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Abstract: Impedance theory has become a favorite method for metasurface design as it allows
perfect control of wave properties. However, its functionality is strongly limited by the condition of
strict continuity of normal power flow. In this paper, it is shown that acoustic impedance theory can
be generalized under the integral equivalence principle without imposing the continuity of power flow.
Equivalent non-local power flow transmission is instead realized through local design of metasurface
unit cells that are characterized by a passive, asymmetric impedance matrix. Based on this strategy,
a beam splitter loosely respecting local power flow is designed and demonstrated experimentally. It
is concluded that arbitrary wave fields can be connected through arbitrarily shaped boundaries, i.e.
transformed into one another. Generalized impedance metasurface theory is expected to extend the
possible design of metasurfaces and the manipulation of acoustic waves.
Keywords: Impedance theory, Acoustic metasurface, Inverse design, Precise wave manipulation

I. INTRODUCTION

Over the past two decades, a lot of efforts have been
devoted to the control of acoustic fields1. A strong
expectation is that a wave field should be manipu-
lated arbitrarily with maximum power transmission ef-
ficiency. The proposal of acoustic metasurfaces has of-
fered a feasible solution with compact design2. Effi-
cient wave manipulation can now be achieved passively
at the sub-wavelength scale by precisely processing a
microstructure3. Innovative functions such as abnormal
reflection4 and refraction5, stealth6, focusing7 and acous-
tic holography8 have been ingeniously brought into real-
ity. So far, various methods for metasurface design, in-
cluding the generalized Snell’s law9, impedance matching
techniques10–12 and diffractive metagrating theory13,14,
have been reported and widely implemented. Neverthe-
less, they sometimes remain unsatisfactory in terms of
efficiency, since parasitic scattering is hardly eliminated
in a strict sense15.

Inspired from electromagnetism16, the recently pro-
posed surface/interface impedance theory17 suggests a
new solution that goes beyond the theoretical limit of the
generalized Snell’s law. A metasurface described by the
pressure-velocity relationship on a boundary or interface
yields perfect control over power flow. It was demon-
strated that perfect abnormal reflection can be achieved
by non-local design17, while perfect abnormal refraction
can be achieved simply by quadruple Helmholtz units18.
Improvements were later proposed to expand both func-
tionality and feasibility. Transverse channels inside the
metasurface can be established for non-local power flow
control so that the coupling between units is controlled
subjectively19–21. Alternatively, when bent into the same
shape as the power flow distribution, the metasurface is
no longer required to respect the non-local power flow
condition22,23. Another idea is to balance the power flow
with the passive introduction of evanescent waves along
the metasurface24. However, all those solutions have
brought in difficulties, due to limitations on the bound-

ary shape or to the introduction of strict requirements25.
The available range of wave fields that can be contacted
together under these different strategies is thus still very
limited.
In this paper, a generalized acoustic impedance the-

ory is developed. Theoretically, it is argued that any
pair of wave fields at a given frequency can be contacted
together through arbitrarily shaped boundaries with an
impedance metasurface. Power flow conservation is no
longer strictly imposed, but only loosely, through the
idea of integral equivalence. Generalized impedance unit
cells are then proposed. Those unit cells can be designed
to approach any impedance matrix. In order to illus-
trate the resulting design of a metasurface, an example
of beam-splitting imposing loosely the conservation of
power flow is given. The results obtained in both sim-
ulation and experiment agree well and suggest that the
range of functions that can be implemented is far larger
than demonstrated to date.

II. RESULT

A. Generalized acoustic impedance theory

Consider the two disjoint regions of space A and
B depicted in Fig. 1(a). Inside them we con-
sider two harmonic sound pressure fields pA(x, y, z) and
pB(x, y, z). One can obtain from them the local ve-
locity vA(x, y, z), vB(x, y, z) and power flow distribu-
tions IA(x, y, z), IB(x, y, z), since they are non-singular
exact solutions of the Helmholtz equation. Two sur-
faces ΓA (x, y, z) and ΓB (x, y, z) are introduced to limit
the semi-infinite spaces A and B. Their normal vectors
nA (x, y, z) and nB (x, y, z) are defined as pointing to-
ward the interior of the regions. Multiple channels are es-
tablished between the two semi-infinite spaces. It should
be emphasized that the concepts of incident and trans-
mitted fields have not been imposed in this description.
Furthermore, multiple sound sources are allowed to exist
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simultaneously inside the two spaces.
In previous impedance metasurface theories, it is often

required that the two boundaries have the same shape
Γ0 (x, y, z) and normal vector n0 (x, y, z), i.e. that they
are parallel. Continuity of normal power flow is then im-
posed strictly24. In this paper, we consider a more gen-
eral metasurface with inhomogeneous thickness between
the two surfaces ΓA (x, y, z) and ΓB (x, y, z). The conser-
vation of power flow is hence imposed only weakly. The
passive and lossless connection between the two spaces is
written ∫

ΓA

IA ·nAdS +

∫
ΓB

IB ·nBdS = 0, (1)

which indicates that the structures placed between re-
gions A and B form a globally conservative system. It
should be noted that there are no restrictions on the re-
spective areas of the two surfaces, as they can be dif-
ferent. Then, segmentation of the two surfaces ΓA and
ΓB is operated according to the following principles.
First, the surfaces must be completely covered by sets of
patches DA

i and DB
i . Second, the maximum feature size

ΦDα
i
for each patch Dα

i should be deeply sub-wavelength
(ΦDα

i
≪ λ0), with α = A or B. Third, the variables pα,

vα and the normal vectors nα within each patch should
be slowly varying along the boundary and assume an
average value approximately equal to the value at the
midpoint of the patch. Fourth, for any patch Dα1

i1
, there

is always a corresponding patch Dα2
i2
, satisfying∫

D
α1
i1

Iα1
·nα1dS +

∫
D

α2
i2

Iα2
·nα2dS = 0. (2)

For the Cases 1 and 2 depicted in Fig. 1(a), α1 = A,
α2 = B, and i1 = i2; for Case 3, α1 = α2 = A or B,
and i1 ̸= i2. The conservation of power flow is now es-
tablished in the framework of integral equivalence. The
distance between two patches is expected to remain short
for practical operation, although this requirement is not
essential. Then one can use a series of channels to con-
nect patches, as illustrated in Fig. 1(a). As the condi-
tions above actually do not impose strong restrictions on
the spatial location, the layout of each channel can be
flexible. Two patches can be connected orderly, such as
Channels 1 and 2 in Case 1. One can further establish
channels crosswise if necessary, as Channels 3 and 4 in
Case 2, though this possibility may only be offered by a
3-dimensional microstructure. Channels connecting two
patches of the same boundary are allowed as well, such
as Channels 5 and 6 in Case 3. Such channels are termed
generalized impedance units in this paper and provide
functionalities beyond those of previous impedance meta-
surfaces. Finally, the j-th generalized impedance unit
is approximately characterized by the unique impedance
matrix [

p|Dα1
i1

p|Dα2
i2

]
=

[
Zj
11 Zj

12

Zj
21 Zj

22

][
(−nα1

·v) |Dα1
i1

(−nα2
·v) |Dα2

i2

]
. (3)

It is worth noting that the above definition of
the impedance matrix is slightly different from the
previous17, since the normal vectors are now selected ac-
cording to the boundary of definition of the considered
acoustic field.
Let us now examine what we get when the general-

ized impedance units exactly satisfy the objective pres-
sure and velocity fields at the two ports. Both acoustic
fields obey the governing equations inside spaces A and
B and their zero and first order boundary values are dis-
cretely related by the generalized impedance elements of
Eq. (3). Meanwhile, the conservation of power flow is
satisfied according to Eq. (2). The total field composed
of pA and pB thus forms a single proper global wavefield
solution of the second-order partial differential equation
of acoustics. This result in fact indicates that two ar-
bitrary semi-infinite sound fields can be connected only
by designing generalized impedance units that meet the
required impedance characteristics.
Spaces A and B are allowed to be finite as well as

to include additional boundaries. Additional bound-
ary conditions would not cause trouble since they do
not occur in the discussion. Furthermore, the permis-
siveness of Case 2 compared to Case 1 is worthwhile
for some three-dimensional scenarios. Such units may
achieve the negative coupling effect, similarly to topolog-
ical phononic crystals26,27. They also have potential in
effective impedance modulation for extraordinary acous-
tic transmission28 or generation of spiral impedance pat-
terns for acoustic vortices29,30. Along the same line, the
connection of multiple sound fields is allowed as well, in-
cluding with different background media, as the conclu-
sions above would still hold. Conversely, all three cases
depicted in Fig. 1(a) would remain the same if A and
B were regarded as two different sections of the same
space. Hence, both transmissive and reflective metasur-
faces, and even metasurfaces with transverse channels19,
can be established within a unified framework.
Finally, the proposed generalized acoustic impedance

theory is naturally compatible with the conventional
one. One may strictly stipulate that ΓA (x, y, z) =
ΓB (x, y, z) + C, where C is a constant. Then, the de-
signed metasurface would have a uniform thickness. At
this point, the generalized theory would degenerate into
the conventional theory if only channels of Case 1 are
adopted with DA

i
∼= DB

i . As a result, a strict require-
ment on the power flow would be back into consideration
and functionality would be greatly weakened.

B. Generalized acoustic impedance unit

It is essential to ensure that any target impedance
matrix can be approached by an artificial unit. Gen-
erally speaking, the impedance characteristics are hardly
checked directly. The design and measurement method
for conventional impedance units18 is also generalized
here within the framework of generalized impedance the-
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ory.

Any of the impedance units of Fig. 1(a) can be rep-
resented by the general geometry depicted in yellow in
Fig. 1(b). The impedance unit generally includes some
microstructures that are added to meet the impedance
requirements for actual operation; they are not illus-
trated here for simplicity. The two terminal ports are
not required to be parallel or to connect two different
spaces. The pressure field inside the generalized unit un-
der any excitation should be unique and independent of
the direction of power flow, since its characteristic size
is deeply sub-wavelength. Despite being possibly placed
in different environments, the impedance unit exhibits
a unique impedance matrix. This allows one to attach
waveguides on both sides (shown as gray parts) to check
its impedance. Note that the waveguides should be per-
pendicular to the ports of the unit but can have different
cross-sectional areas as the ports do. The contribution
of the generalized impedance unit to the global field is
analyzed next under integral equivalence.

The impedance matrix can be examined by measuring
a given set of incident, reflected and transmitted waves
with total pressure field illustrated in Fig. 1(c) Still
thanks to the deeply sub-wavelength characteristic size,
the pressure field can be described by a one-dimensional
curvilinear coordinate. This abstraction works for all
three cases, as the above process does not explicitly spec-
ify the direction of power flow or of the incident wave.
Therefore, we can abstract it as an impedance interface
without thickness, placed at y = 0, as shown in Fig. 1(d)
for an intuitive illustration. One needs only to launch
an incident plane wave from one side to check impedance
and scattering matrices, as the generalized impedance
unit is linear. Considering an incident excitation pin(y)
along the negative y-axis, the reflected wave pre(y) and
the transmitted wave ptr(y) satisfy

[
pin + pre

ptr

]∣∣∣∣
y=0

=

[
Zj
11 Zj

12

Zj
21 Zj

22

] [
−
(
vin + vre

)
vtr

]∣∣∣∣
y=0

, (4)

together with the conservation of power flow

1

2
Re

[(
pin + pre

) (
vin + vre

)∗]∣∣∣
y=0

·A1

=
1

2
Re

[
ptr

(
vtr

)∗]∣∣∣
y=0

·A2, (5)

where A1 and A2 are the areas of the upper and the
lower ports, respectively; Z0 = c0ρ0 is the characteristic
impedance of the background medium.

For a passive and lossless system, each component
of the impedance matrix Zj is imaginary (Zj

ik = ıXj
ik,

where ı2 = −1). Solving (4) leads to

Xj
11 = Z0

pi cosφt + pr cos (φr − φt)

pi sinφt + pr sin (φr − φt)
, (6)

Xj
12 = Z0

(
p2i − p2r

)
/pt

pi sinφt + pr sin (φr − φt)
, (7)

Xj
21 = Z0

pt
pi sinφt + pr sin (φr − φt)

, (8)

Xj
22 = Z0

pi cosφt − pr cos (φr − φt)

pi sinφt + pr sin (φr − φt)
, (9)

where pi, pr, and pt are the amplitudes of incident, re-
flected and transmitted waves (positive and real num-
bers), φr, and φt are the reflected and transmitted phases
with respect to the incident phase, respectively. Notice
that Eq. (5) can be simplified to(

p2i − p2r
)
A1 = p2tA2, (10)

which implies

Xj
12

Xj
21

=
p2i − p2r

p2t
=

A2

A1
. (11)

Xj
12 = Xj

21 holds if and only if the areas of the two
ports are equal (A1 = A2), in which case the gener-
alized unit degenerates into the conventional one. Be-
sides, Eq. (11) indicates that Xj

12 and Xj
21 are not in-

dependent for a given area ratio A2

A1
. Hence, there are

only three independent components in the impedance
matrix: Xj

11, X
j
12 and Xj

22. Assuming pi = 1, pr and
pt are covariant according to Eq. (10). A complete

mapping
{
Xj

11, X
j
12, X

j
22

}
→ {pt, φr, φt} is hence estab-

lished through Eqs. (6)-(9). There is always a unique set
{pt, φr, φt} corresponding to any impedance matrix Zj .
One can construct a generalized impedance unit with a
target impedance matrix by simply adjusting the trans-
mission amplitude pt and the phase differences φr and
φt. As a result, the design of the impedance matrix
simplifies to a manipulation of transmission and reflec-
tion coefficients and any impedance matrix is available
through an artificial generalized impedance unit.
It is generally considered that an asymmetric

impedance matrix signals an active device24. However,
the generalized impedance unit we just described repre-
sents a passive and lossless system as no external source is
included. Because Xj

12 ̸= Xj
21 here results from different

port areas, one may normalize amplitudes by the square
root of the port area and the resulting impedance matrix
would again be symmetric. However, the boundary con-
ditions on both sides of the generalized impedance meta-
surface are still determined by the impedance matrices
before normalization. Hence, normalization is not obvi-
ously beneficial overall. Though the impedance matrix is
asymmetric, the generalized impedance unit is still lin-
ear, passive and lossless. A detailed scattering analysis
is proposed in Supplementary text (see Supplementary
Note 1).
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C. Design of generalized impedance metasurface

Although the generalized impedance theory does not
impose many restrictions and applies in almost all cir-
cumstances, it may seem difficult to apply in practice. It
is indeed cumbersome to take into account the shapes of
the two interfaces ΓA (x, y, z) and ΓB (x, y, z) together

with the normal power flow distribution I⃗A · n⃗A and

I⃗B · n⃗B , especially for inverse design of generalized units.
The practical solution illustrated in Fig. 2(a) is sug-
gested herewith to provide an easier implementation of
the design. A lattice with regular shape is added as a
relay between the two surfaces. For independent design
of impedance units, each cell in the lattice is rigidly iso-
lated from its neighbors. The connection between the
upper and lower surfaces and the regular lattice can then
be established following the principles mentioned above.
Note that all connections should be fabricated with a
transmittance close to 1. Consequently, the structure of
the conventional impedance unit18 can be directly ap-
plied here. Only the structures inside the lattice need to
be optimized to meet the target impedance requirements.
The definition of the generalized impedance metasurfaces
is then simplified into two independent steps: path plan-
ning and conventional impedance unit design. In this
section, a generalized impedance metasurface for beam
splitting is designed as a demonstration of this design
strategy.

A feasible scheme based on conventional impedance
theory to define an arbitrary beam splitter is to intro-
duce evanescent waves on the incident side to balance
the power flow24. This solution, however, implicitly re-
stricts the output waves to be split at a large angle (see
“Supplementary Note 2”). Small splitting angles may
thus not be achieved by conventional impedance theory.
Although it may be implemented using the generalized
Snell’s law, parasitic scattering would inevitably occur31,
resulting in efficiency below 100%17. In addition, it is al-
most impossible to apply if more than two plane waves
are expected on the transmission side. This illustrates
the restricted nature of scenarios to which conventional
impedance theory can be applied.

Generalized impedance theory is employed here to
solve this dilemma. The incident field pA is a plane wave
with incident angle θin = 0◦. The transmitted field pB

is composed of a pair of transmitted waves with trans-
mission angles θt1 = −θt2 = 13.5◦ and phase differences
φt1 = φt2 = 60◦. An operating frequency of f0 = 3500
Hz is adopted. Such a configuration is not compatible
with conventional impedance theory (see “Supplemen-
tary Note 2”).

The channels of Case 1 in Fig. 1(a) are adopted as
generalized units. The length of the generalized units,
i.e. the thickness of metasurface, is set to tm = 13.1
cm. The unit of metasurface is composed of a trape-
zoidal entrance channel with a height ht = 3 cm and
quadruple Helmholtz resonators with a height hh = 10.1
cm, as shown in Fig. 2(b). The resonators and trape-

zoidal channel correspond to the regular lattice in Fig.
2(a) and the high transmittance connection to pA, re-
spectively. The resonators are directly connected to the
transmitted field, thus another high transmittance con-
nection to pB is skipped. The width of lattice is set to
wo = 1.4 cm. The width of the lower port wi of each unit
is then given by Eq. (11). It should be noted that there
is a gap width δ = 1 mm at each side of the entrance
(wi), for isolation between adjacent units.
Some walls with thickness δ = 1 mm are added to en-

sure intact power flow transmittance through the trape-
zoidal channel. The distances between the two walls on
the right and the upper boundary are h1

r and h2
r, and

the wall lengths are l1r and l2r , respectively. The distance
from the left wall is h1

l and the wall length is l1l . A
waveguide with width wa = 1 mm is connected in the
middle of the upper boundary. The above six parame-
ters

{
h1
r, h

2
r, h

1
l , l

1
r , l

2
r , l

1
l

}
are used as optimization vari-

ables for a genetic algorithm, so that the incident power
from wi completely enters the waveguide.
Four Helmholtz resonators are then connected to the

waveguide. The width and the height of the i-th res-
onator from top to bottom are wi

r and hr = 2.4 cm, re-
spectively. The neck width is wi

n and the thickness δ = 1
mm. With the parameters of the trapezoidal part fixed,
wi

n and wi
r together with wa are further used as opti-

mization variables in a genetic algorithm to search for a
structure with the target impedance characteristics. De-
tailed information on parameters and the optimization
algorithm are presented in Supplementary text (see Sup-
plementary Note 3).

D. Validation via simulation and experiment

The three-layer numerical model can be referred to for
verification17 of conventional impedance metasurfaces.
Impedance units are numerically described through using
a sequence of three impedance interfaces so as to predict
the operating effect of the physical structure. However,
the impedance matrices obtained from Eq. (3) are asym-
metric, whereas the three-layer numerical model only de-
scribes symmetrical matrices. Considering that the be-
havior of generalized impedance units is similar to that
of active devices, a pseudo-real expression is proposed for
numerical simulations (see Methods section for details).
The impedance matrix derived by this method possesses
symmetric components, as shown in Fig. 2(c). The de-
sign target and the optimization result for each general-
ized impedance unit are indicated with circle and square
markers, respectively. The simulation of the target is
then conducted through the three-layer numerical model
as shown in Fig. 2(d). Detailed information regarding
the pseudo-real expression and the three-layer numerical
model are given in the Methods section. A simulation
verification of the designed generalized impedance meta-
surface is illustrated in Fig. 2(e). Beam splitting consis-
tent with the target design is observed, alongside some
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spurious scattering.

A quantitative comparison through mode analysis of
the transmitted field is given in Fig. 2(f). Each trans-
mitted plane wave should theoretically transport 50%
of the transmitted intensity, but for the practical struc-
tures there is still 4% of the intensity that leaks into
other modes. The major reason causing this phenomenon
is the limited geometrical parameter. The 7th − 9th

and 22nd − 24th units are merged for the convenience
of fabrication, but it makes w′

o = 3wo > λ0/3. Mean-
while, although the upper port width is determined as
wo < λ0/5, the maximum width of the lower port is
wi = 2wo > λ0/4. In a sense, they actually violate the
deeply sub-wavelength requirement (ΦDi ≪ λ0). Their
impedance matrices may no longer be unique at an arbi-
trary incident angle. Also, the tangential dimensions of
the quadruple Helmholtz resonators makes it hard to re-
fine the division of generalized impedance units. More
efforts need to be made to design more efficient unit
structures with thinner tangential dimension, in order
to support the requirements of generalized impedance.

An experimental verification was carried out using 3D
printing. Detailed information on the construction of the
experimental platform shown in Fig. 3(a) is provided in
the Methods Section. A photograph of one period of the
fabricated generalized impedance metasurface is shown
in Fig. 3(b). The distributions of the real part of the
sound pressure field in both simulation and experiment
are shown in Figs. 3(c)-(e). All fields have been normal-
ized with reference to the incident wave. An ideal result
is presented in Fig. 3(c) through simulation, for compar-
ison purpose. The incident plane wave is split into two
main steered beams after passing through the metasur-
face. Consistent with the expectation, the amplitudes of
the steered beams are both about 0.7 Pa and the trans-
mission angles are ±13.5◦. The region corresponding to
the measurement area (white dashed box) is extracted as
shown in Fig. 3(d) for a comparison with the experimen-
tal result of Fig. 3(e). Good consistency can be observed
visually. Some parasitic scattering can be noticed near
the center of Fig. 3(e). We attribute it to unsatisfac-
tory fabrication and viscous loss. Due to heating and
moisture deformation of photosensitive resins, the meta-
surface does not work exactly as expected. Furthermore,
the connection between adjacent periodic structures is
not strictly intact. The impedance of the generalized
units is also affected by viscosity, resulting in a devia-
tion from theoretical expectations regarding the interface
impedance. Distortion of the sound pressure field occurs
consequently. A detailed discussion of viscous loss, to-
gether with a plot of the radiation pattern, is proposed
in Supplementary text (see Supplementary Note 4). It is
found that the transmitted field is generally satisfactory
with the formation of two main beams with transmission
angles of about +11.8◦ and −9.3◦.

In summary, generalized impedance theory can theo-
retically transform any acoustic field. For an illustration
of its functionality, an additional example of a metasur-

face producing multiply split beams is provided in Sup-
plementary text (see Supplementary Note 5). The am-
plitude of each beam can be customized arbitrarily, even
with viscosity considered. The practical design of gener-
alized unit structures might still become a limitation in
the future. Subsequent work should focus on obtaining
solutions for more efficient structures and miniaturized
generalized units.

III. DISCUSSION

In this paper, conventional acoustic impedance theory
was extended to a more general form named generalized
impedance theory. The conservation of power flow does
not need to be imposed strictly in the normal direction,
but only integral equivalent. A generalized impedance
unit is then proposed that provides great flexibility to
fulfill arbitrary impedance requirements. Taking beam
splitting as an example, the construction of a general-
ized impedance metasurface and the design of the gen-
eralized units was demonstrated. Adopting quadruple
Helmholtz resonator together with a trapezoidal connec-
tion, the generalized unit with target impedance matrix
was approached by a real model. The design based on the
proposed generalized impedance theory was validated by
simulation and experiment.
The proposed theory has great potential for exploita-

tion in acoustics. Any number of acoustic fields with
different signatures can be connected, as long as a conser-
vation condition and the governing equations are obeyed.
Generalized impedance theory also has a wide range of
application scenarios, as the shape of the metasurface is
not restricted. Sole limitations are brought about be-
cause of the lateral size of the units. Units that cannot
be designed at the deep sub-wavelength scale weaken the
applicability of generalized impedance theory to some ex-
tent, although this is not a drawback of the theory itself.
Subsequent work will be devoted to developing more com-
pact structures for generalized impedance units.

IV. METHODS

A. Pseudo-real expression for generalized
impedance unit

Impedance matrices obtained from Eq. (3) are asym-
metric, whereas the three-layer numerical model can only
describe symmetrical matrices. A pseudo-real expression
with a symmetrical impedance matrix for the generalized
impedance unit is developed here.
A generalized impedance unit with A1

A2
> 1 visually re-

sembles an active device, though it is passive and lossless.
Since active devices encompass the passive and lossless
case, the form of an active impedance matrix can be em-
ulated. It is assumed that there is a virtual source in the
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channel, but that the impedance matrix remains sym-
metrical. If the virtual source is placed at port 1, the
impedance matrix in Eq. (4) is modified to include a

reactive real term Rj
11:[

pin + pre

ptr

]∣∣∣∣
y=0

=

[
Rj

11 + ıXj
11 ıXj

12

ıXj
12 ıXj

22

] [
−
(
vin + vre

)
vtr

]∣∣∣∣
y=0

.

(12)
Solving for Eq. (12) taking account of Eq. (5) leads to

Rj
11 = Z0

(
p2i − p2r

) (
1− A1

A2

)
p2i − 2 cosφrpipr + p2r

. (13)

Hence the real part is negative (R11 < 0) and the gener-
alized unit is equivalent to a negative resistance.

For a symmetric impedance matrix, the order of the
subscripts of the impedance components can be directly
reversed when ports are exchanged. But things are differ-
ent for Eq. (12) when the generalized impedance unit is
observed inversely. The port area ratio becomes A1

A2
< 1

and the virtual source moves to port 2. After exchanging
subscripts 1 and 2 in Eq.(12), the real component of Zj

22

becomes

Rj
22 = Z0

(
p2i − p2r

) (
1− A1

A2

)
p2t

. (14)

The generalized unit now is resistive since R22 > 0. This
means that active units can emulate generalized units
only under the condition of one-way power flow transfer.
The impedance matrix of Eq. (12) is termed the pseudo-
real impedance matrix in this paper.

B. Theoretical requirements for beam splitting

For defining a beam splitting generalized impedance
metasurface, we consider the incident and transmission
pressure fields

pA = pie
−ı(φi+k0 sin θinx+k0 cos θiy), (15)

pB = pt1e
−ı(φt1+k0 sin θt1x+k0 cos θt1y)

+ pt2e
−ı(φt2+k0 sin θt2x+k0 cos θt2y), (16)

with the velocity fields

v⃗A = − pi
Z0

e−ı(φin+k0 sin θinx+k0 cos θiny)

× (− sin θinex − cos θiney) , (17)

v⃗B = −pt1
Z0

e−ı(φt1+k0 sin θt1x+k0 cos θt1y)

× (− sin θt1ex − cos θt1ey)

− pt2
Z0

e−ı(φt2+k0 sin θt2x+k0 cos θt2y)

× (− sin θt2ex − cos θt2ey) . (18)

For convenience, we still adopt ΓA/B : y = 0. Although
ΓA and ΓB are coincident at first, one of them can later
be shifted alongside the field pA/B , in order to add suffi-
cient space to accommodate the metasurface. Substitut-
ing Eqs. (15-18) into Eq. (2), the power flow conserva-
tion condition can be solved as

p2i
2Z0

cos θin =
p2t1
2Z0

cos θt1 +
p2t2
2Z0

cos θt2. (19)

Air is still adopted as the background medium. The in-
cident angle is set as θin = 0◦ for convenience. To ensure
periodicity, transmission angles are set to θt1 = −θt2 =
13.5◦ with the phase difference φt1/t2 − φi = 60◦. The
periodicity of metasurface is then C = λ0/ sin (θt1) = 42
cm.

C. Numerical simulation

Numerical simulations were conducted with the COM-
SOL Multiphysics Pressure Acoustics module. Air is
described as an inviscid fluid with a sound velocity of
c0 = 343 m/s and a mass density of ρ0 = 1.18 kg/m3.
In consideration that beam splitting is a one-way power
transfer, the pseudo-real expression was adopted for the
simulations reported in Fig. 2(e). The impedance rela-
tionship in Fig. 2(d) is given symmetrically as[

pA|y=0

p|DB
k

]
=

[
Rk

11 + ıXk
11 ıXk

12

ıXk
12 ıXk

22

] [
−n⃗ · v⃗A|y=0

−n⃗ · v⃗|DB
k

]
. (20)

The metasurface is divided equally into 30 three-layer
units whose impedance components are marked as cir-
cular points. Each unit is composed of two waveguides
with a length l0 = tm/2 = 6.55 cm and three interior
impedance boundaries determined by

Z1 = R11 + ıX11 + ıX12 + ıZ0 cot (k0l0) , (21)

Z2 = 2ıZ0 cot (k0l0)−
Z2
0

ıX12
sin−2 (k0l0) , (22)

Z3 = ıX22 + ıX12 + ıZ0 cot (k0l0) . (23)

An interior sound hard boundary is set between adjacent
units for isolation. The transmitted and incident fields
above and below the metasurface are of equal width to
the metasurface period, with a height of 2.5λ0. The left
and right edges of the model are set as periodic condi-
tion with Floquet periodicity. The k-vector for Floquet
periodicity is set as kF = (0, 0) Two perfectly matched
layers with thickness of λ0/2 are connected to the upper
and lower boundaries of the model to avoid reflection.
The scaling factor of perfectly matched layers is set as 2
and scaling curvature parameter is set as 1. The mesh is
set with a maximum size of λ0/10 and a minimum size
of λ0/40 for convergence and the discretization is set as
Quadratic Lagrange. Additional refinement of the mesh
is performed near the impedance boundaries. The back-
ground pressure field is set as a plane wave with unit
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amplitude pi = 1 Pa. The simulation in Fig. 2(f) uses
the same simulation settings but replaces the three-layer
numerical model with the practical structures.

The simulation in Fig. 3(c) is set according to the
experimental environment in Fig. 3(a). Four periods of
the metasurface are included. A line source with a length
of 90 cm, unit amplitude and an operating frequency of
3500 Hz is placed in the incident field at a distance of 15
cm from the metasurface. The transmitted and incident
fields above and below the metasurface are set with a
width of 2 m, and a height of 0.3 m and 5 m, respectively.
The other settings are the same as in Fig. 2.

D. Experimental apparatus

The signals generated and the collected in the experi-
ment are controlled by a B&K 3160-A-042 control module
connected to a computer. The solid part is composed of
a photosensitive resin which can be regarded as rigid in
air. The experimental setup and fabricated sample are
shown in Figs. 3 (a,b). Four periods of the metasurface
are included and placed in a 2D single mode waveguide
with a thickness of 2 cm. A line source with a length of
90 cm and an operating frequency of 3500 Hz is placed
at a distance of 15 cm from the metasurface. The whole
experimental environment is surrounded by foam wedges
to avoid reflection. A rectangular area with a length of
63 cm and a width of 30 cm, placed 10 cm away from the
metasurface, is selected as the measuring area. There are
63×30 evenly distributed points with a sampling spacing

of 1 cm.
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Case 1 Case 2 Case 3 (b)(a) (d)(c)

Generalized
Impedance Unit

Check with
Plane Wave Incidence

Described by
Interfaces Impedance

Channel 1

Channel 2

Channel 4

Channel 5

Channel 6

Channel 3

A

B

FIG. 1: (a) Illustration of generalized impedance metasurface. Two pressure fields pA (x, y, z) and pB (x, y, z) exist in the
disjoint semi-infinite spaces A and B. Multiple channels are established between their boundaries ΓA (x, y, z) and ΓB (x, y, z),
including orderly connected channels (Case 1), crosswise connected channels (Case 2) and self connected channels (Case 3).
(b-d) Sketch of the design of a generalized impedance unit. (b) An impedance unit with arbitrary shape and internal structures
(yellow part) connected with waveguides (gray part) on both sides. (c) An impedance unit with arbitrary shape and internal
structures is checked by plane wave incidence with total pressure field described by one-dimension curve coordinate. (d) An
impedance interface abstracted from the physical structure.
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Regular Lattice with Artificial Structure

Connection with
100% Transmittance

Connection with
100% Transmittance

Incident Wave

Transmitted Wave(a) (b)

(c)

Normalized Pressure
+1.5-1.5 0 10 cm
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FIG. 2: Design and simulation verification of a generalized impedance metasurface. (a) Illustration of the definition of the
generalized impedance metasurface. Two pressure fields, pA (x, y, z) and pB (x, y, z), are placed in the space regions A and B.
A regular lattice with a particular internal structure is positioned between them. Each cell in the lattice is rigidly isolated. The
connection between the sound fields and the lattice is supposed to achieve 100% transmittance to reduce the design complexity.
A plane wave with an incident angle θin is split into two plane waves with transmission angles θt1 and θt2 after passing through
the metasurface. (b) Schematic diagram of the generalized impedance unit. (c) Analytical determination of the required
impedance matrix described by the pseudo-real expression: R11 (gray curve), X11 (orange curve), X12 (green curve), X22 (blue
curve). The target impedance components (circular points) and impedance components of the practical structure are obtained
through optimization (square points). (d-e) Verification of beam splitting based on generalized impedance theory described
with (d) the three-layer numerical model and (e) the practical structure. (f) Mode analysis of the transmitted field for the
three-layer numerical model (blue line) and the practical structure (green line).
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FIG. 3: Experimental verification for generalized impedance metasurface. (a) Sample and experimental setup. (b) A period of
the fabricated generalized impedance metasurface. (c) Simulation results given by metasurface under excitation of finite width.
The acoustic field in the measuring area is given through (d) simulation and (e) experiment using the same colourbar as (c).


