018; Almahairi et al,
2018). Furthermore, disentangled representations
have been proposed as a solution for multiple gen-
erations (Lin et al, 2018; Huang et al, 2018; Lee
et al, 2018; Ma et al, 2018a). Finally, other stud-
ies have used mode collapse solutions to generate
more diverse image translations (Mao et al, 2019).
Limitations: However, Chang et al. have pointed
out in (Chang et al, 2020) that disentangling the
representation of a domain-invariant content space
breaks the relationship between the image content

and style.

Content Image (Input) Style Image (Input) Stylized Image (Output)
Domain A Domain B Domain B

Training

B

Inference

Good Results Bad Results

~
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Fig. 22 SinCUT: Transfering KLT Box into Cardboard
Box (90 epochs, 35 hrs approx.)

6.3 Semi-Supervised and Few-Shot
Trainings

Collecting a large training dataset in industries is
a difficult task. However, the literature includes
several approaches for training I2I translation
models with limited labeled data or even a few
training images. For example, Mustafa et al. intro-
duced the concept of transformation consistency
regularization (TCR) in (Mustafa and Mantiuk,
2020) and used it to train image colorization,
image denoising, and image super-resolution mod-
els with only 10% labeled data as a form of
semi-supervised training. Additionally, trans-
fer learning and domain adaptation techniques,
such as Transferring GAN (Wang et al, 2018c)
and MT-GAN (Lin et al, 2019), and EWC (Li
et al, 2020d), can also be used to train I2I trans-
lation models with limited data, by leveraging
pre-trained models that were trained on a large
source domain to target domain dataset.

Another approach is one-shot I2I, which is an
extreme form of few-shot I2I, where a model is
trained using only one source image and a set of
target domain images, such as OST (Benaim and
Wolf, 2018) and BiOST (Cohen and Wolf, 2019)
that are based on weight sharing strategy with
selective backpropagation, and feature-cycle con-
sistency respectively or (ii) two unpaired images
for two domains, e.g., TWiGAN (Lin et al, 2020)
that is based on progressive translation technics
or SinCUT (Park et al, 2020a), an extension of
the pre-mentioned CUT architecture as shown in
Figure 22. These approaches are useful for train-
ing models using hardware on a budget or simple
GPUs. Moreover, to achieve good results with Sin-
CUT, the author recommends the following on his
official CUT GitHub repository (taesungp, 2020):

1. “It’s very important that the target referemce
image has a similar structure as the source.
Choosing a suitable target reference image
might be a nontrivial problem.” Because, Sin-
CUT is not able to extract general knowledge of
a domain that is represented by a single image.
- Issue #9

2. Patience is needed. The training requires some
hours. - Issue #51

3. Adopting lower resolution images is a solution
to avoid CUDA out of memory problems. -
Issue #125
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Table 3 GAN Image Translation Approaches’ Brief

I21 Approach Advantages Drawbacks Datasets
Supervised Translates complex scenes. Requires hard data acquisition Cityscapes, CMP Facades, Google
Supports multimodality out- and pre-processing to pair data Maps Scrapped Images®, Zappos

Unsupervised — with
Cyclic Loss

Unsupervised with-
out Cyclic Loss

Unsupervised Fine-
grained

Semi-supervised &
few-shot

puts by adopting collapse mode
solutions and features disen-
tanglement

Translates images without any
supervised paired data. A bidi-
rectional translation can be
supported.

Translates images between 2
domains with significant gaps,
e.g., shapes

fine-grained
impacting

Translates local
object  without
global coarse objects

Requires fewer data, labels, and
hardware

from different domains

Best performs with small and
simple changes between both
domains. Requires a larger
dataset

Translates into the global style
target domain without consid-
ering fine-grained features and
local information

Additional information e.g. seg-
mentations might be needed
to ensure a fine-grained object
translation

Less accurate than previous
training. For better perfor-
mance, single-image domains
must satisfy special conditions.

shoes, edge2shoes, edge2handbags,
NYU Indoor RGBD, ADE20K,
Helen Face, night2day, Oxford-IIIT
Pet dataset, Deepfashion (HD),
Dayton, CVUSA, Surround Vehi-
cle Awareness (SVA), Ego2Top,
Radboud Faces, NTU Hand Digit,
Senz3D, Market-1501

Photo-sketch, Day2Night, Facades,
Aerial-maps®, Fidler’'s 3D Cars®,

Facescrub, CelebA¢,  Cityscapes,
Maps2Aerial, Edges2Shoes,
Horse2Zebra, Apple20range,

Summer2Winter in Yosemite, Paint-
ing2Photos (Monet, Cezanne, Van
Gogh, Ukiyo-e), SYNTHIA®, Ima-

geNet/, iPhone2DSLR  Flower,
Selfie2Anime

CelebA, Selfie2 Anime,
Cat2Human, Human2Dog,
Giraffe2Horse, Cheetah2Cow,
Lion2Rhino, Bear2Wolf,
Horse2Zebra, SVHN;, MNIST,

Car2HumanHead, Edges2Shoes,
Blond2Black hair, Male2Female?,
Handbags2Shoes

CCP, MS COCO, MHP, Photo-
graph2Portrait, Cat2Dog", Facades,
Summer2Winter, CUB, Streetscape,

Lion2Tiger

Places, BSD, LSUN, Ima-
geNet, CelebA, Flowers, LFW,
Artistic-Faces, MNIST, SVHN,

Paintings2Photo, AFHQ

“Zhou et al. argues in https://bland.website/city2city/final_report.pdf that using images specifically and uniquely related to
a defined area, such as Paris StreetView, is superior to using randomly selected images, like those found in Google Street View
Images, for a City2City translation.

bself-captured from Google Maps: https://github.com/duxingren14/Dual GAN

‘DiscoGAN used rendered images of 3D Cars (https://www.cs.utoronto.ca/~fidler/projects/CAD.html) and 3D Faces dataset
from Paysan et al. (Paysan et al, 2009): https://github.com/SKTBrain/DiscoGAN

1t is used for gender translation, or to add attributes such as blond hair, smiling, eyeglasses, etc.

“Used with Cityscape for Sim2Real translation

JTranslation between different dog breeds, cat breeds, etc.

9a lower domain gap indeed exists compared to other experimentation datasets, but the problem remains in preserving the source

image identity after style translation (Chang et al, 2020).

"Such datasets can be used in both translation directions, e.g., Dog2Cat as well (Chang et al, 2020)

As shown in Figure 22, we trained a model for
90 epochs, with 100,000 iterations per each epoch.

the camera angle was different, the KL'T box shape
was still recognizable but had a different texture.

The training process took 35 hours on a 24 GB

NVIDIA GeForce RTX 3090 GPU. Upon testing

6.4 Multi-domain I2I Translations

the model, we observed that the quality of the

images improved when they shared the same cam-
era angle as the training image. However, when

From another perspective, many researchers focus
on multi-domain I2I translations, which involve


https://bland.website/city2city/final_report.pdf
https://github.com/duxingren14/DualGAN
https://www.cs.utoronto.ca/~fidler/projects/CAD.html
https://github.com/SKTBrain/DiscoGAN
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a single unified network that handles many-to-
many relationships between different domains,
such as a single complex dataset with multiple
subclasses. This approach eliminates the need to
train n X (n—1) two-domain I2I models to achieve
the same goal, reducing maintenance complexity
and saving time and memory. Similarly to pre-
vious taxonomies, multi-domain 121 architectures
offer unsupervised, semi-supervised, and few-shot
training methods, as highlighted in (Chen and Jia,
2021). One example of this is StarGAN, which
builds on top of CycleGAN and is considered one
of the most classic methods for multi-domain 121
translations (Choi et al, 2018). However, other
architectures share the same mindset but are
beyond the scope of this review. For more infor-
mation, we recommend reviewing (Pang et al,
2021).

6.5 Summary

In Table 3, we review GAN-based I2I trans-
lation learning taxonomies, including super-
vised, unsupervised, semi-supervised, and few-
shot approaches. In general, it can be concluded
that each taxonomy excels in specific conditions
and constraints.

7 Other 121 Applications

In this section, we project notable 121 applications
in the industrial area, such as image de-filtering,
image expansion, and super-resolution.

7.1 Image De-Filtering and Artifact
Reduction

121 translation includes image de-filtering appli-
cations such as deblurring images. We consider
multiple blurring filters. For instance, motion blur
is one essential and famous image blur effect. It is
manifested when the cameral? or the target asset
is moving. Kupyn et al. introduced DeblurGAN
as a solution to restore images. The conditional
WGAN inspires the architecture with a gradient
penalty and a perceptual loss. Such architecture
is heavily adopted in other 121 translations as col-
orization, inpainting, dehazing, etc. However, the

14E.g. the camera can be set on a transport robot or a
moving robot arm

Motion Blur

Before

After

& I |
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e~
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Fig. 23 Image deblurring, saturating, dehazing, and
denoising

training necessitates a supervised paired dataset
where the source and target domain contains
blurred and sharp images. For our experimenta-
tions, we imitated the output of some camera-
defected shots such as motion blur for a moving
camera, desaturation as a camera with a defected
or old sensor, foggy and hazy environments with
water steam or smoke (Zhang et al, 2017b), and
noises and blobs as a dirty lens. Processed and
restored images are displayed in Figures 23 and
111.

This architecture performs fascinatingly as long
as the training dataset is adaptive and specialized
to a single type of filter, e.g., motion blur exclu-
sively or Gaussian blur. Consequently, integrating
de-filtering models in the inference phase before
robot actions can increase the prediction precision
and optimizes a robot’s decision-making behavior.
Additionally, GAN I2I applications were proposed
in hybrid with traditional reduction methods to
efficiently reduce visual artifacts such as metal
artifacts in medical captures (Gomi et al, 2021),
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or saturation artifacts caused by reflective surfaces
(Liu et al, 2021).

7.2 Image Expansion

Original Masked Boundless

[ 9%

Fig. 24 Image expansion using Boundless

Some of the aforementioned GAN architec-
tures downscale the training images multiple times
by a factor of two, e.g., 128 x 128, 256 x 256,
512 x 512, etc. For this reason, (1) the training
dataset is usually cropped, resized, contracted, or
stretched, and this leads to data loss or distortion.
This impacts the generated data, necessitating a
post-processing phase for restoring and adjusting
data. (2) Other suggestions depend on padding
images with equidistant black filling on the top-
bottom and left-right of the image to reach an
image shape divisible by two multiple times. Nev-
ertheless, the GAN learns about the border, and
the generated square images are also subject to
post-processing.

Image inpainting is a solution for processing train-
ing and generated images. Any training or gen-
erated image is subject to extrapolation (1) to

satisfy the square shape training dataset process-
ing instead of distorting the initial image or adding
random color padding (2) to provide a generated
dataset with a rectangular shape, respectively.
However, applying image inpainting can be chal-
lenging, especially since existing SOTA techniques
inpaints (1) blurry or (2) repetitive pixels. As a
solution, GAN-based image inpainting surpasses
the inconsistent semantic filling and shows impres-
sive and promising results as in (Wang et al, 2019).
Similarly, Teterwak et al. propose in (Teterwak
et al, 2019) boundless GAN for image extension
but with semantic conditioning to the discrimina-
tor. Internally, Boundless takes a square image;
it masks some portions and tries to complete the
masked part. E.g., to extend an image of [ x w
dimension with 2% in width, it is possible to (1)
crop | — (z x w) from the desired edge, (2) col-
lage it with a & x w rectangle mask of the same
length, (3) infer using the pre-trained model and
finally (4) add the expanded part to the original
image. As output, we found that BoundlessGAN
in Figures 24 and 112 did not only expand images
by expanding a ground or a wall texture, but
also it created new assets in the background and
learned asset shapes and compositions, e.g., no
matter of the perspective and camera angle, it
recovered a cropped STR with the proper dimen-
sion and generated its black LIDAR sensor in the
correct position as well.

7.3 Super Resolution

Most GANs generate square images with a scale
to the base of two but are limited to a maximum
of 1024 px. For complex scene images with hun-
dreds of assets, fine details assets, or small-size
components, GAN cannot present such details.
Therefore, cropping input images into sub-images
is a possible solution to reduce scene complex-
ity. In this case, super-resolution (SR) increases
(1) the original dataset resolution before prepro-
cessing, e.g., cropping, sampling, etc., or before
training for better-generated image quality, or (2)
the output quality immediately for faster training
and generation, and sharper details.

In SR, the GAN’s discriminator distinguishes
the generator’s SR images as real high-resolution
images or artificial ones (Li et al, 2021). SRGAN
is the first GAN implementation for SR. It sup-
ports scaling images by four (Li et al, 2020a).
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SRGAN applies multiple loss functions: (1) MSE
loss for pixel similarity, (2) perceptual loss based
on VGG, a deep CNN network to capture image
features at different scales to obtain details, and
(3) standard GAN adversarial loss (Ledig et al,
2017). In addition, The “peak signal-to-noise ratio
(PSNR)” is a pixel-based metric that expresses the
ratio between the maximum signal value and the
noise distortion power. The PSNR loss function
is widely used for construction quality evaluation.
Therefore, the higher the PSNR is, the better the
image quality is (Johnson, 2006; Li et al, 2021):

L2

1 N . 2. 2
N izt (I (i) — IU))

(1)
where L is the maximum pixel value, N is the
number of pixels, I and I are the GT and recon-
structed image respectively.

PSNR =10 x logy,

However, when applied in SR GAN-based meth-
ods, SOTA experimentation presents a significant
opposite interpretation for the PSNR value. Con-
trary to the SR CNN-based methods, researchers
noticed that the PSNR and the perceptual image
quality are inversely proportional: a higher PSNR
results in a smoother image; therefore, a lack of
realism in details (Li et al, 2020a, 2021; Anwar
et al, 2020). It does not consider any structural
information in the images. This emphasizes the
use of perceptual loss as an alternative.

Researchers successfully continue optimizing
SRGAN in all following released GAN-based SR
methods. For instance, (1) SRFeat (Park et al,
2018) proposes two discriminative networks for
image and feature domains to generate real
texture (high frequency) information instead of
noise artifacts. Moreover, the authors tested their
framework to upscale by four times 74 x 74 Ima-
geNet dataset (Anwar et al, 2020). Yet, for optimal
performance, feature GAN and perceptual sim-
ilarity losses’ layer should change depending on
the image content (Park et al, 2018). (2) Cycle-in-
Cycle, i.e., CinCGAN (Yuan et al, 2018), is based
on the cyclic loss and implements 2 CycleGANs:
the first network transfers a low resolution (LR)
image into a clean: no blur and no noise, space
domain. Afterward, the second network consists

of a pre-trained SR model, and it upsamples the
clean LR to a high-resolution (HR) image (Wang
et al, 2020c), (3) ESRGAN (Wang et al, 2018b)
improves SRGAN’s network by enforcing resid-
ual learning and adding dense blocks between
the input and the output. Moreover, ESRGAN
improves adversarial and perceived loss functions
and the discriminator network to remove unpleas-
ant artifacts and learn better texture and sharper
edges, respectively, and (4) Real-ESRGAN (Wang
et al, 2021b) replaces ESRGAN’s VGG-style
discriminator with U-NET structure to stabilize
the training. It also presents a “higher-order”
degradation model to overcome common ringing
and overshoot artifacts and restore better texture
details: LR data generation consists of 2 degra-
dation orders, including blurring, downsampling,
resizing, noising, and JPEG compression. A 2D
sinc filter follows the second order to synthesize
common ringing and overshoot artifacts, as shown
in Figure 27. Real-ESRGAN is trained with
only synthetic data and restores most real-world
images with better visuals. Additionally, Wang
et al. marked Real-ESRGAN+'% model, which is
trained on sharp GT images. The authors found
that sharpening ground-truth training images
balances a better sharpness and a lower overshoot
artifact. Great restoration details are presented in
Figure 25 below. We noticed the high fidelity on
several levels, as the texture, geometric shapes,
edges, the stillage’s delicate wires, etc.

Yet, limitations persist when restoring some text,
barcodes, labels, or human face images. In Figure
26, we tried to upscale text and barcodes at
different sizes. However, it was not as efficient
for the shapes and textures. Additionally, Wang
et al. extended current ESRGAN architecture to
support up to x4 scale, including. x1 and x2.
Yet more research is needed to support higher
scales or specify the optimal scale ratio.

However, the inference model is functional for
higher scales. But, in this case, we noticed that
iteratively inferring a model achieves sharper,
cleaner, and better quality HR images than infer-
ring it at once. For instance, Real ESRGAN _x4plus
(xinntao, 2021) is trained on x4 downscaled
dataset. Therefore, for an upscale of 16, inferring

15The ‘4’ sign normally denotes that model results are
improved (Li et al, 2021).
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the model twice with its default settings is more
optimal than inferring it once with a 16 upscale
(check Figure 28). Although, it is possible to
face a CUDA memory allocation problem while
iteratively upscaling an image because the input
image is successively turning bigger in byte size.
As a solution, Real-ESRGAN suggests cropping
the input image into several tiles so that each tile
is processed separately. Afterward, all tiles are
stitched together.

We compared different GAN-base SR technics in
Table H5 for additional information.

8 GAN Failure Modes &
Evaluation

In this section, we list some of GANs most essen-
tial failure modes, and evaluation metrics.

8.1 Failure Modes

Training GAN is problematic because, basically, it
is about training both the generator and the dis-
criminator in a zero-sum game. This means that
the improvement to one model could come at the
expense of the other model. However, monitor-
ing the training loss functions is insufficient to
assess a GAN performance. More details are in the
next Section 8.2. Thus, GAN failures do not result
only during the training phase as mode collapse,

Fig. 25 Real-ESRGAN+ x4 upscaling (Zoom in for best view)

Original

training divergence, or class leakage. But in the
generated image quality, even if the training was
“quantitatively” successfully stable, e.g., image
artifacts, they are mainly caused by bad signal
processing, in other terms, the GAN architecture
itself. Although GAN relies on two neural net-
works (NN), traditional problems may still occur
as the vanishing gradient or training overfitting.

8.1.1 GAN-related failures

® Mode collapse: i.e. catastrophic collapse, or
the Helvetica scenario. In fact, the generator
always seeks a single output that looks the
most plausible for the discriminator. GAN’s
generator may be stuck in a local minimum,
which always produces the same plausible out-
put image for any latent vector input. In its
turn, if the discriminator also gets stuck in
a local minimum, it will not reject the same
generated image (Google Developers, 2022). At
this moment, the GAN is in total or partial'®
mode collapse, and it omits all or portions of
the target instances and distributions, respec-
tively (Bau et al, 2019). The mode collapse
can occur in two forms: intra-class or inter-
class mode collapse, where GAN produces the
same image for a single class or all the classes

16G AN may succeed in generating some classes while it fails
in covering all samples for other classes.
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Reference

Zoomed in

Original

Real-ESRGAN (x4)

Original Real-ESRGAN (x4)

Fig. 26 Real-ESRGAN+ x4 upscaling for text and barcodes (Zoom in for best view)

respectively (Saad et al, 2022) (check Figure
11). In fact, conditional GAN is more vulnera-
ble to mode collapse (especially intra-class mode
collapse) (Boulahbal et al, 2021) and degrades
faster than unconditional training because the
training dataset diversity is often divided over
all classes, resulting in a lack of intra-class vari-
ation with limited changes in a limited size
dataset. Taken together, it may lead to mode
collapse (Shahbazi et al, 2022). The possible
attempts to remedy consist of adopting dif-
ferent loss functions for both GAN networks
(Google Developers, 2022), or reducing the
learning rate. Moreover, Shahbazi et al. sug-
gested in (Shahbazi et al, 2022) a new training
strategy for cGANs by starting with uncondi-
tional GAN training and gradually leveraging
the training by injecting class conditioning into
the generator and the objective function. On

another side, the training dataset is the leading
player in GAN training. Therefore, we present
more details concerning dataset manipulation in
Section 4.1.2.

Convergence failure / Training diver-
gence: A GAN does not reach an utopian stable
convergence state. Instead, it is often fleeting,
as shown in figure 29. Indeed, when the gener-
ator perfectly succeeds, the discriminator has a
50% accuracy, i.e., it “flips a coin” to make its
prediction. After this point, the discriminator
feedback becomes less meaningful over time. If
we continue our GAN training, the discrimina-
tor will end by returning random junk feedback
affecting the generator performance negatively,
and its quality may collapse (check Figure 13)
(Google Developers, 2022).

Replicas generation: It is a pattern of a
repetitive set of pixels. It is prominent in
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(c1) (c2) (c3)

Fig. 27 (a) Initial image (b) Unsharp Mask (sinc): Overshoot is the first step of the ring where it is the most accentuated.
Afterward the signal overcorrects itself and is below the target signal. The phenomenon is oscillative, leading to ringing
artifacts (fainted ring) (c1) Sharp filter causing the first overshoot ring (c2) Second sharp filter causing a second overshoot
ring (c3) Third sharp filter leading to a third overshoot ring Zoom in for best view

single-image training or while expanding images
(check GramGAN in Section 5).

® Mode connecting: It refers to the difficulty
of the generator in producing a wide range
of output images that cover the entire target
distribution. Especially when the data distri-
bution is supported on a set of disconnected
data manifolds in a very high dimension space.
Therefore, the generator - a continuous function
- may either discard some of the data mani-
folds (a form of mode collapse) or try to connect
the manifolds (the mode connecting problem)
(Armandpour et al, 2021).

e Class leakage: It is when the generated image
inherits from different class features and styles,
resulting in a newly created mixed object as
shown in Figure 8. This occurs when the model
is partially trained (Brock et al, 2018). Fur-
thermore, it was noticed in some unconditional
generated images where the discriminator suf-
fers from a lack of conditionality (Boulahbal
et al, 2021) (check Section 4.1.2). This failure is
mainly perceived at the inference level.

8.1.2 NN-related failures

They can usually be detected while monitoring the
networks’ loss functions:

® Vanishing gradient: Authors in (Arjovsky
and Bottou, 2017) suggest that if the discrim-
inator is too confident, the generator may fail
due to vanishing gradients. Vanishing gradi-
ent “refers to the fact that in a feedforward
network (FFN), the backpropagated error sig-
nal typically decreases (or increases) exponen-
tially as a function of the distance from the
final layer” (Sussillo and Abbott, 2014). Hence,
proper information cannot propagate from the
output end to the layers near the input end.
Therefore, this problem limits the development
of GAN’s generator network, resulting in GAN
instability. Possible solutions rely on consider-
ing a Wasserstein loss function or a modified
minimax loss. Although, an optimal discrimi-
nator does not provide all information for the
generator for its progress.

¢ Exploding gradient: Opposite to the van-
ishing gradient problem, and may cause GAN
instability and therefore to a mode collapse (Tao
and Wang, 2020).

® Training overfitting: As previously men-
tioned, the learning process of GAN models
alternately trains the generator and discrimi-
nator successively. However, when the discrimi-
nator excessively depends on the training data,
the generator generates synthetic images that
appear similar to the learning images. This is
what we call “GAN overfitting” problems. At
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Original Real-ESRGAN+ (x4) Real-ESRGAN+ (x4x4)  Real-ESRGAN+ (x16)

Fig. 28 Iterative Rea-l ESRGAN+ X 16 upscaling (Zoom in for best view)

4 8.1.3 Image Artifact

Early
Stopping\‘

They are all perceived at the inference level.
Authors proposed an Artifact Index algorithm
to detect specific “physically-defined” artifacts
(Wang et al, 2013; Gomi et al, 2021). From
another side, other authors suggested detecting
these artifacts from the frequency spectrum of
GAN Training  Fleeting Phase Diverggnce Mode Collapse the generated images (Dong et al, 2022; Zha‘ng
et al, 2019Db).

However, we can return their causes either to
Training lteration the adversarial training where the generator adds
some additional noise or features to fill a gap and
fool the discriminator, or the adopted generation
method when synthesizing the image.

Generated Image Quality

v

Fig. 29 GAN life cycle

this point, the GAN loses its meaning of data
augmentation (Kim and Park, 2022). Adversarial training based artifacts:

® Noise artifact: It appears as high random
noise in synthetically upscaled images. It is
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because real high-resolution image contains
high-frequency information and details, con-
trary to super-resolution generated images.
Therefore, the generator fools the discriminator
by adding random high-frequency noise (Park
et al, 2018).

Saturation artifact: It results in high satu-
rated generated images. As explained in Big-
GAN (Brock et al, 2018), truncating the
latent space by re-sampling values above a cer-
tain threshold to zero provides a boost for
Fréchet Inception Distance (FID) and Inception
Score (IS) evaluation scores. Still, it degrades
large models’ generation quality by increasing
the saturation channel. High-saturated images
could lead to inaccurate color-based detection
and decision-making.

Generation-based artifacts:

Aliasing artifact: One of the main visual
symptoms of an aliasing artifact is the visual
stair-stepping that occurs on the edges, as
shown in Figure 10. It is caused because of
careless signal processing while sampling. Kar-
ras et al. addressed the aliasing problem in
StyleGAN3 (Karras et al, 2021).

Texture sticking artifact: GAN does not
hierarchically synthetize images. Thus, coarse
features control finer detail features: Textures
statically stick to the same coordinate and
do not move with the corresponding objects.
So, unwanted texture information (static layer)
overlays the wrong object’s details (dynamic
layer) (Karras et al, 2021).

Water-droplet artifact: It is a droplet-like
shape with a blurry texture and occurs in dif-
ferent locations in the generated image. It was
found that this noise originates from 64 x64 fea-
ture maps and propagates into the output image
(Karras et al, 2019). This issue was taken care of
in StyleGAN2 (Karras et al, 2020b) by replacing
the Adaptive Instance Normalization (AdalN)
with estimated statistics (check Section D.2).
Phase “mismapping” artifact: It shows
mismapping local fine-grain features to the
global features. However, “motion” is the most
common cause of placing data in the incor-
rect location during data collection. Karras
et al. attribute phase artifact to the progres-
sive nature of their StyleGAN (Karras et al,

2019, 2020b,a, 2021). High-frequency feature
maps are collected and generated over each pro-
gression in the middle layers, leading to shift
invariance.

Texture blobs artifact: It consists of a shape-
less, contiguous, or amorphous vague shape
while preserving the right realistic texture or
color. In other terms, it is a collection that
lacks a definite shape. This was observed when
the intended generation condition was not well
covered in the training set (Brock et al, 2018)
(check BigGAN in Section 4.1.1). Additionally,
it could be an issue with the GAN architecture,
e.g., DCGAN and modified-DCGAN, that can-
not, support a large dataset with a big number
of object classes (Salimans et al, 2016).
“Local” checkerboard artifact: It is due to
the generation method rather than the adver-
sarial training approach because it can be per-
ceived at the very first random weight image
sampling and in other generative methods than
GANSs. It is a pattern of alternating light and
dark pixels of the same color, just like a checker-
board, from where it got its name. This artifact
is prominent in images with strong colors and
gradients. It is mainly caused by the deconvo-
lution operation when the small size generated
image is being upsampled: every point is scaled
into a bigger square, creating, easily, uneven
overlap where it puts more metaphorical paint
in some pixels than others (Zhang et al, 2019b;
Odena et al, 2016; Brock et al, 2018) (check
Image 3). However, some checkboard artifacts
may be issued from the gradients when deconvo-
lution in the backward pass of the neural layers.
Still, the gradient artifact topic is not very well
studied in the SOTA (Odena et al, 2016).
Overshoot artifact: It occurs in sharpened
images as an increased jump around edges,
where signals are bandlimited without high
frequencies, e.g., after applying the sharping
algorithm, e.g., unsharp masking, sinc filter, or
JPEG compression, etc. (check Section 7.3).
Ringing artifact: It appears as false edges
near sharp transitions. They visually look simi-
lar to bands or “ghosts” near edges. Hence, the
shape is outlined with multiple parallel bogus
edges. Usually, it is combined with other types
of artifacts, e.g., overshoot, clipping, etc., for
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the same reasons (Wang et al, 2021b; Cao et al,
2011).

8.2 Evaluation Metrics

To the best of our knowledge, there is no fixed
evaluation metric convention to evaluate the GAN
model’s performance. However, due to the rich
research in GANs and the various applied appli-
cations, existing SOTA GANs mention multiple
metrics that can be mainly classified under sub-
jective and objective categories.

8.2.1 Subjective metrics

Subjective metrics are qualitative methods and
are mainly based on human opinions. Despite
the significant feedback from the manual inspec-
tion, reviewers must have good knowledge about
the image ground-truth details and what does
not belong to the target domain. This evaluat-
ing system is unscalable and cannot be imple-
mented in an automated GAN training process.
Thus, researchers tend to collect these reviews and
train complex networks that try to imitate the
reviewer’s decision-making behavior, e.g., Incep-
tion v3, which is trained on the ImageNet dataset.
Furthermore, Borji cites in his latest review (Borji,
2022) other approaches for subjective evaluations.

8.2.2 Objective metrics

Objective metrics are quantitative methods and
are based on numerical comparisons such as:

1. Mathematical formulas e.g., Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM) (Wang et al, 2004). They are
pixel-level comparisons and do not consider any
perceptual quality, image content, or seman-
tics.

2. Model-based evaluation: In this case, pre-
trained models imitates humans’ behavior for
opinion scoring, which is faster than any
qualitative, subjective metrics. However, huge
datasets are required to train such classifica-
tion models. Many datasets exist, e.g., Berkeley
Adobe Perceptual Patch Similarity (BAPPS)
dataset consists of one reference image and two
distorted images with human-based similarity
judgments. Zhang et al. used this dataset in

(Zhang et al, 2018¢c) to train Learned Percep-
tual Image Patch Similarity (LPIPS). In addi-
tion, the dataset can be collected from online
surveys platform as Amazon Mechanical Turk
(AMT) as well. Yet, the model highly depends
on a subjective decision-making dataset. The
two most widely adopted and essential metrics
are Inception Score (IS) (Salimans et al, 2016),
Fréchet Inception Distance (FID) (Heusel et al,
2017). Furthermore, multiple variants were
published for IS, and FID enhancements (Borji,
2022). For instance, Single image FID (SIFID)
compares two single images (Shaham et al,
2019), Spatial FID (sFID) considers spatial fea-
tures (Nash et al, 2021), Fast FID speeds up
the traditional FID (Mathiasen and Hvilshgj,
2020), Memorization-informed FID (MiFID)
generates a more similar image to the training
dataset (Bai et al, 2021), Unbiased FID/IS mit-
igates bias issues (Chong and Forsyth, 2020),
Fréchet Video Distance (FVD) (Bhagwatkar
et al, 2020), Fréchet Audio Distance (FAD)
(Kilgour et al, 2019), and Fréchet ChemNet
Distance (FCD) (Preuer et al, 2018) extends
FID to evaluate generated videos, audios and
molecules respectively. However, in backward
thinking, Binkowski et al. introduced the Ker-
nel Inception Distance (KID) checking, in a
lower variance mode, the dissimilarity between
both datasets’ extracted features (Birkowski
et al, 2018).

. Data manifold-based analysis: It interprets

image similarity based on fundamental surfaces
where the images are described and found. For
instance, Barua et al. introduces Cross Local
Intrinsic Dimensionality (CrossLID) to calcu-
late the concurrence area between two data
domain distribution’s manifolds (Barua et al,
2019). Unlike inception distances, i.e., FID and
KID, data manifold-based metrics such as the
Intrinsic Multi-Scale Distance (IMD) (Tsitsulin
et al, 2019) and Cross-Barcode (Barannikov
et al, 2021), compare unaligned data man-
ifolds and distinguish distributions at high-
dimensional spaces and not only local but
global structures as well, without relying on
any pre-trained networks. For example, the
cross-barcode metric is effective for multiple
domains, e.g., images, time series, 3D shapes,
and datasets. Faster and more sensitive than
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Table 4 GAN Failure Modes

Failure Category Cause Solution Example
Mode Collapse GAN-based Generator and discriminator stuck in a local Changing loss function, e.g., Wasserstein loss -  Figure 11
minimum reduce learning rate - adopt a training strategy,
e.g., starts with an unconditional GAN train-
ing and gradually introduces class conditioning
- Ensure that the training dataset is diverse and
has a sufficient variation - Implement stabiliza-
tion technics and convergence improvement
Convergence Failure ~ GAN-based Imbalanced Generator and discriminator, i.e., Right selection of training checkpoint - Imple- Figure 13
the discriminator is more powerful than the ment stabilization technics and convergence
generator - High learning rate - Low variance improvement: history of generated samples,
training dataset self-attention mechanism, spectral normaliza-
tion method, etc. - Maintaining a balance
between G and D: weight clipping, gradient
penalty, etc.
Replicas Generation ~ GAN-based Limited control to capture the full range of - Figure 17
image styles and content variation from a small
or single image dataset
Mode Connecting GAN-based High dimension of data distribution support on  Switch to conditional GAN training (Armand- -
disconnected data manifolds pour et al, 2021)
Class Leakage GAN-based Mostly noticed in unconditional training where Ensure a good separation of the dataset in con- Figure 8
the generated samples are biased toward spe- ditional training
cific dominant classes
Vanishing Gradient NN-based Discriminator is too good Replace loss function with Wasserstein or min- -
imax - Stabilize the GAN training, etc.
Exploding Gradient ~ NN-based (Inverse of vanishing gradient) Large updates to  Stabilize the GAN training using zero-centered -
the GAN weights leading to its destabilization gradient penalty, two time-scale update rule,
with large error gradients exponential moving averaging, etc. - Apply gra-
dient alleviation (Tao and Wang, 2020)
Training overfitting ~ NN-based Use of limited dataset - Training the GAN for Limiting the discriminator learning by using -
too long Limited Discriminator GAN (Kim and Park,
2022) - Increase dataset variety
Noise Adversarial Added by G to fill high-frequency details Adding more than one discriminative network -
to consider high-frequency data, e.g., textures
(Park et al, 2018)
Saturation Adversarial Truncating and re-sampling values of the latent ~ Conditioning G to smoothly enforce amenabil-  Figure 3
space to 0 ity to truncate the latent space (Brock et al,
2018)
Aliasing Generation Careless sampling Treating all signals as continuous with high- Figure 10
quality upsampling filters + architecture
changes to be equivariant to sub-pixel transla-
tions and rotations (Karras et al, 2021)
Texture sticking Generation Border effects and aliasing problem Alias-Free GAN (Karras et al, 2021) refines Figure 9
coarse input Fourier features into local oscilla-
tions dependent on the content
Water-droplet Generation Originates from 64x64 feature maps Replace AdaIN with estimated statistics (Kar- -
ras et al, 2020b)
Phase Mismapping Generation Caused by Progressive nature of StyleGAN - Figure 1
Texture blobs Generation Lack of data when using specific GAN architec- - Figure 2
tures that support large datasets
Local Checkboard Generation Upsampling small size generate images after Applying resize-convolution steps after replac- Figure 3
deconvolution. ing deconvolution steps with up-sampling
(Odena et al, 2016; McCloskey and Albright,
2019)
Overshoot Generation Application of sharpening algorithm after Sharpening ground-truth training images Figure 27
super-resolution task (Wang et al, 2021b)
Ringing Generation Combined with overshoot artifact Related to overshoot artifact solutions Figure 27

Geometry Score (GS) (Khrulkov and Oseledets,
2018), it detects mode-dropping, intra-mode
collapse, mode invention, and image distur-
bance and transformation such as flipping,
rotation, etc. (Barannikov et al, 2021).

4. Precision and Recall P&R-based met-
rics: While the precision measures the image

quality and similarity to the real images, the
recall highlights the generation ability to cover
all the real images’ instances (Sajjadi et al,
2018; Borji, 2022). P&R-based metrics show
the trade-off between precision and recall to
avoid bad quality and mode collapse, respec-
tively. Recently, Naeem et al. and Alaa et
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al. built on top of the P&R, and introduced
Density and Coverage (D&C) (Naeem et al,
2020), and Alpha Precision and Beta Recall
(a-P&B-R) (Alaa et al, 2022) metrics.

5. Task-driven evaluation: Researchers argue
that if GAN can learn a dataset distribution,
then the generated synthetic data should per-
form well in downstream tasks, i.e., training
models using synthetic data and inferring back
on real data. However, comparing synthetic-
trained models to real data-trained models’
performance for some pre-defined and well-
known tasks is an efficient method to estimate
the efficiency of the GAN model. For instance,
some of the applications refer to classification
(Ravuri and Vinyals, 2019a), distribution anal-
ysis (Xuan et al, 2019), and object or face
recognition (Bashir et al, 2021).

Additionally, due to the various number of GAN
applications and use cases, researchers have devel-
oped adaptive and application-specific evaluation
metrics, e.g., perplexity (Jelinek et al, 1977; Borji,
2022) and caption score (Ding et al, 2021) for
text-to-image applications, or Fully Convolutional
Networks (FCN) score for specific 121 applications
(Isola et al, 2017; Long et al, 2015). To summa-
rize the above, the literature presents hundreds of
evaluation metrics to assess image quality in hun-
dreds of GAN applications. Depending on each
application description, each metric outperforms
in its way. Therefore, it is impossible to lead all
our GAN reviews and compare their performance
based on a standard single evaluation approach.
Table 5 presents the strength and weaknesses of
the different GAN evaluation metrics: The “low-
est” and “highest” columns are related to the
metric values for which the '+’ sign indicates a
better image assessment contrary to the -’ sign.

9 Prospects and Opinions

Based on this survey and our experimentation,
we will mention some advice and essential points
regarding the selection and usage of GANs in this
section. Then, we will conclude with some ques-
tions about some research topics that we found
important and would ease the whole training
process if we had some existing answers or studies.

® The diversity and size of a dataset directly
impact the performance of GANs. In cases

where the dataset is small or less diverse, alter-
native taxonomies such as semi-supervised and
few-shot learning techniques, transfer learn-
ing, or disentangled feature generation may
be more effective. Although supervised learn-
ing produces better results and mitigates many
GAN failures, acquiring paired or labeled data
is more difficult. Unsupervised learning, on the
other hand, requires a larger dataset, and data
augmentation may not be effective and can lead
to augmentation leakage.

Texture synthesis is distinct from traditional
image generation, with multiple types requir-
ing different GAN architectures. Single-image
GANs are particularly promising for texture
generation and image translation with limited
hardware resources, although they require sig-
nificant training time. However, once the model
is trained, evaluation is fast. On another side,
iterative GAN evaluation, as seen in SR, pro-
duces better results than relying on a single-
shot inference with high ratios. However, text
and number generation remain challenging with
most image generation and translation tech-
niques, not just those based on adversarial
methods.

It is important to distinguish between capture
and generation artifacts: the first is caused by
hardware and preprocessing algorithms and are
considered true features by the GAN, which
will attempt to reproduce them. Generation
artifacts, on the other hand, are produced by
the synthesis network due to low data cover-
age or poor network configuration. And cur-
rently, there is no unified evaluation standard
for assessing GAN generation quality or shape-
based artifact indices. Therefore, perceptual
evaluation is still necessary. Relying solely on
numerical values to determine when to stop
training a GAN model is ineffective, but provid-
ing the GAN with ample training time is recom-
mended to avoid premature stopping. However,
excessive training can lead to a degradation in
image quality. As such, the stability period of
the GAN should be manually identified to select
the appropriate checkpoint.

Fewer studies cover a complete study on how a
training dataset distribution would affect a con-
ditional GAN: should all class datasets be equal
and balanced? Does one class dataset diversity
affect another class generation? While training,
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Table 5 GAN Evaluation Metrics

Method Category Lowest Highest Strength ‘Weakness

Opinion Qualitative - + Considered a reference for image similarity Time-consuming. Subjectivity and prone to

Scoring comparison. Suitable for all evaluations, includ- human error. Professionals are needed to eval-

ing complex and sophisticated images uate specific field data. Non-scaling system. It
cannot be used for monitoring training steps.

PSNR Quantitative - + Mostly used. Based on MSE. Shows the inten- Pixel-based and does not consider any struc-

sity difference between translated and GT tural information. Misleading in some applica-
images. tions: two visually different images can have a
high PSNR.

SSIM Quantitative - + Mostly used. Supports change of luminance, Unstable in low-variance area images.

contrast, and structural similarity comparison.

IS Quantitative, - + Pretrained classifier based on Inception v3 Most accurate for classes that the model was
Model- trained on ImageNet. No human subjectivity trained on. Supports small 300x300 px images.
based consideration. Reliable at large sample size. Evaluates only

the generated image distribution (Brownlee,
2019¢).

FID Quantitative, + - Sensitive for slight enhancements such as blurri- High bias problem: sample must be large
Model- ness, textures, small artifacts, intra-class mode enough - above 50K - for an optimal estimation
based collapse, etc. Calculates the distance between (Borji, 2022).

the generated image and real image inception
feature vectors

LPIPS Quantitative, + - Calculates perceptual similarity between 2 Mostly efficient to compare images with dis-
Model- images using pre-defined classification networks —tortions. We cannot compare an entire newly
based trained on human perceptual similarity judg- generated dataset to the trained one.

ments. The lowest, the most similar

KID Quantitative, + - Uses Inception v3 for feature extraction and Best practice for ImageNet classes. Suffers when
Model- calculates maximum mean discrepancy MMD, it comes to large variance: Unable to properly
based i.e., dissimilarity, between the real and gener- distinguish between close distributions (Zhao

ated images et al, 2021)

CrossLID  Quantitative, + - Robust to small scale noise, image transforma- Applied on simple and low dimensional data
Manifold tion, and sample size (Borji, 2022)

IMD Quantitative, + - Similar to a geometry score since it compares Results are based on random approximation.
Manifold data distribution based on their geometry - Unstable IMD at each run. Otherwise, we must

intrinsic and multi-scale consider executing it multiple times and then
calculate the average result or keep one IMD
scoring execution for a high number of itera-
tions (Tsitsulin, 2020).
Cross- Quantitative, + - Compares two manifolds’ topology discrepan- A fast computation depends on good acceler-
Barcode Manifold cies, i.e., divergence, in high-dimensional space. ated hardware, e.g., GPU-accelerated, NVIDIA
Point clouds approximate manifolds. Effective TITAN RTX (Barannikov et al, 2021)
in multiple domains. Faster and more sensitive
than GS.

PPL Quantitative, + - Shown a superiority over FID and P&R scores.  Highly depends on the adopted perceptual dis-
Manifold The empirical mean of consecutive images’ per- tance function to calculate the perceptual dis-

ceptual distance, e.g., LPIPS tance of two consecutive images

D&C Quantitative, - + Solves identical distributions match detection, Does not distinguish synthetic data belonging
P&R-based outliers robustness, and the arbitrary selection to similar distributions and modes (Alaa et al,

of the evaluation hyperparameters issues. More = 2022)
interpretable and reliable evaluation than P&R
a-P&B-R Quantitative, - + Considers 3-dimensional evaluation metrics for Privacy issues since in some cases, e.g., high
P&R-based precision, recall, and authenticity to quantify precision, it may copy training data with noise
fidelity, diversity, and generalization for check- filters (Alaa et al, 2022)
ing the generation’s quality, variability cover-
age, and training data copying
* Quantitative, - + Based on the hypothesis that good quality Each application has its own of evaluating the

Task-Driven

generated data should perform as well as the
trained dataset when applied in real use cases,
and applications

results. It cannot be included in the automated
process of a GAN model training.

lay down, such as fairness and bias generation
or privacy concerns resulting in mode collapse.
Therefore, researching how a training dataset

could one or more classes be prone to gran-
ular collapse mode? Furthermore, it is crucial
to consider the ethical implications that may
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distribution would affect a GAN and its ethical
implications can open a new horizon to make
GANs more responsible, fair, and trustworthy.
® Despite the growing popularity of diffusion
models, it’s worth noting that many of the
challenges and opportunities present in GAN
research are still highly relevant in the cur-
rent landscape. In fact, much of the foundation
for diffusion generation and translation can be
traced back to the pioneering work done in
GANSs. In contrast, diffusion models may offer
advantages like increased scalability and speed.
Moreover, recent breakthroughs like StyleGAN-
T demonstrate that GANs are still a formidable
force in the field and continue to push the
boundaries of what’s possible in image gen-
eration and translation. As we look to the
future, it will be interesting to see how these
two approaches continue to evolve and inter-
act and what new insights and innovations will
emerge. What are the limitations of diffusion
models? How can GANs and diffusion models
be integrated to achieve better results? How can
GANS be improved to overcome the limitations
of diffusion models? How can GANs be used to
improve the scalability of diffusion models?

10 Conclusion

GAN has been a widely researched topic in the CV
field, with applications in many broad areas. In the
current era of DL and CV, GAN has gained much
attention for its fast evolution and efficiency in
generating adaptive images and augmenting exist-
ing datasets. In this review, we focused on GAN
applications related to the industrial sector, which
few publications have covered. First, we defined
different GAN approaches and industrial-related
applications under two main categories: image
generation and domain transfer. On one side, we
distinguish between conditional and unconditional
synthesis for coarse and fine-grained features:
we noticed that existing text-to-image synthesis
models could not produce complex prompts nor
generalize to cover specific industrial assets. Con-
versely, we highlighted texture synthesis as it is
an essential concern in material and surface pro-
cessing. Moreover, it is important to note that
the dataset’s diversity and size directly impact
the performance of GANs. In cases where the

dataset is small or less diverse, alternative tax-
onomies and architectures may be more effective.
In the second part, we compared various 121 train-
ing approaches and extended the applications to
practical tasks such as image expansion, recov-
ery, and SR. Despite the interesting upscaling and
sharpening results of SR, it does not generalize to
barcodes, numbers, or text. In addition, we lever-
aged its capacity from 4x to 16x upscaling. On
another side, we presented an overall discussion
about the various assessment metrics. We repro-
duced most GAN failures and proposed a corre-
sponding taxonomy to distinguish between GAN,
neural network, adversarial learning, or synthesis
model-based failures. However, relying solely on
quantitative assessment for GAN generation is not
practical. Finally, even with the spread of other
generation technologies, GAN remains a promis-
ing area of research with numerous challenges and
opportunities, particularly in synthesizing bias-
free, fair, and trustworthy datasets. Overall, we
hope this review serves as a basis for indus-
trial GANs and addresses the main problem of
acquiring image datasets for DL training, inspiring
researchers to extend industrial Al applications.

Data availability. The datasets analyzed dur-
ing the current study are self-generated and not
publicly available for confidentiality reasons but
are available from the corresponding author upon
reasonable request.
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Appendix A Experimentation
Datasets

In this section, we describe our 4 in-house ren-
dered synthetic datasets that we used in our
experimentation.

Industrial Assets: This dataset consists of sim-
ple synthetic images (512 x 512 px) for different
industrial assets with domain randomization. We
consider the following assets combinations: smart
transport robot (STR) (16,000), trolly (16,000),
STR and trolly (11,457), pallet (11,271), jack
(9,425), electrical jack (8,944), stillage (8,933),
forklift (8,840), tugger train (8,794), small load
carrier (KLT) box (9,976), and random combina-
tions of grouped assets (4,029). This dataset was
rendered using Unity Engine

Fig. A1 Sample of the Industrial Assets dataset including
STR, trolly, pallet, jack, electrical jack, stillage, forklift,
tugger train, KLT, and random combinations of assets.

All three remaining datasets are rendered using
NVIDIA Omniverse.

KLT & Pallet: The dataset includes 4 combina-
tions of small load carrier (KLT) box and pallet
single images: (1) Low variation of KLT boxes
(9,948) (2) Low variations of Pallet (10,893) (3)
Higher variations of Pallet (5,000) (4) Higher
variations of KLT box (2,500).

Stillage Modalities: The dataset consists of

Fig. A2 Sample of the KLT & Pallet dataset. From top to
bottom: low variation of KLT and Pallet, higher variation
of Pallet and KLT

2,006 synthetic images (1,280 x 720 px) for
different stillages, sided next to each other. In
addition, paired semantic and instance segmen-
tations, and depth images are included (In total,
8,024 images).

Klt2Cardboard: The dataset consists of around
20K synthetic images (3,206 x 1,440 px) in total
for randomly stacked boxes placed on a euro
pallet in two different room environments. The
first 10,138 consists of small load carrier (KLT)
boxes surrounded by logistic assets, while the
second 10,222 images consist of cardboard boxes
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Fig. A3 Sample of the Stillage Modalities dataset. From
top to bottom: RGB plain color, semantic segmentation,
instance segmentation, depth images.

surrounded by office assets. Both contain a maxi-
mum of 2-sided, 5-stacked boxes.

Fig. A4 Sample of the Klt2Cardboard dataset. Top: KLT
boxes, bottom: cardboard boxes

Appendix B Conditional
GAN (cGAN)

It is the conditional version of GAN (Mirza and
Osindero, 2014). In ¢GAN, conditional settings
are applied to both the generator and the dis-
criminator. The conditional settings can be any

type of auxiliary information such as class labels
(Karras et al, 2020a), instance images (Casanova
et al, 2021), data pairing (Isola et al, 2017), etc.
Alongside the latent space, the generator network
inputs the class information condition and pro-
duces images. Fundamentally, a generator is free
to generate whatever output as long as it satisfies
the discriminator, which explains the necessity of
applying conditionality on both GAN networks
(Boulahbal et al, 2021). Additionally, a ¢cGAN
converges faster than a classical GAN, and its
generated image random distribution follows a
certain pattern.

As previously mentioned, a default simple GAN
consists of 2 networks: a generative and a dis-
criminator network. Although, training GAN’s
networks does not differ from training any other
network. Therefore, we refer to the universal
taxonomy in Machine Learning (ML) to con-
sider four major GAN learning methods based
on the different ways of handling the available
training datasets: supervised, unsupervised,
semi-supervised, and few-shot as stated below in
Appendix C.

Appendix C GAN Training
Taxonomy

Supverised learning (SL): It uses labeled
datasets to train GANs (Cunningham et al, 2008).
Due to the various GAN applications, we consider
different shapes of labels. For instance, GAN’s
conditional generation requires additional cate-
gory labels for each training image as in (Kar-
ras et al, 2020a, 2021; Casanova et al, 2021).
Supervised I2I applications require paired image
dataset to obtain accurate domain translations as
in (Wang et al, 2018a; Zhu et al, 2017b). However,
despite the high efficiency of supervised learn-
ing over other learning methods, ensuring labeled
data needs a certain level of expertise to structure
that data, is intensively time-consuming, and has
a likelihood of human error (IBM Cloud Educa-
tion, 2020). In addition, it is sometimes impossible
to acquire, especially when it comes to paired
datasets, since it is “double the trouble” as cap-
turing and processing a single domain dataset. In
this case, synchronized hardware or an entire area
control are additionally required.
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Unsupverised learning (UL): Unlike SL, the
model is not provided with labels or domain pair-
ings. Therefore, the model works on its own to dis-
cover patterns and information (Chu et al, 2017;
Park et al, 2020a). Yet, for optimal performance,
unsupervised learning requires a more extensive
dataset. In fact, unlabeled datasets are much
more easily accessible. Therefore, researchers have
focused more on enhancing unsupervised learn-
ing architecture over supervised learning methods
(Chen and Jia, 2021).

Semi-supervised learning (SSL): It lies
between supervised and unsupervised learning.
Typically, a semi-supervised learning operates a
dataset with few labels. Therefore, it aims to label
all remaining images based on the small number
of existing labeled images (e.g., it is possible to
reconstruct the whole video by labeling 10-20% of
its frames) (Mustafa and Mantiuk, 2020). More-
over, SSL is efficient for good disentanglement
learning using only 0.25-2.5% of labeled data (Nie
et al, 2020). However, semi-supervised learning
generally has lower accuracy since all future pre-
dictions rely on predicted GT labels.

Few-shot learning (FSL): FSL models are
based on a very few (Benaim and Wolf, 2018;
Cohen and Wolf, 2019) to single image, i.e. one-
shot learning (OSL), training dataset (Park et al,
2020a; Lin et al, 2020; Shaham et al, 2019).
By definition, “FSL is a type of machine learn-
ing problems (specified by E, T and P), where E
contains only a limited number of examples with
supervised information for the target T.” After-
ward, FSL training is evaluated based on its
performance P (Wang et al, 2020b). Despite the
fast FSL training generalization on a new small
dataset, FSL models outperform in their field of
experience. They may not be optimal when infer-
ring slightly different use cases (check Section 6.3).
Although, FSL is a promising field to relieve the
burden of collecting huge datasets for the methods
above, especially since limited hardware is enough
for training. Thus, many researchers are focusing
on fulfilling that aim.

Additionally, transfer learning (TL) is becoming
the de facto solution for CV training (Jayram et al,
2019). The main idea is transferring knowledge
from an auxiliary model into the main one. In
other terms, an auxiliary model is a model that
is trained on huge datasets to satisfy a source
task. Afterward, the training “is resumed” with

a smaller dataset to solve the interesting target
task. Therefore, we divide TL methods into two
categories: transductive and inductive. A trans-
ductive TL maintains the same task and labels
as in the source task, e.g., Domain Adaptation
(Guo et al, 2020; Li et al, 2020b; Cao et al, 2018;
Murez et al, 2018). However, in inductive TL, the
task, and therefore the labels, are changed and
defined in the target task (e.g., sequential transfer
learning, which is the most popular TL method)
(Voita, 2022). Yet, some limitations may occur
when training the model too long (check Section
4.1.2).

Appendix D StyleGAN
Retrospective

D.1 StyleGAN

In 2019, NVIDIA published StyleGAN (Karras
et al, 2019; NVLabs, 2021a), an extension of the
traditional ProGAN architecture (Karras et al,
2017). The generator network has been modified
to include progressive resolution blocks, starting
from 22 x 22 to 219 x 219 pixels. At each block, and
after each convolution layer (Gatys et al, 2015b),
a different sample of Gaussian noise is added
to the feature map (Nielsen, 2019). Inspired by
the style transfer literature (Huang and Belongie,
2017; Jing et al, 2019), an AdalIN layer (Huang and
Belongie, 2017; Dumoulin et al, 2016, 2018; Ghi-
asi et al, 2017) controls the style transfer process.
While the style only affects global effects, such
as shape, identity, pose, lighting, and background,
the noise injection at each block directly controls
the image features and guarantees stochastic vari-
ations at different scales. This process separates
the high-level attributes from the stochastic vari-
ation of local effects, such as beard, freckles, and
hair. As a result, StyleGAN generates high-quality
and high-resolution images (up to 1024x1024 pix-
els) with detailed style-level stochastic variations.
However, all images above 64x64 resolution show
water droplet artifacts in the feature map, often
visible in the generated output image (Karras
et al, 2020b). Additionally, the progressive grow-
ing technique used in all versions of StyleGAN
produces phase artifacts, where some details are
stuck to the same location regardless of slight
movements of the parent object, as shown in
Figure 1.
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D.2 StyleGAN2

StyleGAN2 (Karras et al, 2020b; NVLabs, 2021b),
published in 2020, is a revised version of Style-
GAN proposed to improve the image quality and
remove all artifacts. First, Karras et al. replaced
in the generator all AdaIN normalization (Huang
and Belongie, 2017; Dumoulin et al, 2016, 2018;
Ghiasi et al, 2017) - causing the droplet artifacts
- with estimated statistics (Glorot and Bengio,
2010; He et al, 2015). Second, artifacts related
to progressive growing (Karras et al, 2017) are
reduced by using a modified version'” of a hier-
archical (Denton et al, 2015; Zhang et al, 2017a,
2018a) generator: Multi-Scale Gradients for GAN
(MSG-GAN) (Karnewar and Wang, 2020) with
skip connections (Ronneberger et al, 2015). Skip
connections are used to connect matching resolu-
tions between both networks. In parallel, residual
networks (Gulrajani et al, 2017; He et al, 2016;
Miyato et al, 2018) have shown benefits in the dis-
criminator. Both alternatives replace StyleGAN’s
generator (synthesis network), and discriminator
networks’ feedforward design (Huang et al, 2020)
respectively. Compared to StyleGAN, the new
revision improves the training performance!® by
40%, equivalent to 61 img/s.

However, despite the image quality improvements,
tens of thousands of images with obvious vari-
ations are still required for the GAN training.
Otherwise, it leads to discriminator overfitting
and a training divergence (Karras et al, 2020a;
Arjovsky and Bottou, 2017). Thus, acquiring this
amount of varying dataset is sometimes unfeasible,
as previously explained in Section 1.

Appendix E Fine-Grained

Image
Generation
E.0.1 InfoGAN
Information Maximization GAN (InfoGAN)

(Chen et al, 2016) is a GAN that utilizes unsu-
pervised training to disentangle common visual

17 A modified version of MSG-GAN is developed to generate
mipmap (Williams, 1983) instead of an image. In computer
graphics, mipmaps, or pyramids, are a series of pre-computed
and optimized images, each representing the previous image at
progressively lower resolutions.

8The training is executed on NVIDIA DGX-1 with 8 Tesla
V100 GPUs.

concepts between small subsets of the latent vari-
ables, such as the presence of objects, lighting,
object azimuth, pose, elevation, etc. By doing
so, InfoGAN maximizes the mutual information
between the latent variables and the generated
images, thereby increasing the variation in the
generated dataset.

E.0.2 FineGAN

FineGAN, proposed by Singh et al. (Singh et al,
2019), is an architecture that disentangles the
background, object shape, and object appear-
ance hierarchically without the use of masks or
fine-grained annotations. FineGAN iteratively
executes in three stages: Background stage, par-
ent stage, and child stage, where the object of
interest’s features, such as appearance and shape
(parent stage), are combined with the previously
extracted background (background stage) and
then colorized with a texture (child stage) to
perform FineGAN generation.

Limitations: However, FineGAN does not
support conditioning on real images and only
supports sampling from latent codes. There-
fore, before using FineGAN, additional work
to extract the background, object pose, and
appearance’s latent code is required to support
image-conditioned generation (Li et al, 2020c).

E.0.3 MixNMatch

Li et al. developed MixNMatch (Li et al, 2020c;
Yuheng-Li, 2020) which is built on top of Fine-
GAN (Singh et al, 2019) and does not only allow
sampled latent codes, but also real images to
be used for image generation. Unlike previous
fine-grained GAN architectures such as MUNIT
(Huang et al, 2018), FusionGAN (Joo et al, 2018),
and other disentangling techniques (Lee et al,
2018; Lorenz et al, 2019; Xiao et al, 2019), which
focus on only two features: appearance and pose,
MixNMatch simultaneously disentangles four fac-
tors: background, object pose, object shape, and
object texture with minimal supervision. Unlike
other approaches that require strong supervision
annotations, such as key points, pose, masks, etc.
(Peng et al, 2017; Balakrishnan et al, 2018; Ma
et al, 2018b; Esser et al, 2018), MixNMatch uses
only bounding box annotations to model the back-
grounds, as all training images have an object of
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interest. Once the background generator model is
trained, no bounding boxes are needed for image
generation.

The MixNMatch training process consists of two
stages: (1) In the first stage, the "code mode,”
MixNMatch takes up to 4 images and encodes
them into four latent codes to generate realistic
images with high accuracy. On the one hand, the
shape’s latent code space capacity is too small to
handle unique 3D shape variations such as boxes,
STRs, trolleys, etc. On the other hand, the small
capacity of the shape code limits the generation
of pixel-level shape and pose details, which is han-
dled in the second stage. (2) In the second stage,
the ”feature mode,” MixnMatch maps the image
to a higher-dimensional feature space to preserve
the shape and pose spatially-aligned details. Then,
the FineGAN 3-stages pipeline is executed for con-
ditional MixNMatch generation. In Figure 15, we
can see the combination of the KLT box texture,
ground texture, and ground color features in the
generated output.

Appendix F GAN SOTA
Datasets

In this section, we review the mentioned datasets
in Tables 1, 2, and 3 with brief description and
their downloadable links.

Appendix G Style Transfer
Motivation

Style transfer (Gatys et al, 2015b; Jing et al, 2019)
is one of the first and most known I2I transla-
tions to automate pastiche (Dumoulin et al, 2016).
When talking about style transfer, we consider

three types of images: two inputs and one output
(Chen and Jia, 2021; Dumoulin et al, 2016):

1. Content image: Style transfer preserves the
high-level semantic features of the content
input, which are noted as invariant features,
e.g., contrast, brightness, shape, etc.

2. Style image: Style transfer extracts style fea-
tures from the second input image such as
texture, contrast (Ulyanov et al, 2016b), color,
etc.

3. Generated stylized image: Style transfer com-
bines extracted style and content features into
one single output.

Applying GANs as a backbone for 12I models is
the most effective strategy (Chen and Jia, 2021).
This section presents various techniques for GAN-
based domain transfer and adaptive industrial
applications that are essential and common to
different fields. In I2I translation applications
(Pang et al, 2021) e.g. semantic image synthesis
(Park et al, 2019; Zhu et al, 2020; Tang et al,
2020), image segmentation (Guo et al, 2020;
Li et al, 2020b), style transfer (Yi et al, 2017;
Alami Mejjati et al, 2018), image inpainting
(Pathak et al, 2016; Song et al, 2018; Zhao et al,
2020a), image deblurring (Zhang et al, 2020a,
2019a; Kupyn et al, 2019), image denoising (Kim
et al, 2019a; Tian et al, 2020; Tran et al, 2020),
image colorization (Zhang et al, 2017c; Sudrez
et al, 2017; He et al, 2018), super-resolution
(Ledig et al, 2017; Zhang et al, 2019c; Yuan
et al, 2018), domain adaptation (Cao et al, 2018;
Murez et al, 2018), etc. the generative model
aims to generate images that look like the target
domain distribution (Chen and Jia, 2021; Pang
et al, 2021). We executed arbitrary style transfer
methods from (Nakano, 2018) to apply styles of
different patterns, drawings, and modalities and
the original image itself on an image of stillages.
As a result, the style is hardly applied all over
the input image: it overrides original colors and
paints the whole image with a single to minimal
amount of textures, as shown in Figure G5 below.
Researchers focused on increasing the number of
supported styles per a single network, combining
arbitrary styles with interpolations (Dumoulin
et al, 2016; Ghiasi et al, 2017; Nakano, 2018),
conserving original images’ colors and luminance
beyond the style and textures (Gatys et al,
2016a), replace the per-pizel loss function into a
perceptual loss depending on extracted high-level
features (Johnson et al, 2016), maintain photo-
realistic style transfer to preserve the generated
image realism similarly to the content image (Li
et al, 2019; Park et al, 2020b), apply instance
image style transfer (Castillo et al, 2017) because
of the natural image complexity which contains a
variety of distinct textures (Luan et al, 2017), etc.
Yet, despite its successful contribution to artistic
and painter’s style transfer (Pang et al, 2021),
current approaches are inefficient for stylizing into
industrial image modalities without any informa-
tion loss. For instance, when applying a depth
image as a style, the generated output consists of
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Table F1 Public datasets used in GAN SOTA for Table 1

Dataset

Description

Animal FacesHQ (AFHQ)

BreCaHAD

Conceptual Captions (CC)
Conceptual 12M (CC12m)
CelebA

Chairs

CIFAR-10

Cityscapes

COCO-Stuff

Caltech-UCSD Birds (CUB)

Flickr-Faces-HQ (FFHQ)

ImageNet

LAION-aesthetic-6+

Large-scale Scene UNderstand-
ing (LSUN)

MetFaces

MNIST

Microsoft Common Objects in
Context (MS COCO)

PACS

Redcaps

Sketches

Stanford Cars
Stanford Dogs

Street View House Numbers
(SVHN)
YFCC100M

15,000 high-quality eye-centered 512x512 PNG images equally distributed over 3 domains
cat, dog and wildlife with more than 8 breeds per domain (suitable for I2I apps). An
updated version AFHQv2 exists: https://github.com/clovaai/stargan-v2

162  breast cancer  histopathology =~ TIFF  1360x1024  images:
bmecresnotes.biomedcentral.com/articles/10.1186/s13104-019-4121-7

3M of various styles image-caption pairs harvested from the web’s HTML attributes:
https://github.com/google-research-datasets/conceptual-captions

12M image-text pairs covering various and diverse concepts: https://github.com/google-
research-datasets/conceptual-12m

200K celebrity images covering large pose variations and background clutter with rich 40
attribute annotations: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

1,000 different rendered 3D chair models: https://www.di.ens.fr/willow/research/
seeing3Dchairs/

60,000 images at 32x32 resolution divided over 10 mutually exclusive classes of trans-
portation vehicles and animals: https://www.cs.toronto.edu/~kriz/cifar.html

Stereo video sequences recorded in street scenes from 50 cities with pixel-level annotations
of 30 classes: https://www.cityscapes-dataset.com/

164,000 selected images from MS COCO and includes 172 classes: 80 things (individual
instances), 91 stuff (objects with no clear boundaries, e.g. sky, grass, street, etc.) and 1
“unlabeled”: https://github.com/nightrome/cocostuff

11,788 annotated images of 200 birds categories, and focusing on fine-grained features,
which is not familiar in most popular datasets: http://www.vision.caltech.edu/datasets/
cub_200_2011/

70,000 high-quality PNG images at 1024x1024 resolution of human faces with consid-
erable variation in terms of age, ethnicity, image background, and accessories such as
eyeglasses, sunglasses, hats, etc: https://github.com/NVlabs/fThq-dataset

14M hand-annotated images with an average resolution of 469x387. They are organized
according to the WordNet hierarchy with more than 100,000 synsets to cover most of the
concepts: https://www.image-net.org/index.php

LAION-5B is a 5,85B CLIP-filtered image-text pairs. LAION-aesthetic-V2 has 1.2B
image-text pairs with an aesthetic score higher than 4.5 based on a prediction model
that imitates human rating for how much they like the image on a scale of 10: https:
//laion.ai/blog/laion-aesthetics/

Large-scale scene classification, including 10 scenes (dining room, bedroom, chicken, out-
door church, etc.) and 20 object categories (cat, bus, sofa, train, etc.) with varying
numbers of images up to 3M per category: https://www.yf.io/p/lsun

1,336 high-quality 1024x1024 PNG human faces images extracted from works of art,
MetFaces-U is an unaligned version: https://github.com/NVlabs/metfaces-dataset
60,000 grayscale images of handwritten numerical digits from 0 to 9 at a resolution of
28x28: http://yann.lecun.com/exdb/mnist/

328,000 (200K+ annotated) images of everyday objects and humans: https://
cocodataset.org/

7 categories and 4 domains split as follows: photo (1,670), art painting (2,048), cartoon
(2,344) and sketch (3,929): http://sketchx.eecs.qmul.ac.uk/

12M image-text pairs with coarse labels collected from Reddit: https://github.com/
redcaps-dataset /redcaps-downloader

20,000 unique hand drawing (by non-expert) sketches for 250 object categories of everyday
objects: https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/

16,185 images of 196 car classes: http://ai.stanford.edu/~jkrause/cars/car_dataset.html
20,580 annotated images from ImageNet of 120 dog breeds for the sake of fine-grained
image categorization: http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
600,000 house numbers digit images collected from Google Street View. It provides 10
object classes corresponding to 10 digits: http://ufldl.stanford.edu/housenumbers/

100 million media objects, mostly photos, including metadata such as Flickr identifier,
owner name, camera, title, tags, geo, media source, taken and shared from 2004 to early
2014: http://projects.dfki.uni-kl.de/yfcc100m/

https://
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Table F2 Public datasets used in GAN SOTA for Table 2

Dataset

Description

Flower

Oxford Describable Textures
Dataset (DTD)
CMP Facades

Berkeley Segmentation Dataset
(BSD)

8189 images of 102 different flower categories: https://www.robots.ox.ac.uk/~vgg/data/
flowers/

5,640 textures images at a resolution of 300x300 or 640x640 for 47 categories: https:
//www.robots.ox.ac.uk/~vgg/data/dtd/

606 building facades from all over the world including 12 annotation classes + segmenta-
tions for I2I tasks: https://cmp.felk.cvut.cz/~tylecrl /facade/

Image denoising and super-resolution dataset, which includes the BSD100 subset, a clas-
sical image dataset with 100 test images of various types, such as natural images, plants,
people, food, etc, and is the testing set of the Berkeley segmentation dataset BSD300:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Table F3 Public datasets used in GAN SOTA for Table 3 - supervised + cross-view translations

Dataset

Description

UT Zappos50K

edges2handbags
edges2shoes
night2day

ADE20K

NYU

Helen
Oxford-IIIT Pet
DeepFashion

Radboud Faces (RAFD)

NTU RGB-D

Senz3D

Market-1501

50,025 shoes images collected from Zappos.com divided into 4 categories (shoes, sandals,
slippers, boots) with some additional instance-level labels. Paired datasets exist as well:
https://vision.cs.utexas.edu/projects/finegrained /utzap50k/

137K paired images of Amazon Handbags and their detected edges (by HED model +
post-processing): https://efrosgans.eecs.berkeley.edu/pix2pix/datasets/

50K paired images of Zappos50K datasets and their computed edges as in edges2handbags:
https://efrosgans.eecs.berkeley.edu/pix2pix/datasets/

20K paired images for landscapes in the day and the night, taken from Transient
Attributes dataset: https://efrosgans.eecs.berkeley.edu/pix2pix/datasets/

More than 25K annotated images with segmentations of various scenes (indoor and out-
door). They are selected from SUN and Places databases: https://groups.csail.mit.edu/
vision/datasets/ADE20K/

1,449 densely labeled pairs of recorded video sequences from indoor scenes, with RGB,
depth, and segmentations: https://cs.nyu.edu/~silberman/datasets/nyu_depth v2.html
2000 human face images with annotations of the main facial components: http://
www.ifp.illinois.edu/~vuongle2 /helen/

7,349 pet images with segmentations covering 37 categories of dog and cat breeds: https:
//www.robots.ox.ac.uk/~vgg/data/pets/

800K diverse fashion images including 300K cross-pose/cross-domain pairs: https://
mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

Images of 67 model faces with 8 emotional expressions (anger, disgust, fear, happiness,
sadness, surprise, contempt and neutral). They are taken from 5 camera angles simulta-
neously: https://rafd.socsci.ru.nl/RaFD2/RaFD?p=main

56,680 video samples of 120 labeled human activities and captured in 4 different modali-
ties as RGB videos, depth map, 3D skeletal data and infrared: https://rosel.ntu.edu.sg/
dataset/actionRecognition/

Various hand gestures captured in RGB and segmentation with Microsoft Kinect and
Leap Motion sensors: https://lttm.dei.unipd.it/downloads/gesture/

1,501 human identities captured by 6 different cameras: https://www.v7labs.com/open-
datasets/market-1501

Dayton
Crossview USA (CVUSA)

Surrounding Vehicles Aware-
ness (SVA)
Ego2Top

76,048 image pairs for ground-to-aerial cross-view translations. It includes road and aerial
views at a resolution of 354x354: https://github.com/lugiavn/gt-crossview

Millions of pairs of ground-level and aerial/satellite images from the United States: http:
//mvrl.cs.uky.edu/datasets/cvusa/

Annotated video sequences of sync frontal and bird-eye view in Grand Theft Auto V
(GTAV) game: https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=19

Paired egocentric and top-view videos: https://www.crev.ucf.edu/projects/ego2top/
index.php
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Table F4 Public datasets used in GAN SOTA for Table 3 - unsupervised + semi-supervised

Dataset®

Description

CUHK Face-Sketch Database
FERET (CUFSF)

FaceScrub

Horse2Zebra

Apple20range

Summer2Winter in Yosemite

Paintings2Photos (Monet,
Cezanne, Van Gogh, Ukiyo-e)

iPhone2DSLR Flower
SYNTHIA

Selfie2Anime
Places

Labeled Faces
(LFW)
Artistic-Faces

in the Wild

Clothing Co-Parsing (CCP)
Multi-Human Parsing (MHP)
Photograph2Portrait®
Cat2Dog

Streetscape

Lion2Tiger

Cheetah, Cow, Lion Rhino,
Bear, Wolf

1,194 persons’ face images with light variations and associated with a shape-exaggerated
sketch drawn by artist: http://mmlab.ie.cuhk.edu.hk/archive/cufsf/

106,863 face images of 530 celebrities in various conditions taken from the internet: http:
//vintage.winklerbros.net/facescrub.html

Horse (939) and zebra (1177) images from ImageNet: https://efrosgans.eecs.berkeley.edu/
cyclegan/datasets/

Apple (996) and orange images from ImageNet: https://efrosgans.eecs.berkeley.edu/
cyclegan/datasets/

Summer (1,273) and winter (854) images in Yosemite downloaded from Flickr: https:
//efrosgans.eecs.berkeley.edu/cyclegan/datasets/

Monet (1074), Cezanne (584), Van Gogh (401) and Ukiyo-e (1433) paintings
from Wikiart and 6,853 photographs from Flickr: https://efrosgans.eecs.berkeley.edu/
cyclegan/datasets/

1,813 iPhone and 3,316 DSLR flower images: https://efrosgans.eecs.berkeley.edu/
cyclegan/datasets/

9,400 photo-realistic rendered images from an outdoor virtual city with semantic annota-
tions for 13 classes: https://synthia-dataset.net/

Real and anime human face images: https://github.com/taki0112/UGATIT

10M images for more than 400 distinct scene categories (indoor, and outdoor): http:
//places2.csail. mit.edu/

13,233 face images of 5,749 people: http://vis-www.cs.umass.edu/lfw/

160 artistic portraits with a wide range of artistic styles (by 16 different artists). They
are annotated with 68 facial landmarks: https://faculty.runi.ac.il/arik /site/foa/artistic-
faces-dataset.asp

2,098 street fashion photos with pixel-level annotations and segmentations for 59 tags:
https://github.com/bearpaw /clothing-co-parsing

25,403 images containing at least 2 persons and labeled with 58 semantic categories:
https://lv-mhp.github.io/dataset

6,452 images selected from CelebA and 1,811 paintings from Wikiart. https://github.com/
HsinYingLee/DRIT

771 Birman cat and 1,264 husky and Samoyed dog images collected from Google Images:
https://github.com/HsinYingLee/DRIT

155K highly varied and high-resolution (3000x4000) street images captured across 4
domains (sunny, night, cloudy, rain), and it includes detailed annotations for instance-
level 12I: http://zhigiangshen.com/projects/INIT /index.html

Lion and tiger images collected from Animal With Attributes (AWA) dataset: https:
//cvmlista.ac.at/AwA/

10,000 rendered images (Wu et al, 2019) using SMALR 3D animal models from https:
//sketchfab.com/SMALR

“Public datasets can also be used to retrieve translation datasets such as different dog breeds from ImageNet, or face attributes
from CelebA, etc., or can be used with other public datasets such as SYNTHIA or GTAV and Cityscape for outdoor scenes (Liu
et al, 2017).

bt is characterized by a lower domain gap compared to Cat2Dog, turning the translation problem into an identity conservation
issue

SR Briefing

In Table H5, we compared the latest different
GAN-base SR technics. Recently, the latest Real-
ESRGAN+ has shown superiority over SATO’s
SR.

a sharpened grayscale image with depth informa- Appendix H
tion absence. Additionally, a segmentation-based
style transfers the segmentation’s colors into the

whole content image.
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Table H5 GAN-based Super Resolution Brief

GAN-based SR Advantages

Drawbacks

SRGAN (Ledig et al, First GAN-based SR architecture to
2017) recover 4 x down-sampled images

SRFeat (Park et al, Generates high-frequency features
2018)

CinCGAN (Yuan Unsupervised Training: unpaired

et al, 2018) data can be used. No need to
predefine/synthesize  degradation.
Recovers mnoisy and blurred LR
images

ESRGAN (Wang Improves SRGAN’s 3 main compo-

et al, 2018Db) nents

Real-ESRGAN Applied a second-order degradation

(Wang et al, 2021b)  model and 2D sinc filter to reduce
common ringing and overshoot arti-
facts

Real-ESRGAN-+ Improves Real-ESRGAN’s SR sharp-

(Wang et al, 2021b)  ness and reduces remaining over-
shoot artifacts. Supports different
scales.

Compared to CNN-based architec-
ture, it does not pursue a better
quantitative measure, e.g. PSNR +
Prone to distortion and many arti-
facts

Loss function layers must vary from
one image to another according to its
content

Complex architecture, difficult and
unstable training (Wang et al, 2020c¢)

Low degradation space for generat-
ing training data, thus, some arti-
facts remain.

Reduced overshoot artifacts may
remain

Inefficient for text and human face
recovery.

Appendix I Additional
Results

In this section, we present additional experi-
mentation and extended results for some of the
GAN architectures mentioned in the paper, such
as: conditional StyleGAN3, IC-GAN, ccIC-GAN,
Instance2Color, Color2Depth, image de-filtering,
and image expansion in Figures 16, 17, I8, 19, 110,
111, and I12 respectively.

Fig. G5 Style transfer experiments based on (Nakano,
2018): (a) Style image (b) Stylized output
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Fig. I6 StyleGANS3 conditional image generation for 8 logistic assets (from top to bottom): load carrier box aka. KLT Box,
Trolly, Forklift, Jack, Pallet, Stillage, STR and Electrical Jack
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Fig. I7 IC-GAN model trained from scratch: (a) Conditional instance (b) Generated output
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Fig. I8 ccIC-GAN model trained from scratch: (a) Conditional input (b) Output
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Plain Color Depth (GT) Pix2PixHD CuT

Fig. I9 Comparing domain transfer from instance segmentation image into a plain color image using Pix2PixHD and CUT
(200 epochs and 1500 paired images: 3000 total images)
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Instance Segmentation Plain Color (GT) Pix2PixHD CuT

Fig. I10 Comparing domain transfer from plain color image into a depth image using Pix2PixHD and CUT (200 epochs
and 1500 paired images: 3000 total images)
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Fig. I11 Additional results for image deblurring, saturating, dehazing and denoising
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Fig. I12 Image expansion using Boundless
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