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Abstract Clustering is an unsupervised machine learning method grouping
data samples into clusters of similar objects, used as a system support tool
in numerous applications such as banking customers profiling, document re-
trieval, image segmentation, and e-commerce recommendation engines. The
effectiveness of several clustering techniques is sensible to the initialization
parameters, and different solutions have been proposed in the literature to
overcome this limitation. They require high computational memory consump-
tion when dealing with big data. In this paper, we propose the application
of a recent object detection Deep Learning model (YOLO-v5) for assisting
the initialization of classical techniques and improving their effectiveness on
two-variate datasets, leveraging the accuracy and reducing dramatically the
memory and time consumption of classical clustering methods.

Keywords Clustering algorithms; Clustering initialization methods; Clus-
tering initialization metrics; Deep Learning object detection model

1 Introduction1

Clustering is an efficient solution to split the observations in a dataset into2

groups, that are characterized by a high similarity of observations within each3
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group and a high distance between different groups [1,2]. Mainly, the cluster-4

ing methods are unsupervised machine learning methods that can be paramet-5

ric [3] (i.e. probability-based) or non-parametric [4], and they serve as support6

tools for systems (see e.g. [5] for MRI images). The non-parametric clustering7

methods are often based on an empirical function that measures the similarity8

or dissimilarity between the data points [6].9

In addition, the clustering methods can be classified into partitional and10

hierarchical ones. We shall deal with the former type, where each observation11

is initially assigned to a unique cluster, and they are rearranged according to12

an optimality criterium [7].13

Partitional clustering algorithms suffer from several challenges, concerning14

their reliability and efficiency. The main challenge is that the stability and con-15

vergence of the clustering algorithms depend on the initialization parameters.16

In addition, they are generally applied to unlabeled datasets, where the num-17

ber of clusters is unknown. However, some clustering methods (as k-means)18

require the choice of a given number of clusters. In order to estimate the most19

likely number of clusters, several metrics can be employed (e.g., see Table 1),20

some of them being computationally expensive when dealing with large-scale21

datasets.22

We propose an efficient solution to estimate the number of clusters and23

their initialization parameters. It consists of training a supervised object de-24

tection neural network in order to (1) detect the number of clusters, and (2)25

optimize the initialization parameters of the current clustering algorithms.26

Without it, the efficiency of the classical algorithms is compromised, since it27

depends on fortunate initial guesses for the parameters, that are unlikely in28

high dimensional problems.29

Our approach is assessed through extensive experimental results with meth-30

ods such as k-means (in two implementations) and Fuzzy c-Means (FCM). The31

results show an improvement in both performance and stability of the consid-32

ered clustering algorithms.33

The rest of the paper is organized as follows: in Section 2, we briefly describe34

the selected clustering algorithms, the internal validation metrics, and the35

object detection Deep Learning (DL) tool. Then, Section 4 presents the new36

methodology that we propose for the optimization of the clustering problem.37

In Section 5, experimental results with real datasets are presented to validate38

the efficiency of the proposed solution. Finally, conclusions are depicted in39

Section 6.40

2 Related Works41

In the sequel X = {x1, x2, . . . , xn} denotes a set of n data points in R
d, the42

Euclidean space of dimension d. These data points can be clustered in m43

different clusters with centroids denoted by C = {c1, c2, . . . , cm}.44
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2.1 Clustering Algorithms45

Clustering algorithms have been extensively explored in the literature and im-46

plemented in a set of substantive areas [1,8,9]. We shall consider algorithms47

based on the Expectation-Maximisation (EM) algorithm [10]. The EM algo-48

rithm is an iterative algorithm, where each iteration consists of two steps:49

computing the expectation (E-Step) and maximizing it (M-Step). This prob-50

abilistic technique is generally used to solve Maximum Likelihood problems.51

2.1.1 K-means52

The k-means algorithm [11] tries to find the optimal m (given by the user)53

clusters in a dataset through the following steps:54

1. Initializem centroids by randomly selectingm data-points without replace-55

ment.56

2. Iterate the following steps, until a maximum number of steps is reached,57

or until the difference between two successive sets of centers is below some58

error threshold.59

(a) Update of the cluster membership: for each data-point, compute the60

Euclidean distance to each one of the present centroids, and assign61

that data-point (only) to the closest centroid (E step).62

(b) Update the centroids: compute the new centroids as the average of the63

data-points within the corresponding updated cluster (M step).64

The k-means algorithm tries to minimize the inertia, which is defined as65

the sum of the squared distances between data-points and their centroids. We66

can express it by the Equation67

Jm(X, c) =

n∑

i=1

m∑

k=1

uki‖xi − ck‖
2, (1)

where uki is a membership matrix (with value 1 only if the data-point xi68

belongs to the cluster with center ck, and null otherwise).69

The initial centroids are usually chosen at random from the dataset (Lloyd’s70

implementation [12]). k-means++ [13] is a smarter heuristic for setting the71

initial centroids to achieve faster convergence. In any case, the number of72

clusters must be given beforehand, and the attainment of the minimum inertia73

is not ensured, as the algorithm might stick to a local minimum.74

The x-means algorithm [14] is a modified version of k-means, which does75

not require a given number of clusters: it relies on the Bayesian Information76

Criterion (BIC) in order to decide the number of clusters. However, the sta-77

bility of x-means still depends on its initialization. Let us mention that the78

computation of the BIC measure presents a high computation overhead with79

large datasets.80

The Fuzzy c-Means (FCM) algorithm, first presented by Dunn [15] and81

later improved by Bezdek [16], leverages the fuzzy algebra to express the si-82

multaneous membership of a data-point to different clusters. It computes a soft83
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partition of the dataset. In order to get the partition with FCM, it is sufficient84

to consider that each data-point shall belong to the cluster with maximum85

membership degree. The FCM algorithm tries to minimize the inertia, given86

by the equation87

Jz(X, c) =

n∑

i=1

m∑

k=1

(uki)
z‖xi − ck‖

2
A, (2)

where z is called the fuzziness parameter, initialized to a value between 288

and 3, and ‖·‖2
A
stands for any mathematical distance. It entails the following89

steps:90

1. Initialize a random membership matrix U0 = (uki) such that
∑m

k=1 uki = 191

for any data-point xi, i = 1, 2, . . . , n.92

2. Iterate the following steps, until a maximum number of steps is reached,93

or until the difference between two successive matrices is below some error94

threshold (‖U t+1 − U t‖2 < ε):95

(a) Update the centroids using the membership matrix U t (E-Step).96

(b) Update the membership matrix U t+1 using the computed centroids in97

the previous step (M-Step).98

Just like k-means, the FCM algorithm is very dependent on the initial mem-99

bership matrix, which is randomly chosen. Our approach manages to handle100

this limitation very efficiently since the initial U0 matrix will be tightly linked101

to the detected centroids.102

2.2 Validation Metrics103

When the dataset contains labels specifying the group of each observation, the104

true labels can be used to validate the performance of the clustering method.105

Otherwise, there are several different approaches for the best estimation of the106

number of clusters [25], and we list the most widely used ones in Table 1.107

In general, the use of these metrics implies the execution of the clustering108

methods for a sequence of values (of the number of clusters), and the selection109

of the most likely value under an optimization criterium.110

3 Proposed Model111

Object detection is among the classical computer vision problems. It aims to112

identify which objects are in the image and their corresponding locations. The113

object detection issue is more complex than the classification problem, which114

consists of recognizing objects but without indicating their locations in the115

image.116

117
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Table 1: Several metrics to estimate the number of clusters for the k-means
clustering algorithm

Reference Metric Description
[17] Adjusted

Rand
Index
(ARI)

It measures the similarity between the cluster assignments by making
pair-wise comparisons. A higher score signifies greater similarity.

[18] Bayesian
Infor-
mation
Criterion
(BIC)

BIC is a criterion for measuring and selecting models. It relies on the
principles of Bayesian inference and probability. The complexity of
the model is penalized by the BIC, so more complex models would
have a lower score and therefore be less likely to be chosen.

[19] Fowlkes-
Mallows
Index
(FMI)

FMI performs the external evaluation using labels that are already
known. Scores use pairwise precision and recall to assess how cor-
rectly cluster assignments were performed. The score is defined as
the geometric mean of precision and recall. Higher similarity is indi-
cated by a higher score.

[20] Akaike
Infor-
mation
Criterion
(AIC)

It is suitable for models that fit into the maximum likelihood esti-
mation system, like BIC. The lower are the AIC and BIC, the better
is the clustering performance.

[15] Dunn’s
index
(DN)

DN defines sets of clusters that are compact, with a very small varia-
tion between cluster members, and large separation between clusters.
The higher is the value of Dunn’s index, the better is the cluster-
ing performance. The optimal amount of clusters is the number of
clusters that maximises the Dunn’s index.

[21] Davies-
Bouldin
index
(DB)

It calculates the average similarity between each cluster and its most
similar one. The DB validity index aims to maximize the distances
between clusters while minimizing distances between the cluster cen-
troid and its data objects.

[22] Silhouette
Width
(SIL)

It is a statistic that measures how similar an object is to its own
cluster versus other clusters. The silhouette value ranges from −1
to 1. A high silhouette value is well suited to its own cluster but
poorly related to neighboring clusters. Positive and negative high
silhouette widths indicate the objects that are correctly clustered
and those that are incorrectly clustered, respectively. It is well known
that objects with a SW validity index of zero or less are difficult to
be clustered.

[23] Calinski
and
Harabasz
index
(CAL)

This metric is the ratio of the sum of between-cluster dispersion
and inter-cluster dispersion for all clusters. It is known also as the
Variance Ratio Criterion. The higher is this score, the better is the
clustering performance.

[24] Gap
statistic
(GAP)

It is a statistical hypothesis test-based cluster validity measure. At
each value of the cluster number, the gap statistic compares the
variation in within-cluster dispersion to that predicted under an ap-
propriate reference null distribution. The smallest is the number of
clusters, the best is the clustering performance.

In this paper, we use YOLO-v5 [26], a recent update of the YOLO family,118

the first object recognition model to merge bounding box estimation and ob-119

ject identification in one end-to-end differentiable network. In comparison to120

previous YOLO models, YOLO-v5 is the first one developed with the PyTorch121

framework [27,28], and it is more lightweight and simple to use compared to122

previous YOLO variants.123

YOLO-v5 is based on a smart Convolutional Neural Network (CNN) for124

real-time object detection. This algorithm divides the image into regions and125

calculates the bounding boxes and probabilities for each region. The predicted126

PyTorch
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Fig. 1: Proposed Technique to generate label dataset that will be used to
training the YOLO-v5 model

probabilities are used to weight these bounding boxes. The algorithm needs127

only one forward propagation pass through the neural network to make pre-128

dictions, so it only looks once at the image. It then outputs known objects129

together with the bounding boxes after a non-max suppression (which ensures130

that the object detection algorithm only recognizes each object once).131

4 Experimental Procedure132

Let us assume that we want to apply a cluster analysis to 2D datasets X =133

{x1, . . . , xn}, where xi ∈ R
2. In order to apply our model, we need to transform134

such datasets into images. We have chosen squares of resolution 640 × 640135

pixels.136

The YOLO-v5 learner has been trained with 1000 of such datasets, each137

one presenting between 2 and 12 clusters, made of between 20000 and 50000138

points, generated from different bivariate Gaussian densities (as sketched in139

Fig. 1). We point out that the flexibility of this model would be enhanced if140

the training phase would cover a larger family of cluster shapes.141

142

Fig. 2 presents the workflow of the proposed solution that consists of:143

1. The labeled dataset will be processed to convert samples to image repre-144

sentations in 2D.145

2. Split the dataset into training and testing sets146

3. Training the YOLO-v5 DL-object detection model by using the training147

set. After fitting this model, the trained model can be used to predict the148

cluster parameters (number of clusters and their corresponding centroid).149

4. The trained model will be evaluated using the test set, and if it reaches150

good performance, the trained model can be used with new datasets to151

quickly detect the cluster initialization parameters. Otherwise, the retrain-152

ing process will be applied after modifying the DL parameters.153
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Fig. 2: The workflow process of the proposed solution

We show in Fig. 3, a visual show of the proposed scheme with a random154

training image (correspondent to dataset samples in 2D image representation)155

and another one for testing: after the training step, for each new test dataset,156

the trained learner detects its clusters, and it feeds the clustering method157

(k-means, FCM , and x-means) with the initial parameters, improving their158

efficiency.159

We present a few examples of the training images in Fig. 4.160

We have used the YOLO-v5 model implementation of [26], trained with161

the SGD optimizer by using an initial value of 10−2, a batch of the size of 16,162

and the rest of the parameters with the default values.163

In the training phase, the YOLO-v5 model learns to detect all the clusters164

with 20 epochs. At the inference phase, once the model detects the bounding165

boxes, the center for each cluster is computed, and this value will be the166

initial value for the initial cluster. YOLO-v5 is very efficient and lightweight;167

it quickly detects the objects (clusters) and can be implemented on GPU or168

CPU (after being trained).169

5 Results170

In this section, we compare the performance of k-means [29], x-means [30], and171

FCM [31] under their usual initialization, against our DL-based initialization,172

over a set of 100 test datasets (i.e. images).173
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Fig. 3: The proposed solution consists of training the YOLO-v5 model to detect
the number of clusters and centroids, and later the trained model will be used
to extract initialization parameters (the number of clusters and centroids) for
new unknown clustering datasets

(a) nc=2 (b) nc=4 (c) nc=8 (d) nc=10

Fig. 4: Examples of simulated datasets used to train the YOLO-v5 object
detection model

5.1 Detection of the number of clusters174

Our test set has been generated with varying numbers of clusters, that we have175

labeled in order to test the accuracy of the clustering algorithms. We show in176

Fig. 5 the percentage of correct cluster number identification, in the test set of177

100 images, for: (1) the k-means algorithm with initialization, assisted with the178

metrics of Table 1; (2) the x-means algorithm; and (3) the k-means algorithm179

assisted with our proposal (i.e., with the number of clusters estimated in the180

object detection phase).181
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We can see that the k-means algorithm assisted with our proposal, as well182

as with the random initialization plus the metrics BIC, AIC, FMI, ARI, and183

CAL, have yielded the exact number of clusters in all the instances. The met-184

rics DB, SIL, and GAP have produced a very high rate of correct guesses too,185

and only the x-means has shown a poor rate of correct guesses. Let us men-186

tion that the advantage of our proposed solution, compared to the other ones,187

using the metrics, is that we require less computation and memory overhead188

(see Fig. 12).189

Fig. 5: Percentage of correctly detected number of clusters for 100 tests, where
clusters for each test iteration have been generated randomly with different
cluster numbers, sizes, and locations.

5.2 Centroids Detection Correctness190

In this part, we have analyzed the correctness of the detected centroids. Fig. 6191

presents a few of the images in our test set. We can remark visually that192

the identified centroids are very close to the generated ones for the different193

clusters (see Fig. 9). Moreover, we measure the Euclidean distance between194

the identified and true centroids, and we have obtained the results presented195

in Fig. 7, showing that the generated and detected centroids are very close in196

almost all the instances.197

5.3 Accuracy Rate198

The clustering accuracy rate (AR) is the proportion of correctly classified
observations:

AR =

k∑

i=1

n(ck)

n
(3)
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(a) k=2 (b) k=3 (c) k=4 (d) k=5

(e) k=6 (f) k=7 (g) k=8 (h) k=9

Fig. 6: An example of validation datasets with generated and identified cen-
troids (consequently of each cluster)

Fig. 7: Average Euclidean distance between generated and detected centroids
for the 100 test images with k-means of scikit-learn and our initialization

scikit-learn
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where n(ck) is the number of data points that were correctly included in cluster199

k, and n is the total number of data points. The higher is the AR, the better200

is the clustering detection.201

Fig. 8 represents the AR results of k-means with and without the identified202

centroids in the test set. These results validate that the clustering accuracy (at203

the level of the samples) is enhanced (to be close to 1) by using the identified204

centroids for a naive implementation of k-means and also for the optimized205

scikit-learn k-means implementation.206

Therefore, k-means (or any other clustering algorithm) can provide better207

clustering accuracy and low computational overhead (low number of iterations208

to converge and consequently low delay) by using the proposed initialization209

parameters detection method. For example, as shown in Fig. 9-(e) (detected210

nc = 6), the accuracy is enhanced from 0.854 to 0.999 by using the identified211

clusters number and centroids.212

5.4 Iterations for convergence and time consumption213

Fig. 11 confirms the reduction in the number of iterations until convergence, for214

k-means and FCM, when used with the proposed approach, compared to the215

traditional clustering approaches, for the 100 test set images. As an example,216

in the case of nc = 7 (Fig. 9-f), the required number of iterations to converge217

is decreased from 4 to 2 by using the identified centroids.218

Regarding the time delay of the clustering algorithms, we remark that it219

depends on three factors:220

1. The number of iterations in the algorithm.221

2. The amount of data points.222

3. The time needed to find out the clustering centers and data points parti-223

tions.224

We have examined the computer time of the proposed solution to detect225

cluster initialization parameters. Fig. 12 shows the execution times (in seconds)226

for the k-means assisted by two of the well-known metrics (AIC and BIC), as227

well as our proposed method, versus the dataset size. We observe a lower228

execution time for our proposal, compared to the other methods, making it229

the best choice when working on large datasets. The proposed solution has230

the advantage of requiring very low computational demand, and consequently,231

low delay, since it is practically independent of the number of observations in232

the dataset.233

Moreover, we quantify the effectiveness of using these initialization pa-234

rameters to help the clustering algorithm to converge fast. Fig. 13 shows the235

execution time ratio between using clustering algorithms with the identified236

centroids and without it. These results show clearly that using the identified237

centroids reduces the testing time to half on average. This indicates that the238

proposed solution reduces significantly the clustering testing time and makes239

it suitable for large tabular datasets.240
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(a) k-means naive

(b) k-means of scikit-learn

Fig. 8: Accuracy of k-means clustering algorithms with and without using the
proposed approach for two k-means implementations

6 Discussion241

The proposed solution involves the implementation of a Deep Learning (DL)242

approach, utilizing Yolo-v5 with its default configuration to identify cluster243

initialization parameters. This method demonstrates superior results in com-244

parison to statistical approaches, showcasing enhanced efficiency. Yolo-v5, em-245

ployed as an object detection model in this context, serves as a proof of con-246

scikit-learn
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(a) nc=2 (b) nc=3 (c) nc=4

(d) nc=5 (e) nc=6 (f) nc=7

(g) nc=8 (h) nc=9

Fig. 9: The k-means clustering results for the test datasets, listed in Fig. 6, by
using the detected cluster number and identified centroids (proposed method)

cept. Consequently, based on the achieved outcomes, any proficient DL object247

detection model could substitute YOLO for detecting initial clustering param-248

eters. The solution leverages the capabilities of DL models for image analysis,249

emphasizing that the contribution lies in the overall framework rather than250

the specific DL model used. Additionally, the work includes a comprehen-251

sive comparison between classical initialization methods and the proposed DL252

YOLO-v5 initialization, validating its efficiency and robustness.253
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(a) Detected nc=5,
BIC=6, AIC=7

(b) Detected nc=4,
BIC=5, AIC=5

(c) Detected nc=3,
BIC=4, AIC=4

(d) Detected nc=4,
BIC=6, AIC=8

(e) Detected nc=3,
BIC=4 AIC=4

(f) Detected nc=7,
BIC=8, AIC=8

(g) Detected nc=4,
BIC=5, AIC=5

(h) Detected nc=5,
BIC=8, AIC=8

Fig. 10: Results of the overlapping model for which the number of centroids
detected by the proposed approach is different compared to other classical
approaches (AIC, and BIC)
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The proposed work is a new clustering initialization method that can de-254

termine the number of clusters of a 2D dataset, in addition to their possible255

centroids and sizes, improving the speed and results of the most popular clus-256

tering algorithms by using the DL object detection model, which is the main257

contribution of this work. The advantages of the proposed solution are light-258

ness, speed, and robustness with different cluster volumes, shapes, and noise.259

The proposed solution has been tested with several configurations, proving its260

efficiency compared to other existing approaches, especially in terms of accu-261

racy, time consumption, and resource overhead, as can be seen in Figs. 8, 11,262

12 and 13.263

Therefore, this work presents a new simple, and fast way to set up the264

initial clustering parameters by using the DL object detection models such as265

YOLO-v5.266

7 Conclusion267

The proposed solution has proved to outperform the classical setups of cluster268

analysis, in accuracy as well as in time delay. It should also be noted that even269

if YOLO-v5 has been used in this paper as proof of work, any future efficient270

object detection model can be adapted and used instead of YOLO-v5 in the271

proposed solution.272

As future work, we aim to design a new DL-based data transformation273

model for assisting clustering algorithms in higher-dimension data analysis,274

as well as envisaging a wider family of cluster shapes (further than Gaussian275

blobs).276
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23. Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Com-346

munications in Statistics-theory and Methods, 3(1):1–27, 1974.347

24. Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of348

clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:349

Series B (Statistical Methodology), 63(2):411–423, 2001.350
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(a) Naive K-means implementation

(b) Scikit-learn K-means implementation

(c) FCM

Fig. 11: Variation of the number of iterations required to converge for k-means
with random start (a), with kmeans++ start (b), and for FCM with random
start (c), along the images in the test set. It can be seen that our solution to
detect centroids is very efficient for all the tested algorithms.

kmeans++
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Fig. 12: Comparison of the execution time for the detection of the correct
number of clusters, under AIC, BIC, and the proposed initialization method
used with the k-means version of scikit-learn. It can be observed that the
proposed approach is very efficient and scalable compared to other approaches.
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Fig. 13: Ratio of the execution time for k-means and FCM (between “with”
over “without” the detected clusters initialization)
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